Evolution of Legged Locomotion
by

Dirk Arnold

Dipl.-Inform., Universitat Dortmund, 1995

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School
of

Computing Science

© Dirk Arnold 1997
SIMON FRASER UNIVERSITY
July 1997

All rights reserved. This thesis may not be reproduced in
whole or in part, by photocopy or other means, without the

permission of the author.

Approval

Name: Dirk Arnold
Degree: Master of Science
Title of Thesis: Evolution of Legged Locomotion

Examining Committee:

Dr. Tiko Kameda
Chair

Dr. F. David Fracchia

Senior Supervisor

Dr. Thomas W. Calvert

Supervisor

Dr. John C. Dill

Examiner

Date Approved:

ii

Abstract

The realistic animation of human and animal figures has long been a prime goal in computer
graphics. A recent, physically-based approach to the problem suggests modeling creatures as actuated
articulated bodies equipped with a “virtual brain” which generates the control signals required by
the actuators to produce the desired motion. The animation of such a creature is simply a forward
simulation of the resulting motion under the laws of physics in time.

While using this approach ensures physically realistic motion, there is no obvious solution to the
problem of devising a control system that leads to the desired motion. Even though good results have
been achieved by carefully handcrafting control systems on the basis of biomechanical knowledge and
physical intuition, it is desirable to produce control system automatically. Evolutionary algorithms
which iteratively improve randomly generated initial control systems have shown to be a promising
approach to this problem.

This thesis introduces spectral synthesis as a tool for generating control systems to be optimized
in an evolutionary process and demonstrates the viability of the approach by evolving creatures for
the task of legged locomotion. Other than representations of control systems that have previously
been used for evolving useful behavior, spectral synthesis guarantees evolvability, improving the
chances of the evolutionary search to succeed. Virtual creatures exhibiting a great variety of modes
of locomotion, including hopping, crawling, jumping, and walking, have been evolved as part of this

work. The incorporation of more goal-directed components remains as a future goal.

A second accomplishment of this thesis is the derivation of the equations describing the effect of
applying a contact force to an articulated body on its acceleration, making it possible to generalize
the common algorithms for handling contacts in systems of rigid bodies to articulated bodies. The
physical simulation algorithm described in this thesis allows for real time simulation of articulated
creatures of up to about twenty degrees of freedom. Efficient simulation algorithms are especially im-
portant as evolutionary optimization requires the evaluation and therefore simulation of the behavior

of a great number of creatures.

iii

Acknowledgements

I’d like to thank Dave for encouragement, support, and helpful advice, and the other
members of my examining committee for useful input which helped shaping the final version
of this thesis.

v

Contents

Approval

Abstract
Acknowledgements
1 Introduction

2 Physical Simulation of Actuated Articulated Bodies
2.1 Preliminaries e e e e
2.1.1 Spatial Notation o
2.1.2 Joints e e
2.1.3 Recursive Description of Articulated Bodies
2.2 Equations of Motion e
2.3 Recursive Formulation of Forward Dynamics
2.3.1 Chain-Structured Systemso
2.3.2 Tree-Structured Systems Lo
2.4 Contacts and Collisions o
2.4.1 Contact Geometry L L e
2.4.2 Contact Equations 0 o s
2.4.3 Frictional Collisions o o
2.4.4 Static Contacts L L

2.5 Summary ... Lo e e e e e e e

3 Evolution of Virtual Creatures
3.1 Evolutionary Algorithms oo L.

3.1.1 Evolutionary Search and Optimization

v

v

v

10
10
12
16
17
19
19
21
23
24
26
27
35
39

Contents

3.1.2 Selection e e e e e
3.1.3 Mutation L e e e e
3.1.4 Recombination
3.1.5 Parallelism
3.2 Virtual Creatures e e e
3.2.1 Morphology
3.2.2 Control Systems L
3.3 Results. e e

4 Conclusion
Appendix: Implementation Issues

Bibliography

vi

56

59

62

Chapter 1

Introduction

The realistic modeling of the locomotion of human and animal figures has long been a prime
goal in computer graphics. In a direct derivation from traditional animation techniques,
the problem of animating figures in physically realistic and visually convincing ways has
long been put into the hands of highly skilled animators who prescribe the positions and
orientations of the objects in motion for a number of key frames, with intermediate frames
constructed by computer interpolation. LASSETER [27] gives a comprehensive account of
how the principles of traditional animation apply to 3D keyframe computer animation.
However, producing motion kinematically by determining positions of objects over time
while neglecting the forces and torques that generate the motion in the real world often
causes the movements to have a somewhat unrealistic appearance, and figures may look as

if being pulled by invisible strings instead of locomoting as a result of their limb movements.

Dynamic methods do not suffer from this problem as they model the behavior of the
objects in motion under the laws of physics and therefore guarantee physically realistic
and visually pleasing results in the limits of the physical model being employed. Using a
physically-based approach, articulated figures are usually modeled as collections of rigid
bodies connected by joints. Virtual “muscles”, in the following referred to as actuators,
apply forces across the joints to make the creatures move. The motion of the rigid bodies
comprising an articulated figure is governed by the laws of Newton and Euler, with the
joints imposing kinematic constraints. To generate the successive time frames required for
an animation sequence, the system combining the equations of motion with any constraint
equations that might be needed, for example for avoiding interpenetration of solid objects,

is numerically integrated.

Unfortunately, however, the gain in realism resulting from the use of dynamic simulation

Chapter 1. Introduction M

as opposed to kinematic methods comes at the cost of a loss of control. The problem of
specifying a physically realistic sequence of positions and orientations has been replaced by
the even less intuitive problem of specifying a system which, when subjected to the laws
of physics and simulated over time, shows the desired behavior. In particular, to produce
animations of actuated articulated figures, the actuator forces and torques leading to the
desired motion have to be given. As the number of degrees of freedom is potentially quite
large, the problem of finding and coordinating appropriate control algorithms is rather

complex.

Related Work

In recent years, a number of studies have dealt with the problem of automating the creation
of animations of articulated figures. The following overview does not attempt to cover all
of the work done in the area, but rather concentrates on instances where dynamic concepts
have been used as a tool to achieve realistically looking motion. For readers interested
in a more comprehensive treatment of the subject or related higher level approaches, the
anthology Making Them Move [2] can serve as a starting point.

Several authors have introduced methods for blending kinematic constraints with dy-
namic simulation. Isaacs and CoHEN [20] and BARZEL and BARR [5] suggested exerting
explicit control over some of the degrees of freedom by kinematically specifying positional
constraints on parts of a body while allowing other parts to react in a correct dynamic
fashion. Technically, this can be achieved by treating the kinematic constraints as conse-
quences of constraint forces which are solved for and subsequently added into the simulation,
cancelling out the part of the dynamics that leads to the violation of the constraint. The
approach permits parts of an articulated body, such as a character’s hands or feet, to be
moved along predefined trajectories. However, it provides no help in defining those trajecto-
ries, which is the central problem in creating character animation, and unrealistically large
forces can occur as a consequence of badly chosen constraints. It has been noted that while
allowing a character to be dragged around manually like a marionette, constraint forces
sidestep the central issue of deciding how the character should move.

In an attempt to overcome these limitations, WITKIN and Kass [53] introduced space-
time constraints, permitting the imposition of constraints throughout the time course of
the motion, with the effects of constraints propagating freely backward as well as forward
in time. The approach conceptually deviates from the simulation paradigm by treating the
laws of physics as constraints on the motion rather than as the primary driving force for

simulation. Instead of progressing sequentially through time, the problem of producing an

A

Chapter 1. Introduction %

animation sequence is considered as a trajectory optimization problem with the laws of
physics as constraints, and is solved by iteratively refining an initial guess at a possible
trajectory. As the optimization problem requires that all forces and all of a creature’s de-
grees of freedom during the entire time interval of interest are solved for simultaneously,
the computational requirements grows rapidly with the number of degrees of freedom of the
objects being modeled and with the length of the simulation time interval. Moreover, the
approach requires exact advance knowledge of the time steps at which non-interpenetration
constraints are active, making it difficult if not impossible to handle multiple and frequently
changing contacts realistically. In an attempt to alleviate these problems, COHEN [12] ex-
tended the original idea by introducing spacetime windows, subdividing spacetime into dis-
crete pieces, and created an interactive framework for specifying constraints and objectives

for the motion, and for guiding the numerical solution of the optimization problem.

An entirely different approach was chosen by BRUDERLIN and CALVERT [10] who made
use of detailed knowledge of the biomechanics of walking to create a simplified dynamic
model of the human gait and to control its degrees of freedom. Rather then relying on a
general dynamic model, they tailored a leg model based upon a telescoping structure with
two degrees of freedom for the stance phase and a compound pendulum for the swing phase,
and analytically constrained the motion to allow for only a specific range of movements.
Having thus reduced the number of degrees of freedom as compared to a general dynamic
model, they used knowledge about locomotion cycles to construct a hierarchical process
controlling the remaining variables. Feet, upper body, and arms were added to the model
kinematically, and were made to move in an oscillatory pattern similar to that observed in
humans. The approach resulted in a procedural model allowing an animator to effortlessly

control the motion by simply varying some parameters affecting the gait.

The remainder of this survey concentrates exclusively on related work employing general
dynamic models with no kinematic constraints other than those stemming directly from the
laws of physics. No advance assumptions are being made about the forms of motion that
emerge during the course of a simulation. Given an accurate physical model, the motion that
can be generated using this approach is extraordinarily realistic and naturally incorporates
effects resulting from phenomena such as surface friction in a convincing manner. Two
major problems pertaining to it are the high computational demands of a general physics
simulator which is sufficiently robust to cope convincingly with all constellations that might
occur during the course of a simulation, and the difficult question of how to design a control

system which generates input to the actuators leading to the desired form of motion.

While the problem of physical simulation has often been dealt with in the past by using

’

Chapter 1. Introduction %

simplified dynamic models, creating statically stable systems, or restricting the motion to
two dimensions, a considerable amount of work exists on the problem of designing powerful
control systems. Instead of just producing periodic time series as inputs for the actuators,
control systems can make use of sensor information to compute appropriate signals on
the basis of data on the current position and velocity of the creature and parts thereof,
information on contact with the ground or other objects, or even visual data about the
environment.

As the design based upon physical intuition or knowledge of biomechanics requires a
considerable amount of effort on the part of the animator, much of which consists of tweaking
parameter values, attempts have been made to generate such systems automatically in an
evolutionary process. The performance of initially randomly generated control systems is
evaluated, and in a process mimicking features of biological evolution, promising systems are
used as starting points for further generations while poorly performing ones are discarded.
The approach derives part of its appeal from its potential to generate interesting and often
surprising results that would be hard to achieve by using other methods. The disadvantage
that the influence an animator can exert on the behavior of the creatures to be evolved is
limited to the specification of fitness criteria, and therefore is indirect and comparatively
weak, is often more than compensated for by the fact that evolved characters frequently
exhibit behaviors which give them the appearance of intention and personality without it
being explicitly designed.

The following list describes interesting features of some related work in which control

systems have been generated that lead to successful locomotion behavior.

¢ McKENNA and ZELZER [29] created a three-dimensional, six-legged virtual insect with
38 degrees of freedom which is capable of statically stable walking. The problem of
generating a control system was divided into one of coordinating the motion of the
links and one of generating the actual forces. Coordination was achieved by a gait
controller consisting of a number of coupled oscillators — one for each leg of the
creature — which rhythmically trigger the legs to step. Additionally, reflexes such
as a step reflex which triggers a leg to step if it has nearly reached its maximum
rearward extension, and a load-bearing reflex which prevents a leg from stepping if
it is currently supporting the body, were added to reinforce the stepping pattern.
The problem of computing the forces was solved by carefully handcrafting motor
programs for stepping and stance which compute the forces necessary to lift the leg
up and forward and place it in a position to take up the load of the body when stance

begins, and the forces needed to support the body via the legs and propel it forward,

-

Chapter 1. Introduction h

respectively. The resulting control system can adapt to various speeds as a reaction
to changes in an exogenous parameter and proved to be robust enough to enable the

creature to negotiate its way in uneven terrain.

e NGO and MARKS [35] evolved control systems for two-dimensional stick figures treated
as autonomously deforming objects without dynamic internal degrees of freedom. As
the deformation of such creatures is purely kinematic, the task of physical simulation
is restricted to modeling interactions with the ground plane. Sensors including pro-
prioceptive sensors for the joints, tactile sensors delivering information on the forces
exerted by the endpoints of the links on the ground, kinesthetic sensors giving the
vertical velocity of the center of mass of a creature, and position sensors supplying the
vertical position of the center of mass relative to the floor provide input to the control
systems of the creatures. The control system itself uses a number of stimulus-response
pairs and a metric defined on the sensor space to map sensor readings to the response

associated with the closest stored sensor tuple.

e VAN DE PANNE and FIuME [49] pursued similar goals by connecting the sensors of
their two-dimensional creatures to the actuators through a neural network which was

designed to incorporate internal delays, thereby giving it dynamic properties.

e SiMs [44] made use of a highly parallel computer to create virtual creatures for walk-
ing, swimming, and jumping in a simulated three-dimensional world, with both the
morphologies and the control systems being generated automatically in an evolution-
ary process. His articulated figures are composed entirely of three-dimensional, box-
shaped rigid bodies connected by a variety of joint types. Control systems are networks
of nodes computing simple logic and arithmetic functions, resembling dataflow com-
puters in their operation. Both morphologies and control systems were encoded as
graphs, and evolutionary operators applicable to this representation were specifically

designed.

e VENTRELLA [50] enhanced the automatic evolutionary algorithm by an interactive
component, making it possible for the animator to let subjective judgement influence
the exploration of emergent locomotion behavior in articulated three-dimensional stick
figures evolved for walking. Both morphologies and the control systems which were
made to generate simple sinusoidal output without making use of sensor input were

subject to evolutionary change.

e Hopacins, WooTEN, BrRoGaN, and O’BRIEN [19] produced animations of human

Chapter 1. Introduction g

athletics. They created kinematic models of humans with up to 30 controlled degrees

of freedom and designed control algorithms based upon physical intuition about the
behaviors, observations of humans performing the task, and biomechanical data to

produce animations of running, bicycling, and vaulting.

Goals

The goal of this thesis is to produce realistic animations of three-dimensional, fully dy-
namic, legged articulated creatures. Two separate challenges are related to this task. First,
algorithms for the dynamic simulation of three-dimensional articulated figures have to be
developed. While efficient algorithms for the simulation of unconstrained figures exist, the
situation is less satisfactory when interpenetration constraints have to be considered. One
contribution of this thesis is the generalization of an algorithm for computing contact forces
from systems of rigid bodies to articulated bodies. The resulting simulator is sufficiently
powerful and robust to convincingly simulate the motion of rounded three-dimensional ob-
jects with up to about twenty degrees of freedom in real time.

The second challenge is the problem of finding encodings describing virtual creatures
which are suitable for evolutionary optimization, in that they increase the chances of the
evolutionary search to succeed. Such genotypic descriptions have to contain all information
on the kinematic structure of the links and joints, the mass and inertia properties of the
links, and the parameters describing the control system of a creature. The encodings of most
current control systems such as neural networks or dataflow architectures suffer from the
defects that for most values of the parameters, the resulting behaviors are meaningless, and
that the dependence of creature behavior on the parameters is usually highly discontinuous.
In this thesis, spectral synthesis is introduced as a useful tool for the design of motor

programs, and problem specific evolutionary operators are suggested.

Overview

The remainder of this thesis is organized as follows. Chapter 2 introduces the physical
groundwork for modeling articulated creatures. In particular, after outlining the basic con-
cepts and equations of motion, the articulated body method as first formulated by FEaTH-
ERSTONE [16] is derived as an efficient algorithm for computing the dynamics of articulated
bodies without kinematic loops. Then, algorithms for handling collisions and static contacts
are presented and their appropriateness for the problem at hand is discussed. Chapter 3

starts with an introduction into the field of evolutionary optimization before outlining im-

g
Chapter 1. Introduction g.

portant factors for the design of scripting languages for the morphology and control systems

of creatures which are to be optimized in an automatic evolutionary process. Then, results
from experiments in which virtual legged creatures have been evolved for locomotion be-
havior are presented. Chapter 4 concludes, and Appendix describes the software system

developed for conducting the experiments.

Chapter 2

Physical Simulation of Actuated
Articulated Bodies

Actuated articulated bodies are systems of rigid bodies connected by joints which are pow-
ered by force generators — henceforth referred to as actuators — applying forces in the free
directions of the joints. Often, as is the case here, articulated bodies are required to not have
internal loops, meaning that a graph with vertices corresponding to the links comprising an
articulated body and edges corresponding to the connecting joints is cycle-free. Acyclic ar-
ticulated bodies are sufficiently general to encompass models for legged creatures as required
in Chapter 3. Admitting cyclic topologies would lead to redundant systems of equations,
thereby greatly increasing the mathematical and computational difficulties arising during
simulation.

The state of an articulated body can be described by means of a set of joint position
coordinates, ¢, and their derivatives with respect to time, joint velocities ¢. The simulation
problem for articulated bodies consists of solving for the joint accelerations §, given the
current positions and velocities of the joints and the torques and forces applied internally
by the actuators and externally by contact and friction forces. A numerical integration pro-
cedure can then be used to compute new positions and velocities, advancing the simulation
in time.

Effectively, the real problem is the practical one of finding formulations of articulated
body dynamics and schemes for solving the equations of motion that lead to efficient al-
gorithms. Two different paradigms are commonly used. Non-recursive algorithms, such as
the composite rigid body method by WALKER and ORIN [51], obtain and then solve a set of

simultaneous linear equations in the unknown joint accelerations. That is, they construct

‘-Z_-«.._
Chapter 2. Physical Simulation of Actuated Articulated Bodies

a system of equations of the form J(q)§ = f(q,¢), where J is the joint space inertia ma-

trix of the articulated body and depends on the current joint positions, and f is a linear
function of ¢ and ¢, and then solve for § by inverting .J. Since such algorithms require the
inversion of the N x N matrix J, where N is the number of degrees of freedom of the body,
the computational requirements are high. On the other hand, recursive algorithms such as
the articulated body method by FEATHERSTONE [15] make explicit use of the topological
structure of the system to structure the computational process by propagating motion and
force constraints along the mechanism, and require computational resources growing only

linearly with N.

While the problem of generating and solving the equations of motion for an articulated
body without internal loops or contact to other bodies is a matter of efficiency, the more
general problem of simulating an articulated body, parts of which are in contact with other
parts of the body or with the environment, is more complex. Mathematically, contacts
introduce additional constraint equations, eliminating some of the degrees of freedom of
the body, and giving rise to the problem of finding efficient schemes for incorporating the
constraint equations into the system of equations of motion. Unfortunately, the additional
equations can lead to redundancies which result in inconsistencies or ambiguities. It is a
well established fact that combining the principles of rigid body mechanics with the usual
assumptions about the constraints at contact points suffers from this kind of problem.
Moreover, none of the current contact handling algorithms is always able to avoid the trend
to intolerably small integration step sizes as a consequence of configurations it is not suited
for. As a general rule, the more complex the articulated body to be simulated, the more

demanding the task of physical simulation.

The purpose of this chapter is to present computationally efficient algorithms for cal-
culating the dynamics of actuated articulated bodies. After introducing terminology and
notation for the description of articulated bodies in Section 2.1, the equations governing
the motion of articulated bodies are outlined in Section 2.2 and a recursive scheme for
their solution — devised by FEATHERSTONE [15] and generalized and refined by BRANDL,
JoHANNI, and OTTER [8] — is described in Section 2.3. This algorithm is included here
because the equations derived in its development form the basis for the algorithms dealing
with static contacts and collisions discussed in Section 2.4. The derivation of the equations
of motion of an articulated body subject to applied impulses in Subsection 2.4.1 and the
proposed algorithm for handling multiple static contacts in Subsection 2.4.4 are original
contributions of this thesis. The chapter concludes with a summary and a discussion of how

to integrate the outlined algorithms with a numerical integration procedure.

Chapter 2. Physical Simulation of Actuated Articulated Bodies A

2.1 Preliminaries

This section first introduces spatial notation, a useful tool for formulating the equations of
motion for rigid and articulated bodies. Then, a general formalism for describing constrain-
ing mechanisms between rigid bodies which is well suited for modeling the joints connecting
the components of articulated bodies is presented. Finally, the conventions on notation and
coordinate systems used throughout the remainder of this thesis are outlined. This section
does not attempt to derive the equations needed in the following, but simply presents them
without proof. For its understanding, basic familiarity with the mechanics of rigid bodies
is useful. For an introductory treatment of the subject see for example Craia [13]. For a
more extensive treatment of the problem of modeling constraining mechanisms and a great
number of examples of joint types see ROBERSON and SCHWERTASSEK [41]. Additional in-
formation on spatial notation and on efficient implementations of spatial matrix operations

can be found in FEATHERSTONE [16].

2.1.1 Spatial Notation

Spatial notation was first introduced by FEATHERSTONE [15] to unite the rotational and
translational aspects of motion into a single vector quantity, thereby leading to concise and
elegant descriptions of physical systems. In this thesis, a version revised by BRANDL, Jo-
HANNI, and OTTER [8] who clarified notational details is used. In spatial notation, position
is a generic term, embracing both location and orientation of an object. Accordingly, veloc-
ities, accelerations, and forces are described by six-dimensional vectors, each incorporating

three angular and three linear components. Throughout the following,

-6

denotes a spatial velocity with angular component w and linear component ». Similarly,

)

stands for the spatial acceleration with angular component & and linear component o, and

()

10

Chapter 2. Physical Simulation of Actuated Articulated Bodies A

is a spatial force with 7 representing a torque and f a force vector. The spatial inertia

matrix of a rigid body is a 6 x 6 matrix of the form?!

I md
1= - (2.1)
md m13><3
where [is the 3 x 3 moment of inertia tensor of the object with respect to the origin of the
coordinate system, d is the position of the center of mass of the body, and m is the body’s
mass.
A spatial vector quantity can be transformed from one coordinate frame to another by

multiplication with a spatial transformation matrix. More specifically, let a and § denote

two coordinate frames, and let

A 0343 13wz 03x3 A O3x3

X 5= 3 [2
A VN 0T 1ays AT A

where A is the 3 x 3 rotation matrix aligning a-coordinates with §-coordinates and b is
the origin of the f-coordinate system in a-coordinates. Then, if x(@) is the representation
of a spatial vector quantity x expressed in a-coordinates, the representation of that same

quantity in f-coordinates is
x(?) = Xaﬁx(a).

Similarly, a spatial inertia matrix Z can be transformed from a-coordinates to 3-coordinates

by means of
78) — Xgﬁz(a))(aﬁ‘

As a special case, choosing a coordinate system centered at the center of mass of an

object shows that 7 can be expressed as

IO 03,5
7=DnT D
O3xs mlsxs
co 0 —c2 0
For a vector ¢ = | ¢; [, let & = Ca 0 —co |- As a consequence, the cross product ¢ x d of
C2 —C1 Co 0

three-dimensional vectors ¢ and d can be written as the matrix-vector product ¢d. In the same manner, the
vector-matrix cross product ¢ X M of three-dimensional vector ¢ and 3 x 3 matrix M is defined to be ¢M,
the 3 x 3 matrix with columns being the cross products of ¢ with the columns of M.

Furthermore, throughout the following, 1,,x, denotes the n x n unity matrix. Similarly, 0.,x, stands for

the m X n zero matrix.

11

a
Chapter 2. Physical Simulation of Actuated Articulated Bodies A‘—

ICM

where is the moment of inertia tensor of the object with respect to the coordinate

system centered at its center of mass, and

D 13~x3 03x3 ‘
d s

As I9M is symmetric and positive definite, m is positive, and D is regular, it follows that
7 is symmetric and positive definite and therefore invertible. This property will be used
in Section 2.3. Furthermore, it is worth noting that spatial transformation matrices are

transitive in the sense that
KXoy =XpaXap

for any three coordinate frames a, 3, and 7.

2.1.2 Joints

The joint model presented in this section provides a uniform mathematical description of
the kinematically constraining interconnection between two contiguous links of an articu-
lated body. In this model, joints have at least zero and at most three rotational and three
translational degrees of freedom. That is, even a rigid connection and the relative motion
of two free bodies in space can be described. The model is a simplification of the general
joint model introduced by ROBERSON and SCHWERTASSEK [41].

If a joint has N (0 < N < 6) degrees of freedom, the joint state can be described at any
instant by a set of N position variables forming the joint position vector ¢, and N velocity
variables forming the joint velocity vector ¢. For all joints used in the following, a set of
joint state variables can be found such that the relative velocity of the moving body with

respect to the base body can be written in spatial notation as

v = ¢q.
As ¢ is a minimal set of variables, the 6 X N matrix ¢ has full column rank and a 6 x (6 — N)
matrix ¢ can be found such that the columns of 6 x 6 matrix (qb 5) form a basis of IRS.
The constituents of this basis are called the mode vectors of the joint, with the columns
of ¢ being the vectors of the free modes of the joint spanning the motion space while the

columns of ¢ are the vectors of the constrained modes. Additionally, for all joints used in

the following the relationship
T
Do = (0 e o2
¢ O—NyxN L6=N)x(6-N)

12

Chapter 2. Physical Simulation of Actuated Articulated Bodies L-

Figure 2.1: A general joint connecting
moving body a moving body to a base body. The
rest position of the moving body is in-
dicated by broken lines. Spatial trans-
formation X' transforms spatial vectors
from the coordinate frame of the base
body to the coordinate frame of the
base body \)\\\ , moving body in its rest position, and

X S / spatial transformation X" transforms

from there to the coordinate {frame of

the moving frame in its actual position.

holds.

Figure 2.1 shows a general joint connecting a moving body to a base body. On both
bodies, a fixed hinge point is at the origin of a local coordinate frame which moves with the
body. A transformation X' comprised of a translation & followed by a rotation A’ transforms
spatial quantities from the coordinate frame of the base link to the coordinate frame of the
moving link in its rest position, and a transformation X” comprised of a translation ”
followed by a rotation A” which are generally both dependent on the joint state completes
the transformation to the coordinate frame of the moving body. The dependency of A” and
b” on the joint position ¢ formally reflects the constraints on the position of the moving
body imposed by the joint.

The dynamic action between the base body and the moving body can be described by
a resultant spatial force f acting on the moving body and, with negative sign, on the base
body. With f resolved in the coordinate system of the moving body, the free and constrained

modes of the joint can be separated by writing
f=¢A+0 A, (2.3)

where X is the vector of known, applied forces in the unconstrained directions of the joint,
including actuator forces as well as damping forces and possibly spring forces enforcing joint
limits, and X is the vector of unknown constraint forces acting in the constrained directions.

For a complete description of a joint, the state variables for the relative motion across
the joint, the constraint equations on the position variables manifested in transformation
X", the mode vectors, and the kinematical equations of motion have to be given. The

following examples of frequently used joints with the exception of the rigid connection and

13

7
Chapter 2. Physical Simulation of Actuated Articulated Bodies L——

the unconstrained joint are taken from ROBERSON and SCHWERTASSEK [41].

Rigid Connection As a rigid connection has no degrees of freedom, it is trivially described

the the following information.

state variables: none
positional constraint equations: b"(q) = 03x1, A”(q) = laxs
mode vectors: ¢ = 0gxo, ¢ = lgxe

kinematical equations of motion: none

Rotational Joint The state of the single rotational degree of freedom of a rotational joint,
the axis of which is along the common base vectors (1,0,0)7 of both the base frame
transformed by X’ and the moving link frame, is adequately represented by ¢, the

angle of rotation, and its derivative with respect to time.

state variables: ¢q = ¢, ¢=¢
1 0 0
positional constraint equations: b"(q) = 03x1, A”(q)= |0 cos(¢) —sin(y)

0 sin(p) cos(p)

1 00000
0 10 0 00
0 — 01 000
mode vectors: ¢ = , ¢=
0 001 00
0 000 10
0 000 01
: : : . odg
kinematical equations of motion: ik

Prismatic Joint The state of the single translational degree of freedom of a prismatic
joint, with the axis of the joint being along the common base vectors (0,0, 1) of
both the base frame transformed by X’ and the moving link frame, is adequately
represented by z, the amount of extension along that axis, and its derivative with

respect to time.

state variables: ¢ =z, ¢=2

0
positional constraint equations: b"(q) = 10|, A"(¢)= lsxs

z

14

W,
L
Chapter 2. Physical Simulation of Actuated Articulated Bodies = .

mode vectors: ¢ =

_ o o o o o

o O = o O O
o = O o O O

o O O o O =
o O O o = O
o O O = O O

kinematical equations of motion: 4 _ q

dt

Spherical Joint As a spherical joint has three rotational degrees of freedom, its velocity is
adequately described by the relative angular velocity w of the moving body. However,
there is no set of three position variables describing the joint position such that its
derivative with respect to time is the relative angular velocity of the moving body.
Moreover, as ROBERSON and SCHWERTASSEK [41] note, any representation of arbi-
trary rotations in space by three parameters degenerates for certain values of those

parameters.

Therefore quaternions, sets of four parameters s, s, s,, and s, satisfying the normal-
ity constraint si + 5920 + 512/ + 52 = 1.0 which prescribe a rotation of 2 arccos(sw) radians
about the axis (sg,s,, SZ)T, are chosen for the representation of arbitrary rotations.
Even though strictly speaking quaternions are not state variables, they can effectively

be used as such by defining their time derivative as done below.

state variables: ¢ = (84, 585,8y,52), { =W

positional constraint equations: b"(q) = 031,

1 2 2
3 = Sy — Sz SaSy + 8p8: 828, — SpSy
7 _ 1 2 2
A'(q) =2 [spsy — Sps. 5 — 55— S5 Sys, + 5,8,

1 2 2
Sp8z + Sp8y SySy — SuSs 53— 52— 5y

1 - 0
mode vectors: ¢ = X3 , ¢= X3
O3x3 Isxs

—Sy —S8y —S
d e
. . . . q $ —Sz 8
kinematical equations of motion: — = % v Y Wy
dt Sy S, —Sg
wZ
—Sy S So

Unconstrained Joint As an unconstrained joint has three translational and three rota-

tional degrees of freedom, its velocity is appropriately represented by the relative

15

Chapter 2. Physical Simulation of Actuated Articulated Bodies gb_

spatial velocity of the moving body. The joint position can described by a transla-
tion represented by vector (z,y,)" followed by a rotation represented by quaternion
(S5 Szs 8y, 52). When computing the rate of change of joint position ¢ from joint ve-
locity ¢ it has to be taken into account that the linear component of the position is
resolved in the frame of the base body while the linear component of the joint velocity

is resolved in the frame of the moving body.

: . _ T T
state variables: ¢ = (S4, 85,8y, 52, 2,¥,2)", ¢ = (w,v)
x
positional constraint equations: b = | y |,
z
5 — 5 SpSy T 8p8, SzpSy — SpSy
1 2 2
swsy SpSy 5 T Sy — S, SySs + S8z
1 2 2
SpSz + SpSy SySy — SpSz 5 — Sy — Sy
mode vectors: ¢ = lgxe, = 0gxo
—Sy —S8y —S
wl’
1] se —se sy
2 Wy
S5, Sy, —S8g
kinematical equations of motion: — = -8 S S
dt Y x ©
/Ul’
T
(A") Uy
/UZ

2.1.3 Recursive Description of Articulated Bodies

Throughout the following, articulated bodies are required to be acyclic. By choosing one of
the links as the base link, the topology of an acyclic articulated body is that of a tree with
the base link at the root. Effectively, this means that each link — with the exception of
the base link — possesses one joint at which it is attached to its parent link and possibly
one or more joints at which child links are attached. If » is the number of links of which an
articulated body is comprised, let the links be numbered from 1 to n such that the number
of a link is always greater than the number of its parent link, and let pnt a mapping such
that pnt(¢) is the number of the parent link of link ¢. The joint connecting link 7 to its
parent link is called joint :. Furthermore, formally assume the existence of an additional
body 0 of infinite mass and inertia which acts as the parent link of link 1, the base link, to

which it is connected by an unconstrained joint. Figure 2.2 shows an articulated creature

16

Chapter 2. Physical Simulation of Actuated Articulated Bodies g@

/1111 Figure 2.2: A four-legged creature as
1) evolved in Chapter 3 and a tree de-

scribing its structure. Each of the

@ @ ® © legs of the creature corresponds to
a branch of the tree, and the trunk
® & @ @

corresponds to node 1.

as evolved in Chapter 3 and a tree describing its structure in which the links are numbered
according to this convention.

Rather than resolving all variables in a global reference frame, every link has a local
coordinate system attached to it. An immediate benefit from this convention is the fact
that the inertia of a link and the mode vectors of its joint are constants in local coordinates.
In all of the following, velocity, acceleration, and the torques and forces acting on a link will
be given in the link’s local coordinate system without it being explicitly indicated. Moreover,
as transformations will be required only between coordinate systems of consecutive links,

X ynt(i),s can be written shorter as X;.

2.2 Equations of Motion

In this section, the equations governing the motion of the links comprising an articulated
body are presented in recursive form. That is, the velocity and acceleration of a link are
given in terms of velocity and acceleration of the parent link and the relative joint motion
and acceleration, and the equations of Newton and Euler are formulated in terms of the
forces exerted on a link by its neighbors. Detailed derivations of the equations presented
in this section are beyond the scope of this thesis and can be found in Craic [13] or
FEATHERSTONE [16].

Velocities

The spatial velocity of a link incorporates both the linear velocity of a link’s hinge point

and the rotational velocity of the link. For frame ¢ it can be written as
vy = Xivpnt(i) + ¢2q27 (24)

showing that it is composed of the velocity of the parent link and the new velocity compo-

nents added by the motion of joint i.

17

Chapter 2. Physical Simulation of Actuated Articulated Bodies &_

Accelerations

The spatial acceleration of a link is comprised of its linear and angular acceleration. For

frame 7 it can be written as
a; = Xoayuay + G + i (2.5)

where the term

G = " + Aty ! ®i;
Ai(@yne(i) X (Wynt(iy X bi)) 0 2A4i@pnt (i)

results from the fact that the coordinate frame in which the acceleration is resolved is
moving. Therefore, the acceleration of link ¢ is the sum of that of its parent link taking into
account the motion of the coordinate frame and the new acceleration components added by

the acceleration of joint 7.

Laws of Newton and Euler

The force balance equation in spatial notation unites the laws of Newton and Euler into
a single vector equation. Fach link has spatial forces exerted on it by its neighbors, and
in addition experiences an inertial spatial force and possibly external forces, such as those
arising due to contact between two links. As f; acts by definition with positive sign and the
spatial forces f;, where j is a child link of 7 act with negative sign on link ¢, the laws of

Newton and Fuler can be written as

L'ai = fi — Z X]Tf]‘ + ﬁz (2.6)
(sli=pnt(3)}

where

ﬁ' _ f}em‘ _ w; X Lwi
‘ ‘ m;w; X (wi X dz)

is a spatial bias force accounting for centripetal and Coriolis forces and any external forces
£" that may be applied to the articulated body.

Equations (2.4), (2.5), and (2.6) in connection with the constraint equations imposed by
the joints capture all of the laws of physics governing the motion of articulated bodies. More
specifically, after substitution of Equation (2.3) into Equation (2.6) and having computed
all angular velocities using Equation (2.4), Equations (2.5) and (2.6) form a system of 12n
linear equations in the 12n unknowns §;, A;, and a; for i = 1,...,n. In the next section, an

efficient algorithm for the solution of this system is presented.

18

-

Chapter 2. Physical Simulation of Actuated Articulated Bodies e

2.3 Recursive Formulation of Forward Dynamics

In this section, FEATHERSTONE’s [15] articulated body algorithm is derived in the for-
mulation of BRANDL, JOHANNI, and OTTER [8] who clarified some notational details and
generalized it from handling only joints with a single degree of freedom to use the general
joint model of ROBERSON and SCHWERTASSEK [41]. LiLLy [28] referred to it as the most ef-
ficient known algorithm for solving the equations of motion of an unconstrained articulated
body without internal loops and interaction with the environment. So as to facilitate its
development, the equations underlying the algorithm are first derived for chain-structured

systems before they are generalized to arbitrary tree-structured systems.

2.3.1 Chain-Structured Systems

For an articulated body with the structure of a chain, the numbering conventions outlined
in Subsection 2.1.3 mean that the links of the body are numbered in consecutive order,
starting at the base, from 1 to n, with link ¢ being connected to link ¢ — 1 by joint .

Therefore, pnt(i) = ¢ — 1 and Equation (2.6) can be replaced by
Tia; = £ — XL fip1 + 55 (2.7)

where f,,11 = 0 since the outermost link is unconstrained.

The key to an efficient recursive solution of the resulting system is to summarize the
inertial properties of the subchains comprised of links ¢...,n into a new inertial quantity
77 called the articulated body inertia. As a consequence of the equations of motion given
in Section 2.2 a linear relationship exists between a force applied to a component of an
articulated body and the resulting acceleration of this component or of any other component
of the body. Therefore, articulated body inertias can be represented using matrices, and it

can be written
Ijai =1 + ﬁl* (2.8)

In this equation, 37 is an accumulated bias force term reflecting the force which has to be
exerted on link 7 if it is not to accelerate. It should be noted that the articulated body
inertia Z7 does not conform to the special form of rigid body inertias given in Equation
(2.1), physically implying that there is no such thing as a center of mass for an articulated
body.

For ¢ = n it is obvious from Equation (2.7), taking into account that f,11 = 0, that

I =1,

19

e

Chapter 2. Physical Simulation of Actuated Articulated Bodies =

and

*

To compute 7 ; and 37, for i < n, assume that Z7 is symmetric and positive definite. This

K3

is true for i = n as shown in Section 2.1.1 and will be demonstrated below for ¢ < n. Both
sides of Equation (2.8) can be projected onto the free modes of the joint by premultiplication
with ¢, effectively eliminating the dependence on ;. Using Equations (2.5), (2.3), and (2.2)

leads to
OFTr(Xiai_q + G+ bii) = Ni + ¢ 7.

As T7¥ is symmetric and positive definite and ¢; has full column rank, the inverse of matrix

M; = (b?]z*qbz exists and § can be expressed as
Gi = M+ 0 (57 = TF (Xsaima +) (2.9)

Making use of Equation (2.5) and substituting Equation (2.9) into Equation (2.8) yields,

after some simple transformations,

£ =N Xiai1 - (2.10)
where

Ni=T; =T oM 6] I3
and

Yi = B = NiGi = oM (N + o] B7). (2.11)
Therefore, using Equations (2.7) and (2.10) for link ¢ — 1, it follows that

£, =T;_1a;1 + X1 — Bi_y
= (Zio1 + XIN: XDa;_y — Xy — Bia.

Comparison with Equation (2.8) shows that
Ir =T + XIN X, (2.12)
and

By =B+ X (2.13)

20

e

Chapter 2. Physical Simulation of Actuated Articulated Bodies ——

Furthermore, Equation (2.2) can be used together with the fact that 7} is symmetric to

show that A; can be written as
— 1T
Ni =M, ¢,

where M; = 5?];152». As ¢, has full column rank, it follows that A; is positive semidefinite,
and as 7Z;_; is known to be symmetric and positive definite and X; is regular, Z7 ; is

symmetric and positive definite.

2.3.2 Tree-Structured Systems

The generalization of the equations to arbitrary tree-structured systems is straightforward.
It has to be taken into account that a link can now have several child links, making it
necessary to use Equation (2.6) instead of Equation (2.7). As a consequence, Equations
(2.12) and (2.13) have to be replaced by

=L+ Y, X/NX; (2.14)
{jli=pnt(5)}
and
pr=pit > Xl (2.15)
{jli=pnt(5)}
respectively.

Equations (2.14), (2.15), (2.9), and (2.5) form the basis for a recursive simulation algo-
rithm for articulated bodies. The required articulated body inertias 77 and the accumulated
force terms 3 can be computed from Equations (2.14) and (2.15), respectively, by starting
at the leaves and progressing towards the root. The numbering convention on the links
introduced in Subsection 2.1.3 makes it possible to simply proceed in order of decreasing «¢.
Subsequently, the motion of link ¢ can be computed from that of its parent link by means of
Equations (2.9) and (2.5). Since the motion of reference frame 0 is known, the accelerations
for the entire articulated body can be obtained.

The resulting algorithm is given in Algorithm 2.1. The first loop computes coordinate
transformations, velocities, and bias terms for all links and initializes the inertia matrices.
The second loop computes articulated body inertias and accumulates forces. The third loop
propagates accelerations from the base outwards. To include gravity, instead of applying
an acceleration of —9.81m/s? to all links of the articulated body, it is possible to apply an

equal but opposite acceleration to the inertial reference frame. It is obvious that both time

21

H“L—rh-'ﬁ

Chapter 2. Physical Simulation of Actuated Articulated Bodies —m——

vo = Ogx1;
ag = (0.0,0.0,0.0,0.0,9.81,0.0)T;
fori1=1to n{ /* compute transformations, velocities, and bias terms */

X = X!I'X/;

0 Ai®p (i) 0 .
i = + ’ i i
¢ (&'(%’-1 X (Wi X bi))) (0 QAi@pnt(i)) vid

vi = Xivyni) + 0idi

17 = 1;
B = feot (w; X Liw;);
miw; X (w; X d;)
¥
fori=ntol{ /* propagate forces and inertias x/

M; = ¢l I i
if (pnt(i) > 0) {
Ni =T = Tr i M7 oI5
i = B = NiG = Zro MG (i + oF 57);
I;m(i) = I;m(i) - XINXG

* % TA ..
pnt(z) = Ppnt(d) + Xz s

}

fori=1ton { /* propagate accelerations */
i = M7 (i + o (87 — Tr (Xiayu + G))):
a; = Xiayn(s) + G + @il

Algorithm 2.1: Multibody algorithm in the formulation of BRANDL, JOHANNI, and OTTER
[8]. Relative joint accelerations §; are computed for i = 1,...,n from joint positions ¢; and

joint velocities ¢;, and a description of the articulated structure by means of the joint types

and the transformations A’, b between consecutive links.

22

'l'ﬂ.

Chapter 2. Physical Simulation of Actuated Articulated Bodies ——

and storage requirements of the algorithm are linear in the number of links and therefore
in the number of degrees of freedom.

Algorithm 2.1 efficiently solves the problem of computing the joint accelerations for
an acyclic articulated body without interaction with the environment. The subject of the
following section is methods of incorporating kinematic constraints imposed by contacts

between different bodies into the simulation.

2.4 Contacts and Collisions

A realistic simulation of articulated bodies demands that no two bodies interpenetrate.
Both contacts between different links of one articulated body such as different legs of an
artificial creature and contacts with the environment such as the ground plane or other
bodies have to be considered. Contacts impose kinematic constraints on the relative velocity
and acceleration of the bodies involved. In order to enforce these constraints, a simulation
program has to detect contacts between bodies and then take appropriate action. If the
detected amount of interpenetration is within some tolerable range, it is sufficient to apply
counter-acting forces computed on the basis of some contact model; if it is not, the previous
time step has to be repeated using a smaller step size.

Two kinds of contact can be distinguished. Static contacts extend over a finite period
of time and require that the normal component of the force opposing interpenetration does
no work on the bodies in contact. Modes of static contact include resting contact as well as
rolling and sliding contact. On the other hand, dynamic contacts, henceforth referred to as
collisions, are of infinitesimal duration and result in instantaneous changes in the velocity
of the colliding bodies. So as to enforce the constraints imposed by collisions, impulses, a
mathematical idealization of very large forces applied over very short intervals of time, have
to be employed.

This section first discusses contact detection and some geometrical issues at contact
points in Subsection 2.4.1 before deriving the equations describing the effect of applying a
contact force to an articulated body in Subsection 2.4.2. The derivation of these equations
is an original contribution of this thesis and allows for the generalization of the standard
method for handling frictional collisions between rigid bodies to acyclic articulated bodies
described in Subsection 2.4.3. Finally, Subsection 2.4.4 presents a classification of current
algorithms handling multiple simultaneous static contacts, outlines the problems inherent
in them, and then suggests a new contact handling algorithm for articulated bodies to be

used in Chapter 3.

23

'."hk_

Chapter 2. Physical Simulation of Actuated Articulated Bodies T e

2.4.1 Contact Geometry

The purpose of this subsection is to introduce the problem of contact detection and to
list some common assumptions about geometrical conditions at contact points which, in
combination with the assumption that the links an articulated body is comprised of are
perfectly rigid and therefore propagate forces and impulses instantaneously, allow for the

possibility of restricting the attention to events at the contact point alone.

Contact Detection

The problem of detecting contacts is the most time consuming task in many simulations. To
be able to check whether two given objects are colliding at a particular point in time, the
positions of both objects have to be known with respect to a common coordinate system.
Frame 0, the world coordinate system, can serve as such a common frame. The transforma-

tion matrix between frame 0 and an arbitrary link frame ¢ can be computed as
Xo;=X;... Xy,

with the multiplication extending over all transformation matrices of links on the path from
the root of the articulated structure to link ¢. The components by ; and Ag; of Xg; can be
used to compute the location and orientation of link ¢ in world coordinates.

A variety of algorithms aim at reducing the number of collision tests from O(n?), where
n is the number of objects in the scene, by using bounding boxes or spatial decomposition
schemes, or attempt to make the collision tests themselves more efficient. In applications
such as dynamic simulation, geometric or temporal coherence can often be exploited by
making use of the fact that objects move on continuous trajectories in space. For example,
a plane separating two objects at one time step is often likely to separate them during the
next time step as well. The details of the collision test are dependent on the shape of the
objects being tested.

Efficient collision detection is of minor importance in the current work. The number
of bodies making up the virtual creatures evolved for walking is rather small, and the
number of collision tests to be performed can be restricted by making use of the fact
that legs from opposite sides of a creature are not likely to collide. For all simulations
carried out for this thesis, it turned out to be sufficient to employ a very simple approach,
testing for collisions only between segments of adjacent limbs of a creature. The collision
tests themselves consist in an analytical computation of the minimal distance between the

frustums making up the limbs. For larger simulations with several articulated creatures

24

Chapter 2. Physical Simulation of Actuated Articulated Bodies R

Figure 2.3: A contact between bodies ¢ and j rendered

in two dimensions. The broken lines indicate the ori-

entation of the contact coordinate system, the z-axis
of which is aligned with the surface normals at the

contact point.

involved, a more sophisticated approach would have to be employed. BARAFF [4] gives an

extensive overview of such algorithms.

Collision Coordinates

So as to derive the equations of motion required in the following, it will be assumed that all
contacts are point contacts. If extended contact occurs, it will be modeled as a finite number
of point contacts. For example, if the bodies in contact are composed of polyhedra, imposing
non-penetration constraints at the vertices of the polygonal contact area is sufficient to
prevent interpenetration over the entire area. It will also be assumed that there always is
a common tangent plane for the bodies in contact. If one of the features in contact is a
plane, then it is taken to be the tangent plane. If both features in contact are edges, the
tangent plane is defined to be the plane spanned by the edges. The unit normal vector of
the tangent plane is referred to as the contact normal.

Relative velocities, contact forces, and the equations of motion for a contact will be
given with respect to a contact coordinate system centered at the point of contact, which
is defined in such a way that its z-axis coincides with the contact normal. Formally, for
a contact between bodies ¢ and j, the contact coordinate system is defined by a spatial

transformation

X - Ai,con 0
i,com — T
Ai,con c; Ai,con

which transforms i-coordinates into contact coordinates, where ¢; is the contact point in

i-coordinates and A; ., is a rotation matrix transforming the collision normal expressed

T
in 7-coordinates into the unit vector (0 0 1) . A corresponding spatial transformation
X con for link j transforms j-coordinates into contact coordinates. Figure 2.3 illustrates the
location and orientation of the contact coordinate system and some of the quantities used

during contact analysis.

25

Chapter 2. Physical Simulation of Actuated Articulated Bodies e T

By convention, the contact normal is directed such that it points inwards for link ¢ and
consequently outwards for link j, and the relative velocity between bodies ¢ and j at the

point of contact in contact coordinates is defined as
Vrel = Xi,convi - Xj,convj- (216)

If the z-component of the linear component v, = (v, vy, v,)7 thereof, the relative normal
velocity v,, is non-negative, the bodies are receding and no action has to be taken to prevent
interpenetration. If v, < 0, a force f has to be applied at the point of contact to body ¢ in

the direction of the contact normal and to body j in the opposite direction.

2.4.2 Contact Equations

This subsection derives the equations describing the effect that applying an external spatial
force at a particular point of an articulated body has on the acceleration of the body. These
equations make it possible to generalize the common algorithms for handling collisions and
static contacts between rigid bodies to articulated bodies. Like the articulated body method
outlined in Section 2.3, the computational process leading to the inertial quantities required
here is recursive and requires time growing linearly in the number of links of the articulated
body. The derivation is an original contribution of this thesis. Recently, MirTICH [33] found
a similar algorithm for computing the same quantities.

For the following derivation it is assumed that the components of the acceleration due to
forces other than the applied external force are computed in a separate process and therefore
do not have to be considered here. This assumption will prove valid for both the algorithms
for handling collisions and for handling static contacts described below. Due to the linearity
of the equations for propagating forces and accelerations introduced in Section 2.3, the
total acceleration is the sum of the two parts. A result of the assumption is considerably
simplified equations. In particular, making use of \; = 0 and (; = 0, Equations (2.11) and
(2.15) can be combined to yield

Bttty = M 57 (2.17)
where

= (loxe — SMT ST I X,
and from Equations (2.9) and (2.5) it follows

ai = Midyu() + GiM; Of B7 (2.18)

26

HE

Chapter 2. Physical Simulation of Actuated Articulated Bodies T T

Figure 2.4: Part of a tree representing an articulated body. The
inverse spatial inertia matrix s»;; which determines the effect of a
spatial force f; applied to link j on the acceleration a; of link 7 can
be found by propagating the force from link j to the root link and
subsequently the resulting acceleration from the root to link i. Link

k is the outermost link on the paths from the root to both link i

and link j.

Equations (2.17) and (2.18) can be used to compute the effect that applying a force f; to
link 7 of an articulated body has on the acceleration a; of link ¢. More specifically, Equation
(2.17), together with p7 =1, can be used to propagate the force from link j recursively to
the base link, and Equation (2.18) in combination with ag = 0 can be used to propagate
the resulting acceleration from the base link to link ¢. As will be shown, the relationship

between the two quantities is linear and can be written as
a; = x;f;. (2.19)

The task at hand is to compute the inverse inertia matrix s;; which depends solely on the
joint positions and the mass and inertia properties of the articulated body.

Figure 2.4 illustrates the situation. Let ¢4 = 1,49,...,0, = ¢t and 71 = 1,j2,...,0n = J
be the links on the paths from the base link of the articulated body to links 7 and j,
respectively. Furthermore, let k& be the number of the outermost link which is in both the
paths. Then there is an [such that ¢; = 5; = k and 4;41 # ji+1. The force term ﬁz is non-zero
only for links p € {j1,...,J.} and can be computed for link j, from Equation (2.17) as

*

= 77;‘C+1 . .n]i;fj. Therefore, from Equation (2.18) it follows that

= oM e))
and

-1
o= Ni, #i,_1j + P, M, ;{,77]:‘2“ 77]7; forl<v <l
] i, Xy 15 forl<v<m

As i, =1, it follows trivially that s;; = 5;,,;. In the following subsections, the quantity s;;

will be used to compute collision impulses and contact forces.

2.4.3 Frictional Collisions

Collisions between hard and compact bodies are highly complex processes involving vibra-

tion waves propagating through the bodies, local deformations in the vicinity of the contact

27

‘z.d\

Chapter 2. Physical Simulation of Actuated Articulated Bodies e T e

area, and other highly nonlinear phenomena. So as to make their simulation tractable, a
physical model which is not only physically reasonably accurate but also computationally
efficient has to be found.

Collisions result in changes in momentum and some loss of kinetic energy for the bodies
involved during a brief contact period. Mathematically, this can be achieved by applying
reaction impulses to the colliding bodies at the point of impact which are equal in magnitude
but opposite in direction. The central problem in collision resolution is to determine the
magnitude and direction of the impulses required to achieve realistic behavior. Generally,
the reaction impulse that develops during a collision depends on the initial relative velocity
and material and inertia properties for both bodies at the impact point. The following
describes a procedure for computing reaction impulses for articulated bodies, generalizing
a similar argument for rigid bodies which can be found in a number of references, including

MirticH and CANNY [31], KELLER [21], and STRONGE [47].

Collision Model

Generalizing a statement on rigid bodies made by BARAFF [4], treating the links of an
articulated body as perfectly rigid bodies leads to the instantaneous propagation of forces
and the possibility of the replacement of complex “micromechanical” processes by simple
“macromechanical” results. As a consequence, the analysis of a collision can be confined
to events at the contact point. However, in reality no body is perfectly rigid, and the rigid
body assumption has to be adjusted to arrive at a contact model allowing an analytical
treatment of the collision process. The usual procedure is to postulate infinitesimal collision
time, prescribe a simple deformation history, and define tangential forces by Coulomb’s
friction law as outlined below.

Infinitesimal collision time: The duration of a collision is assumed to be negligible on
the simulation time scale. However, for the sake of computing an appropriate magnitude of
the impulse to be applied, the moment of impact has to be regarded as a time interval of
finite length on a compressed time scale. On this time scale, interpenetration is prevented
by a finite force f applied to the colliding bodies for the duration of the collision, which
gives rise to continuous changes in velocity. Macroscopically, the collision impulse p can be

computed as

p:/fdt:/dp. (2.20)

The postulate of infinitesimal collision time allows for two important approximations. First,

the positions of the colliding objects can be regarded as constant during the entire collision,

28

ha

Chapter 2. Physical Simulation of Actuated Articulated Bodies A e

and second, the effects of other forces acting on the bodies can be disregarded as they are
negligible compared to the large impulsive forces. As a consequence, Equation (2.19) can
be used to compute the change in relative velocity which results from applying a collision
impulse. More specifically, if links 7 and j of an articulated body are colliding and an impulse
p expressed in contact coordinates is applied to link ¢ and the opposite impulse —p to link

7 at the point of contact, then the relative velocity
Vpel = Ai,con(vi +w; X Ci) - Aj,con(vj + w; X C])

experiences a change which can be computed by forming the derivative of Equation (2.19)

with respect to time as
Av, = Ap, (2.21)

where
T T
A= (03><3 13><3) (Xireon i X con — Xicon 75 X con

0
T T 3x3
- Xj,con %ﬁXi,con + X]yCon%ijj,con) (1

3x3

is an inverse inertial quantity which combines the dynamic properties of the entire articu-
lated body and projects them to the point of contact.

Postulated deformation history: A coefficient of restitution serves as an approximation
to the complex deformations and energy losses which occur when two real bodies collide. On
the collision time scale, the collision process is regarded as consisting of two different phases
which can be distinguished by the sign of the relative normal contact velocity »,. During
the compression phase, which is marked by negative relative normal velocity, a deformation
of the bodies occurs, and part of the kinetic energy of the two bodies is transformed into
elastic strain energy which is stored in the bodies. When v, = 0, the point of maximum
compression has been attained. During the subsequent restitution phase, the bodies return
to their original shapes and the stored energy is released, restoring part of the kinetic energy
the bodies had before the collision, and thereby driving them apart. The work done by the
normal component p, of the collision impulse on the normal component of the relative

velocity at the point of impact is

E= —/vzdpz, (2.22)

the elastic strain energy. The work done by the tangential component of p is frictional energy

and irrevocably lost.

29

\.K

The duration of the restitution phase is determined by a constant ¢, the coefficient of

Chapter 2. Physical Simulation of Actuated Articulated Bodies

restitution, which is assumed to depend only on material properties of the colliding bodies.
If € = 1.0, the collision is completely elastic and no energy is lost. If € = 0.0, the collision is
totally plastic and the objects do not separate after the collision. There are three competing
hypotheses as for which quantities the coefficient of restitution relates, all of which are in
widespread use. The kinematic hypothesis, also termed Newton’s hypothesis, prescribes final
normal velocity, defining the coeflicient of restitution as the negative of the ratio of normal
component of relative velocity between contact points at separation to that at incidence.
Poisson’s hypothesis prescribes the normal impulse applied during restitution, defining the
coeflicient of restitution as the negative of the normal reaction impulse during restitution
divided by normal reaction impulse during compression. A more recent hypothesis suggested
by STRONGE [47] demands that the coefficient of restitution is the square root of the ratio of
elastic strain energy released at the contact points during restitution to the energy absorbed

by deformation during compression. Formally,

f v.dp.

&= J}”W (2.23)

comp

where the integral in the numerator extends over the restitution phase and denotes the elas-
tic strain energy released during restitution while that in the denominator extends over the
compression phase and denotes the elastic strain energy absorbed during compression. All
three hypotheses are equivalent for collinear or non-frictional collisions. However, STRONGE
[46] was able to show that only Equation (2.23) is always energetically consistent for non-
collinear collisions with finite friction.

Coulomb friction: The Coulomb friction model describes a well accepted empirical re-
lationship between the normal and tangential components of the reaction impulse at the
contact point. Effectively, it will be used for defining the frictional component of the contact
force. It states that at any point in time the tangential component of the collision force is
directed to oppose the tangential velocity between the colliding bodies, and that the magni-
tude of the tangential force is limited by the product of a constant u representing material

behavior and the magnitude of the normal force; i.e. that

\/ A2 + dpl < pdp... (2.24)

While the tangential component of the relative velocity v,.; between the two bodies is

30

-

Chapter 2. Physical Simulation of Actuated Articulated Bodies e

non-zero, this leads to the equations

Mg Hy
,/v%—l—vg ,/v%—l—vg

If the tangential component of the relative motion between the two bodies is zero, the

dp, = — dp. and dpy = — dp.. (2.25)

frictional force still acts to oppose sliding. However, if a tangential force less than p times
the normal force is sufficient to prevent sliding, only that force will be applied. Equations
(2.25) define what is commonly known as the friction cone. In the case of dynamic friction,
the friction force can be found on the surface of this cone while static friction forces are in

the interior.

Sliding Mode

If the tangential component of the relative velocity between the two bodies is non-zero,
Equations (2.25) can be used to express the rate of change of tangential impulse with

respect to normal impulse as

dps . d
L— and Lo W (2.26)

dp. ,/v%—l—vg dp. ,/v%—l—vg

Differentiating Equation (2.21) with respect to the normal component of reaction impulse

P, it follows that

dv,/dp. — vz [\ VF + 0]
dvy/dp. | = A —;wy/1 [v2 402 |- (2.27)
dv. [dp.

Equation (2.27) is a nonlinear differential equation which cannot be solved in closed form in
the general case. So as to track v, during the course of the collision, Equation (2.27) has to
be numerically integrated with p, as the independent variable. The total reaction impulse p
can be computed by using Equation (2.25) and summing up the differential normal impulses
dp. using Equation (2.20). The elastic strain energy stored in the colliding bodies can be
tracked using Equation (2.22).

Sticking Mode

If there is no relative tangential motion between the two colliding bodies the frictional force

acts to maintain sticking. That is, if the force required to achieve dv,/dp. = dv,/dp. = 0.0

31

e}

Chapter 2. Physical Simulation of Actuated Articulated Bodies e

is within the friction cone, it acts to prevent any tangential motion between the two bodies.
To compute the force required to maintain sticking, differentiating Equation (2.21) with
respect to p, and setting dv,/dp, = dv,/dp, = 0.0 can be used to compute

dps ko
dpz<— k2

dpy_k_l
dpz<— k2

and

where
ko = Ao1Ai2 — Ao2A1n
k1 = MoAoz — AooAi2
k2 = AopoA11 — Ao1 Ao

with the A;; being the components of matrix A. Inequality (2.24) shows that

VkE + k2 < ks (2.28)

is sufficient to guarantee that the sticking condition can be maintained. In this case Equation
(2.27) has to be replaced by

de/dpz kO/kQ
doy/dp, | = A | ki/k2 | . (2.29)
dv, /dp, 1.0

It is worth noting that this force stays constant for the remainder of the collision, making
it possible to discard the numerical integration and compute the remaining impulse to be
applied in a single step.

If Condition (2.28) is not fulfilled, the frictional force is not sufficient to maintain stick-
ing, and sliding resumes. Immediately after the resumption of sliding, the behavior of the
tangential impulse is again governed by Equations (2.26). However, BHATT and KOECHLING

[6] have shown that in the case of resumed sliding the direction of sliding is constant and

given by
dpy _ vy
dpy Vg

Thus, using Equation (2.21) to express v, and v, in terms of dp, and dp, and substituting

v = dpy/dp;, it follows

Ao+ Ay F Ay
= = (2.30)
Aoo + Aory + Ao/ 1+ 72/

32

Chapter 2. Physical Simulation of Actuated Articulated Bodies =

Vg Vg Vg

Figure 2.5: Influence of friction constant p on the flow in tangent velocity space. The hori-
zontal and vertical axes represent v, and vy, respectively. The values of friction constant

are, from left to right, 0.3, 0.4, and 0.7. The dots indicate the inital values of the trajectories.

BHATT and KOECHLING [6] have demonstrated that Equation (2.30), a quartic equation in
parameter v, always has exactly one solution for which sliding velocity and applied impulse
are opposed. This solution can be found by Newton’s method and subsequently used to
compute the reaction impulse for the rest of the collision, making it possible to discard the

numerical simulation as in the case of continued sticking.

The Algorithm

Summarizing the procedure from the previous paragraphs, the algorithm for computing re-
action impulses is now clear. First compute the relative velocity v,.; between the two bodies
and verify that its normal component v, is negative. Then numerically integrate differen-
tial Equation (2.27), tracking the work E done by the normal component of the reaction
impulse using Equation (2.22). When v, reaches zero, the point of maximum compression
has been attained. Multiply F by € to determine the amount of elastic strain energy to
be released during restitution and continue the integration until £ = 0.0. If the relative
tangential velocity vanishes at some point during the integration, use Inequality (2.28) to
determine whether the frictional force is sufflicient to maintain sticking. If it is, employ
Equation (2.29) to compute the tangential component of the impulse for the remainder of
the collision, otherwise solve Equation (2.30) to compute dp. Algorithm 2.2 illustrates the
procedure.

Figure 2.5 shows a projection of the trajectories of the relative velocity v, onto the

plane defined by v, = 0.0 for a particular matrix A and a number of initial relative velocities

33

Chapter 2. Physical Simulation of Actuated Articulated Bodies T e

phase = compression;

£ =0.0;
dp. = 1.0;
while (phase # restitution or F > 0.0) {
if (vz, + vz =0.00 { /* stuck */

ko = Ao1A12 — AozA11;

k1 = A1oAo2 — AooA12;

k2 = AooA11 — Ao1A10;

it (VEZ R < pky) { /* keep sticking */
dp: = ko/ka; dpy = ki /ka;

}

else /* resume sliding */
g

¥

dv, = Agodps + Aardpy + Aao;

if (phase = compression) h = (\/e(v? — 2Edv,) — v,)/dv.;
else h = (m- v,)/dvy;

p = p+ hdp;

break;

dv = Adp;

E=FE+ (v, + hdv./2.0)h;
p=p+ hdp;

v = v+ hdv;

if (phase = compression and v, > 0.0) {

phase = restitution;
F=ex I;

Algorithm 2.2: Collision algorithm computing p from v,.; and A. For an effective implemen-
tation, step sizes h have to be suitably chosen, and the direction of the reaction impulse

after the resumption of sliding (indicated by dots) has to be computed.

34

-y

Chapter 2. Physical Simulation of Actuated Articulated Bodies e

and different frictional coefficients p. For most initial conditions, the direction of relative
tangential velocity keeps changing continuously throughout the duration of impact. It is also
obvious that the flow depends qualitatively on the frictional coefficient . While Equation
(2.30) has two roots for 4 = 0.3 and g = 0.4, it has four for g = 0.7, leading to two
additional invariant directions. However, in any case there is exactly one outward directed
invariant direction.

As the independent variable in the integration, the normal component of the reaction
impulse p, monotonically increases during the integration. However, several authors, includ-
ing WanG and MasoN [52] and BARAFF [4], have pointed to the possibility that applying
a positive normal impulse leads to an acceleration of the bodies towards each other instead
of preventing interpenetration. In that case, v, decreases during the collision and the ter-
mination criterion will never be reached. The integration computing the reaction impulse
continues indefinitely. This counterintuitive behavior is a deficiency of the contact model
resulting from the attempt to use Coulomb’s law in conjunction with the principles of rigid
body mechanics, and it has been speculated by STRONGE [47] that it is important for sur-
face damage due to abrasive wear during impact. While the problem does not seem to be
of great interest in rigid body mechanics — MIRTICH and CANNY [32] assert that it has
not occurred during any of their simulations — it is quite frequent if articulated bodies are
involved. For the purpose of this thesis, the problem has been solved somewhat arbitrarily,
but with visually pleasing results, by applying an impulse which zeroes the tangential com-
ponent of the relative velocity without influencing the normal component before computing
the reaction impulse, according to Algorithm 2.2, whenever it occurs.

An additional problem can arise when parts of the articulated body are in static contact
with each other or with the ground during a collision. In that case, the impulse which
enforces the non-interpenetration constraint at the point of impact can lead to a violation
of constraints at other contact points, creating the necessity to apply additional reaction

impulses wherever the normal component of the relative velocity becomes negative.

2.4.4 Static Contacts

Due to their non-singular nature, static contacts are more difficult to handle than colli-
sions. They cannot be treated as isolated phenomena on a different time scale with all
other events being disregarded, but have to be handled as finite in duration and occurring
simultaneously. Moreover, a simulator dealing with articulated bodies subject to kinematic
constraints resulting from contacts has to be able to cope with changing modes of contact

and with changing topologies as a consequence of the fact that contacts can be established

35

Chapter 2. Physical Simulation of Actuated Articulated Bodies e

and broken frequently during the course of a simulation.

As for collisions, the normal component and the tangential component of a contact
force are usually related by Coulomb’s friction law. Normal forces prevent interpenetration
by acting perpendicularly to the contact surfaces while friction forces act tangentially and
oppose slipping motion. The friction force is called dynamic friction if the two bodies are
slipping at the contact point; otherwise it is called static friction. In contrast to collisions,
the normal force for static contacts does no work on the bodies in contact. The algorithms
dealing with the problem of computing static contact forces can roughly be grouped into

three classes: analytical methods, penalty methods, and impulse-based methods.

Analytical Methods

A variety of methods attempt to model contact forces analytically. The motion constraints
imposed by contacts are accounted for by formulating the equations of motion of an un-
constrained mechanism subject to unknown contact forces. In particular, using Equation
(2.19), if n forces f;

body, the resulting acceleration a; of link ¢z can be computed by linear superposition as

15> 1;, are applied simultaneously to links ji,..., 7, of an articulated

ai=Y xi;f,. (2.31)
k=1

Solving for the accelerations at the contact points and substituting the result into the con-
straint equations results in a system of equations which, together with Coulomb’s law, can
be used to compute the contact forces. Conceptually, the contacts may be regarded as tem-
porary joints, creating closed loops in the articulated body. BRANDL, JOHANNI, and OTTER
[9] present an algorithm tailored for articulated bodies which uses constraint propagation
to effectively extend the articulated body algorithm to handle closed loops, leading to an
especially efficient way of generating the system of equations.

While theoretically the most satisfying solution, the analytical approach suffers from
a number of problems. BARAFF [3] has shown that the problem of computing frictional
contact forces for a system of rigid bodies with contacts subject to dynamic friction governed
by Coulomb’s law amounts to solving a non-convex quadratic program. In addition to the
computational difficulty of finding a solution, it is possible that either no valid set of contact
forces or several distinct sets leading to different outcomes exist, raising the issue of finding
consistent solutions during consecutive time steps. Moreover, BARAFF [4] has shown that
the problem of deciding whether a unique set of contact forces exists is NP-complete, and

that the problem gets even harder if some of the contacts are subject to static friction.

36

¥y

Chapter 2. Physical Simulation of Actuated Articulated Bodies —

Furthermore, analytic methods assume that the direction of sliding is constant during an
integration time step. In the simulations carried out for this thesis, this requirement often
turned out to be impractical for articulated bodies as it required extremely small step sizes

to avoid substantial error.

Penalty Methods

Penalty methods are an attempt to circumvent the problem of generating and solving the
quadratic system of equations by converting the constrained problem into an unconstrained
one where deviation from the constraint is penalized. The constraint is not strictly enforced,
but only encouraged. MooRE and WILHELMS [34] pioneered the method by suggesting in-
sertion of temporary springs at all contact points which act to repel interpenetrating bodies,
with the normal component of the contact force linearly dependent on the interpenetration
depth. The implementation of this scheme is rather simple compared with the analytical
method, making it by far the most commonly used algorithm for handling static contacts.

The main drawback of this approach is that it leads to a set of very stiff equations,
requiring extremely large spring constants and thereby small step sizes from the numerical
integration routine used to compute relative joint accelerations if deep interpenetration is
to be avoided. Moreover, physically and visually unrealistic behavior can result from the
fact that time proceeds in steps rather than continuously, leading to contacts not being
detected until a finite amount of interpenetration has occurred and therefore being subject
to unreasonably large forces which may cause “jumps”. Furthermore, it is unclear how to
solve the problem of handling parallel static contacts subject to static friction. Altogether,

this makes penalty methods a rather unattractive choice for handling static contacts.

Impulse-based Methods

The impulse-based method, first suggested by HauN [18], models all types of contact
through series of impulses between the objects in contact. Contact forces are not computed
explicitly, but occur only as time averages of reaction impulses. MIRTICH and CANNY [31]
took up the idea and revised it to identify static contacts by the relative normal velocity be-
ing below some threshold and suggested to handle them separately from ordinary collisions.
Fully elastic collisions can be employed to make sure that the normal impulse does no work
on the bodies in contact and eliminate unrealistic effects such as a block slowly creeping
down a ramp in spite of friction. MIRTICH [33] extended the method to articulated bodies,

circumventing the problem of having to handle multiple contacts simultaneously by reduc-

37

Chapter 2. Physical Simulation of Actuated Articulated Bodies -

ing the integration step size to have at most a single contact at any point in time. While
there is empirical evidence that the impulse-based method produces physically accurate
results in simple cases, it is inappropriate for handling multiple simultaneous or temporally
extended contacts efficiently. Generally, the impulse-based approach is a promising alter-
native to analytical solutions and penalty methods in the case of transient contacts, but
it leads to intolerably small step sizes and a large amount of unnecessary computation in

situations where static contacts dominate the system dynamics.

Summary

To summarize, none of the three approaches offers a completely satisfactory solution to
the problem of handling multiple simultaneous static contacts, a fact which has led Goyar,
PinsoN, and SINDEN [17] to substantially deviate from the common approach by suggesting
a soft contact solution which attempts to model the micromechanical processes associated
with the contact in greater detail. However, this approach produces very stiff equations and
is too inefficient for most applications. A solution which is both efficient and satisfactorily

realistic has yet to be found.

Due to the inefficiency of the analytical approach and its inability to handle changes
in the direction of sliding, the shortcomings of the other approaches, and the need for
high simulation speeds due to the necessity to reliably evaluate the performance of a large
number of creatures, a variation of the above methods was chosen for this thesis. After
every integration step, the inverse inertia matrices A;; for every pair of contacts ¢« and j
are computed. Then, in an iterative process, forces are applied to the contact with the
largest remaining negative relative normal acceleration until it is ensured that no further
interpenetration occurs at any contact point. The direction of the tangential component of
a contact impulse is governed by Coulomb’s law and is free to change during the iterative
process. Simulations show comparatively high efficiency, making real time simulation of
creatures with up to about twenty degrees of freedom possible while producing reasonably
accurate results. However, it has to be noted that occasionally the iterative process of adding
contact impulses continues indefinitely as decreasing the absolute acceleration at one contact
can increase the absolute contact acceleration at another, and that the handling of contacts
subject to static friction is less than optimal. Nonetheless, given the often large number of
simultaneous contacts — up to about twenty can occur at a time — and the sometimes
rapidly changing directions in the tangent velocity flow space for some of the contacts, the

results that can be obtained by the approach developed here have proved quite satisfactory.

38

95

Chapter 2. Physical Simulation of Actuated Articulated Bodies =

2.5 Summary

To summarize, the algorithm for solving the equations of motion discussed in Section 2.3 and
the methods for handling collisions and static contacts outlined in Section 2.4 form a basis
for a dynamic simulation program for actuated articulated bodies. A numerical integration
procedure advances the simulation in time. As collisions introduce discontinuities into the
motion of the simulated bodies, predictor-corrector methods are not a wise choice for an
integration routine. Instead, for this thesis a fourth order Runge-Kutta algorithm with
adaptive step sizes as described in PREss et al. [37] has been used. Collisions have to be
handled between two steps as integrating over collisions would lead to intolerably small step
sizes.

In the next chapter, the algorithms outlined above will be used for simulating the motion
of three-dimensional legged creatures in a very simple environment. On an SGI Indigo?
workstation with R4400 processor, simulation speeds about 60% faster then real time could

be obtained for single creatures with up to eighteen degrees of freedom.

39

Chapter 3

Evolution of Virtual Creatures

When dynamic simulation based on general physical models of articulated figures is used
to produce animation sequences, physical simulation algorithms ensure that the creatures’
motion is realistic and that all physical constraints are met. However, so as to animate
a character, its internal degrees of freedom have to be controlled. For that purpose, an
articulated body is equipped with a mechanism generating forces to be applied in the free
directions of its joints. In the notation of Chapter 2, the force generators, often called
actuators or effectors, supply the values of the forces A; of Algorithm 2.1.

A control system is a device for controlling the actuators of a creature. For every simu-
lation time step, for every internal joint ¢ with n degrees of freedom, it computes an n-tuple
h;, possibly by making use of a variety of sensors providing information on the current
state of the creature and its environment, such as proprioceptive sensors, tactile sensors,
kinesthetic sensors, or photosensors, which is used by the actuator of the joint to generate

forces
Ai = ki (hi — q;)

in the free directions of the joint. As usual, ¢; denotes the joint position of joint 7, and k; is
a joint specific constant.

A variety of approaches ranging from using simple sinusoidal functions without sensor
input to biologically inspired combinations of coordination schemes including reflexes and
motor programs, neural networks, and dataflow architectures have been used as control
systems for virtual creatures as described in Chapter 1.

If control systems are to be generated in an evolutionary process, it is favorable to

have a controller space which is densely populated with useful controllers. Moreover, if the

40

I

Chapter 3. Evolution of Virtual Creatures -

evolutionary process is not to degenerate into a random search, control systems which are
close according to some metric in the controller space have to show similar, but not identical,
behavior. While the use of sinusoidal functions fulfills these requirements, it is too restrictive
and does not allow for a wide range of behaviors that may be of interest. More powerful
control mechanisms such as neural networks and dataflow architectures are well capable
of generating these behaviors, but in using one of these approaches most control systems
fail to generate useful behavior at all, and there is no simple metric ensuring continuity in
controller space. In this thesis, spectral synthesis is suggested as a useful tool for generating
control systems which are sufficiently powerful to generate a wide range of motion and at
the same time well suited for evolutionary optimization.

This chapter first outlines evolutionary algorithms and the principles they are based
upon in Section 3.1 and then introduces the legged, insect-like virtual creatures used in this
thesis and the evolutionary operators used to evolve them in Section 3.2. As an original
contribution, spectral synthesis as a method for generating evolvable control systems is
introduced in Subsection 3.2.2. The chapter concludes with results and a selection of image
sequences from computer simulations of creatures which have been evolved for locomotion

behavior in Section 3.3.

3.1 Evolutionary Algorithms

Evolutionary algorithms form a class of direct search and optimization algorithms mak-
ing use of some of the principles which have been identified to underlie organic evolution.
They attempt to model the collective learning process of a population of individuals un-
der selective pressure. Though only a crude abstraction of biological reality, evolutionary
algorithms have proven to be robust and powerful alternatives to conventional optimization
techniques where many of the latter tend to fail, as for example in the case of multimodal,
discontinuous, or non-differentiable objective functions or in dynamical optimization. These
properties, together with their potential to emphasize the explorative aspect of the search
without losing sight of the goal of the optimization, have made evolutionary algorithms a
popular choice for the generation of virtual creatures with life-like properties.

This section introduces evolutionary algorithms from a very general point of view. Many
details and theoretical results can be found in BAck [1] who provides a comprehensive
overview of the subject upon which the following treatment is based. The particular evo-
lutionary operators used for evolving virtual creatures for locomotion behavior which have

been developed as part of the work underlying this thesis are described in Section 3.2.

41

o

Chapter 3. Evolution of Virtual Creatures -

initiali_ze terminate? recombine_to mutate select new J
population no |form offspring offspring population
e
output
population

Figure 3.1: Flow chart of an evolutionary algorithm.

3.1.1 Evolutionary Search and Optimization

RupoLPH [42] suggested a classification of optimization techniques distinguishing between
volume-oriented and path-oriented methods. While volume-oriented algorithms, typical ex-
amples of which are exhaustive search and Monte Carlo methods, emphasize the idea of
exploring different regions of the search space, path-oriented methods, such as gradient
ascent algorithms, rely on information gathered during the optimization process, making
small steps towards successively better solutions. Generally, volume-oriented methods are
superior as far as convergence reliability towards a global optimum is concerned as they
are not likely to get stuck in local optima, while they are outperformed by path-oriented
methods with respect to convergence velocity.

Evolutionary algorithms combine features from both of these classes and can change
their characteristics during the course of the search process as a response to endogenous
conditions as well as to exogenous parameters. They benefit from a high diversity of the
genetic material present in the population, emphasizing the explorative, volume-oriented
aspect, while making use of previous solutions when generating offspring, resulting in a
path-oriented component. Ideally, several paths are explored in parallel while maintaining
the chance to mix information from paths pursued by different subpopulations so as to
preserve the possibility of escaping local optima.

Historically, three threads in the field of evolutionary optimization which until recently
have developed very much independently from each other can be discerned: genetic algo-
rithms, evolution strategies, and evolutionary programming. They differ in the representa-
tion of the object variables and in the evolutionary operators applied to them, each one
of them emphasizing different features as being most important to successfully modeling
an evolutionary process. More recently, genetic programming has been devised by Koza
[25, 26] as a technique for the evolutionary optimization of computer programs. Several

authors, including PETERSON [36] and VENTRELLA [50], add interactive features to the

42

Chapter 3. Evolution of Virtual Creatures =

evolutionary approach so as to be able to incorporate subjective judgement into the search
process.

However, all methods share the common idea of interpreting a number of points in
the search space as the genotypes of individuals forming a population which is subject to
recombination, mutation, and selection so as to evolve it towards successively better regions
of the search space. More specifically, at every time step, individuals are selected randomly
from the population to form offspring by means of recombination. Recombination results
in a mixing of parental information which is subsequently subject to mutation. From the
total offspring generated in this manner, a number of individuals is selected on the basis
of their phenotypic properties determined by the objective function to form the population
of the next generation. By favoring individuals of higher fitness, i.e. those for which the
objective function applied to their genotypic description yields lower values if the task is
minimization and vice versa, over those with lower fitness, convergence towards the global
optimum can be ensured under certain conditions. Figure 3.1 outlines the general procedure.

The following subsections introduce generic versions of the genetic operators.

3.1.2 Selection

The selection operator selects a given number of individuals from the total offspring which
has been produced to form the population of the next generation. It differs from mutation
and recombination in that it is independent of the genetic representation of the individuals,
merely making use of phenotypical properties of individuals. In the Darwinian theory of
evolution, the fitness of an individual is determined only indirectly by its propensity to
survive and reproduce in the particular environment it is living in. BAcK [1] notes that in
that sense natural selection is not an active driving force but only manifested in differential
growth rates of individuals. In evolutionary algorithms, however, fitness is a direct, well-
defined, and evaluable property of individuals, making it an artificial abstraction of the
biological struggle for existence which implies survival and reproduction behavior, opposite
to biological reality.!

BAcK suggested a characterization of selection mechanisms by means of the concept of

takeover time. The takeover time is the number of generations after which repeated ap-

!Recently, attempts have been made to reverse this causality by letting individuals compete with each
other without defining a static fitness function. REYNOLDS [40], Tu and TERZOPOULOS [48], and SIMs [45]
report experiments in which behavior is evolved by direct competition between individuals. In all of these
examples, the reproducibility of a virtual organism depends on other evolving organisms and is continuously

in flux, leading to a dynamically changing fitness landscape.

43

Chapter 3. Evolution of Virtual Creatures e

plication of the selection operator to a population which is not subject to recombination
and mutation yields a population consisting exclusively of copies of the best individual con-
tained in the initial population. The takeover time can serve as a measure for the selective
pressure a particular selection operator exerts on a population, with large takeover times
reflecting low selective pressure and vice versa. High selective pressure means a high direct-
edness of the search process and leads to a path-oriented search while low selective pressure
corresponds to a “soft”, volume-oriented search.

Two selection schemes frequently employed are proportional selection and deterministic
selection of the best n offspring individuals where n is the fixed population size. The former
scheme is the usual selection mechanism for genetic algorithms. Using it, the probability
of an individual being selected for survival is proportional to its relative fitness within the
population. The scheme has been shown by BAcK [1] to have large takeover times compared
with other selection mechanisms, and therefore to exert relatively low selective pressure on
the population. The latter scheme, on the other hand, is the selection mechanism exerting

the highest selective pressure. It is the default selection algorithm for evolution strategies.

3.1.3 Mutation

The mutation operator models the small errors that occur when genetic information in
biological systems is replicated by recombination. In evolutionary algorithms, it has the
important function of introducing innovation into the population. As a general rule, small
errors are more likely to occur than large ones, making normally distributed random vari-
ables with zero means a natural candidate for the mutation of real-valued parameters and
recommending Grey codes for the representation of binary data. It is important to ensure
that in the absence of selective pressure successive mutations are neutral on average to avoid
numerical drift which would lead to biased outcomes of the evolutionary search.

A general problem related to mutation is that of step size control, where step size is used
as a generic term, embracing quantities such as the mutation probability for binary data
and the standard deviation of a normal distribution used to mutate real-valued data. If the
step size chosen is too small, an unnecessarily large number of iterations is required to make
substantial progress, whereas too large a step size continuously destroys information, leading
to a degeneration of the evolutionary process into a random search. Generally, according
to BAcK [1], optimal mutation rate and convergence velocity tend to increase as selective
pressure increases. It is wrong to say that one selection mechanism is superior to another,
but mutation rates have to be carefully tuned to ensure satisfactory performance.

Different algorithms have been proposed for controlling step sizes and adjusting muta-

44

e’
Chapter 3. Evolution of Virtual Creatures L4 |

tion rates to the local structure of the objective function. RECHENBERG [39] analytically
computed optimal step sizes for a very simple evolution strategy applied to several simple
objective functions. He observed that the probability with which an offspring individual
outperforms its parent in the case of optimally chosen step sizes is approximately the same
for different objective functions. On the basis of this observation, he derived a simple step
size control algorithm which calls for an increased step size if the success rate during the
past generations was too high and vice versa. As an alternative, SCHWEFEL [43] suggested
self-adaptation of strategy parameters, making the step sizes part of the genetic informa-
tion of an individual itself and thereby optimizing them in the course of the evolution.
Self-adaptation has been shown to successfully adjust step sizes to the local structure of
the objective function for several examples. However, care is advised as it increases the

dimensionality of the search space.

3.1.4 Recombination

The recombination operator models the process of generating the genetic material of an
offspring individual from that of its parent individuals. It can either act on two individuals
randomly chosen from the parent population, making the genetic information of the offspring
a combination of the information carried by the two, or choose a new pair of parents for
every component to be generated. The latter algorithm deviates from biological reality and
emphasizes the point of view that the population as a whole forms a gene pool from which
new individuals are constructed.

Recombination on the components can be either discrete, randomly choosing genetic
information from either of the parents, or — for real-valued parameters — intermediate,
forming an arithmetic mean of the parent information. It is worthwhile noting that different
recombination operators can be used for object variables and strategy parameters in the
case of self-adaptation. Experiments reported by BAck [1] have shown that for evolution
strategies discrete recombination for object variables and intermediate recombination for

strategy parameters yield good results.

3.1.5 Parallelism

Evolutionary algorithms are a natural candidate for parallel implementation. The popula-
tion can be distributed over a number of processors, with the evaluation of the fitness of an
individual, which is often the most time consuming task, and mutation not requiring any

communication between different processors. However, the benefits from simply increasing

45

4
Chapter 3. Evolution of Virtual Creatures Z‘l

the population size are limited. The expected gain in convergence velocity and reliability

decreases as population size increases, in part due to the fact that many individuals will
carry almost identical genetic information. Therefore, efforts have to be made to maintain
genetic diversity of the population. BAck [1] distinguishes two ways of accomplishing this:
the migration model and the diffusion model.

In the migration model, the population is divided into a number of subpopulations which
evolve in isolation from each other most of the time, with recombination and selection being
local to the subpopulations. Occasionally, however, individuals migrate between different
subpopulations. The desired effect is to have different subpopulations evolving towards
different locally optimal regions of the search space, effectively avoiding degeneration into a
path-oriented search. Obviously, this approach is highly suitable for parallel implementation
on a cluster of workstations.

The diffusion model uses a more fine-grained form of parallelism which requires a consid-
erably higher communication bandwidth. It defines a metric on the population by arranging
it for example a two- or three-dimensional lattice structure and has the recombination and
selection operators applied only to neighboring individuals. In this way, genetic information
can propagate, or diffuse, only slowly through the population, effectively favoring subpop-
ulations with widely differing genetic material to claim their niches in different parts of the

lattice.

3.2 Virtual Creatures

Virtual creatures are described by two separate aspects: their morphology and their control
system. The morphology determines the physical appearance and properties of a creature,
the control system its behavior. When there are no stringent needs which completely de-
fine the physical appearance of a creature, its morphology can be subject to evolutionary
optimization along with its control system. Generally, evolving three-dimensional creatures
not only makes the task of physical simulation considerably more difficult than using two-
dimensional ones, but also creates higher demands on the control systems due to an increased
number of degrees of freedom.

To generate either of the two components by automated evolution, an appropriate geno-
typic description for creatures has to be found, and recombination and mutation operators
have to be given. So as to increase the chances of the evolutionary search to succeed, the
creatures have to be evolvable in the sense that small changes to the genotype of a creature

result in small changes of the phenotype. Systems in which small changes of parameters

46

Chapter 3. Evolution of Virtual Creatures

result in either no change at all or in a very large change of the dynamics of the system
make evolutionary search an arduous task. Furthermore, it is useful to devise an encoding
which leads to a search space of not too high a dimension. Unnecessarily many parameters
make the evolutionary search likely to fail while a “constrained embryology” as suggested
by DAWKINS [14], in which a few high-level genes control relatively powerful features of the

phenotype, greatly increases the chance of success.

3.2.1 Morphology

Creature morphologies that have been explored in the past range from VAN DE PANNE
and F1uME’s [49] simple two-dimensional creatures to MCKENNA and ZELTZER’s [29] 38-
degree-of-freedom cockroach, and from VENTRELLA’s [50] kinematic stick figures to SiMs’s
[44] three-dimensional dynamic creatures. Obviously, both the value of three-dimensional,
fully dynamic creatures for animation purposes and the difficulties involved in the simulation
of their behavior are higher than for two-dimensional or kinematically deforming characters.

The creatures evolved in this thesis are three-dimensional, fully dynamic articulated
bodies. Explicit attempts have been made to limit the number of degrees of freedom while
preserving the ability to generate creatures of a complexity which makes them useful for
animation purposes. More specifically, the creatures’ morphology has been restricted to
a symmetric, insect-like shape, with each creature consisting of a trunk, modeled as an
ellipsoid with a volume constraint so as to prevent the evolution of creatures successful only
due to a weight advantage, and two or three pairs of limbs, each consisting of two frustum-
shaped segments. All links have an identical and invariant specific mass. The diameters
of two segments connected by a joint are required to match at the junction. The limbs
are connected to the trunk at fixed positions, but at variable orientations. All joints are
rotational with joint limits enforced by spring forces. Actuator forces are proportional to
the diameter of the links at the respective joints.

Consequentially, the parameters required for specifying the morphological properties of
a creature are a binary variable for the number of limb pairs, and for every link, real-valued
variables specifying the dimensions of the link and the position where it is attached to its
parent link, and a quaternion determining its relative orientation with respect to its parent
link. This morphology was chosen due to the possibility of encoding it in just a few bytes,
making it appropriate for evolutionary optimization, its potential to produce rolling motions
— a factor which has not yet been explored by other researchers and which was hoped to
lead to interesting forms of locomotion — and because it is reminiscent of some animal

shapes while having only a small number of degrees of freedom.

47

-)
Chapter 3. Evolution of Virtual Creatures "—}.—“;

Figure 3.2: The top row shows two crea-
a €2 tures ¢q and ¢, the bottom row on the

left a typical recombination of the two,

and on the right a mutation thereof.

c3 = recombine(cy, ¢3) cq = mutate(cs)

So as to evolve creature morphologies, a recombination operator combining the genetic
information describing the morphological properties of two parent individuals and a mu-
tation operator making small changes to the result have to be defined. The recombination
operator used for the computer experiments to be described below sets the number of
limb pairs of the offspring individual to that of either of the parent individuals, uses the
arithmetic mean of the dimensions of the parent individuals’ trunks to generate the cor-
responding quantities of the offspring individual, and copies the genotypic descriptions of
complete limb pairs chosen randomly from either of the parent individuals to the offspring
individual. Subsequently, all real-valued parameters and both the angles and the axes of
rotation of the quaternions are mutated by adding small, normally-distributed random dis-
placements with zero mean. Figure 3.2 shows two evolved creatures along with the results

of the application of the recombination operator and a typical mutation.

3.2.2 Control Systems

A wide range of control systems has been explored in related research. VENTRELLA [50]
used oscillators with no sensor input for animating three-dimensional stick figures. While
this scheme is highly evolvable, the output is limited to simple sinusoidal functions. FIuME
and VAN DE PANNE [49] employed small linear networks of weighted connections with delays
between sensors and actuators and noted that most of the control systems that can be

generated fail to produce sustained locomotion. Moreover, they observed that small changes

48

.
Chapter 3. Evolution of Virtual Creatures -ﬁﬂ_

to the weights of the network often resulted in either no change at all or a very large
change in the dynamics of the system. Similar remarks apply to the dataflow computer-like
architecture developed by Sims [44]. McKENNA and ZELTZER [29] divided the problem of
generating suitable input to the actuators into a coordination problem, solved by a gait
controller consisting of a number of coupled oscillators for the different limbs which were
further synchronized by reflexes, and a control problem, which was solved by carefully
handcrafted motor programs gleaned from observations of biological systems and physical
intuition. While highly effective, it is unclear how to employ evolutionary optimization to
automate the design process. NGo and MARKs’s [35] control systems based on stimulus-
response pairs promises to be both powerful and evolvable, but has not been shown to be
useful for generating motion behavior in three dimensions yet.

The approach taken in this thesis differs from all of the above. Spectral synthesis is
introduced as a tool for generating control systems in an attempt to encompass a potentially
large range of functions while at the same time providing evolvability by ensuring both that
the search space is densely populated with useful controllers and that a small change of the
genotype of a creature results in a small change of the generated behavior.

In what follows, the genotypic description of an actuator function consists of N complex
numbers H,, n = 0,..., N — 1, forming a discrete Fourier spectrum which describes the
function in the frequency domain. As actuator functions are required to be real-valued,
it has to be ensured that H, = HY_, for n = 1,...,N/2. Discrete values hy = h(ty),
k=0,...,N —1, for the actuator function at times t; = kA in the time domain can be

obtained by means of the discrete Fourier transform
1 N-1
_ —2mikn/N
hy = v 2) H,e .
-

For time values t between the discrete time steps tj, simple linear interpolation can be used
to recover h(t). For times after N A the pattern repeats periodically. Effectively, this scheme
can be seen as a generalization of VENTRELLA’s [50] control algorithm which corresponds
to the special case that there is only a single non-zero frequency component.

As for the morphology, a symmetry requirement has been been imposed on the control
system of a creature. The actuator functions for opposing limbs of a creature are either
identical or offset by a time interval equal to Né/2, leading to hopping and alternating
gaits, respectively.

Control systems are initialized by randomly generating the set of N/2 complex fre-

quency components Ho, ..., Hy/,_y and a time scale A. Good results have been obtained

49

-~
Chapter 3. Evolution of Virtual Creatures '&—

Figure 3.3: An actuator function
h(t) (solid line) and several mu-

] tations (broken lines) over time t.

‘ The mutated functions have been
A generated by shifting and scaling
time and making small changes to

the spectrum of the original func-

N i tion.

by generating spectra dominated by low frequency components, for example by using a
normal distribution with zero mean and a variance which decreases exponentially with the
frequency for generating the H,.

The recombination operator combining two parental Fourier spectra is discrete in that
it simply selects the spectrum of the parent whose morphology was chosen to be inherited
by the offspring individual. This choice has been made in the belief that the morphological
properties of a limb and the control functions determining its behavior form a unit which
has been fine tuned in previous generations. Mutation is accomplished by three separate
processes. First, the frequency components H, of a spectrum are modified by adding nor-
mally distributed increments with zero mean. Then, a normally distributed time shift with
zero mean is performed, and finally, the overall time scale on which actuator forces are com-
puted is mutated by adding an increment to the time resolution A which is treated as part
of the genetic information of an individual. Figure 3.3 shows different actuator functions
generated by an evolved Fourier spectrum and mutations thereof, demonstrating that the

mutation operator thus defined has indeed the desired property of producing small errors.

3.3 Results

This section presents a number of three-dimensional virtual creatures which have been
evolved for locomotion behavior on a flat ground plane. The objective function used to
determine the quality of a creature simply maps the creature to the absolute distance it
is capable of traveling within a given time span. For evaluating a creature, it is dropped

onto the ground plane and its motion is simulated for a period of 20 seconds of simulated

50

h -
Chapter 3. Evolution of Virtual Creatures &-

time. As it usually takes creatures a few seconds to fall into their natural gait, the total
horizontal distance between the location of the center of the creature’s trunk after 10 and
after 20 seconds was used as the fitness measure. In future experiments, it is conceivable to
add other fitness measures, for example to minimize the total energy spent or to award for

a large average height of a creature’s trunk during locomotion.

Some populations were initialized with creatures the morphologies of which were thought
to be promising in that they seemed to suggest certain locomotion strategies, others in a
completely random fashion. Interestingly, the creatures stemming from populations with
totally random initial conditions most often turned out to be more interesting and also
more successful than those with “promising” initial conditions. The population sizes of the
evolutionary algorithm ranged from 16 to about 64, following advice from BAck [1] with
six times that number generated as offspring in every generation. In separate runs, both
deterministic choice of the best offspring individuals and proportional selection were used as
selection mechanisms; neither of the two schemes could be identified as superior to the other.
Neither the migration model nor the diffusion model were implemented. Most populations
were evolved for about 50 to 100 generations before the most successful creatures evolved

in the course of the evolution were inspected.

As a consequence of the lack of a mechanism for preserving genetic diversity of the
population, most computer runs quickly converged towards homogeneity, with populations
dominated by a large number of very similar and fairly successful creatures. However, sep-
arate computer runs most often ended up with completely different locomotion strategies
and widely varying creature characteristics. For that reason, and because the goal of the
evolutionary search was not just to find the most successful locomotion behavior, but to
generate creatures capable of “interesting behavior”, a term which is not always properly
captured by the rather simple evaluation metric, an interactive evolution overlay was cre-
ated to provide the animator with the possibility of letting subjective judgement influence
the evolutionary process and to mix the genetic information of creatures evolved in separate
runs. In particular, populations with different characteristics can be merged and individual
creatures which are deemed not to be interesting or which occur in similar form in a great
multitude in a population can be removed. Substantial further improvement resulted from
these procedures. It can be expected that comparatively good results can be achieved with
less need for interactive manipulation by implementing the methods outlined in Section
3.1.5.

A selection of some creatures which have been evolved is shown in Figures 3.4, 3.5, and

3.6, demonstrating that a variety of gaits has been generated. Some of the evolved creatures

51

—+
Chapter 3. Evolution of Virtual Creatures m

Figure 3.4: A six-legged creature which uses its rear legs and the trunk for locomotion, with

the remaining limbs supporting the motion and ensuring balance.

52

o
Chapter 3. Evolution of Virtual Creatures &'-'-

Figure 3.5: A four-legged creature which propels itself forward by frog-like jumps.

53

- o
Chapter 3. Evolution of Virtual Creatures '&h‘-

Figure 3.6: A four-legged creature which exhibits an alternating gait pattern. Its locomotion
behavior relies mainly on the front legs and is rather ineflicient compared with that of the

hopping creatures.

54

L= o
Chapter 3. Evolution of Virtual Creatures .

displayed some qualities reminiscent of familiar animals and exhibit apparently goal-directed
behavior. However, as morphologies and compatible motion styles evolve together, many
creatures exhibit rather unfamiliar locomotion styles, making use of morphological and
environmental properties that cannot be observed in nature. For example, some creatures
exploit the fact that there is little friction between an ellipsoid and the perfectly even ground
plane by using their trunk in a phase of rolling motion.

While most of the randomly generated creatures quickly ended up on their back with the
legs helplessly moving in the air, the most successful ones of the few capable of sustained
locomotion traveled about five times the length of their body within ten seconds. The
most successful evolved creatures traveled about five times that distance. Given the current
restrictions on creature morphologies, four-legged creatures which use their rear legs for
hopping and the front legs for supporting the motion are most successful. As a general
rule, six-legged creatures are harder to evolve due to their higher number of degrees of
freedom, and alternating gates are less stable than hopping ones, emphasizing demand for

a stimulus-response system to reinforce stepping patterns.

55

Chapter 4

Conclusion

This thesis has explored some aspects of the use of fully general dynamic simulation for
the generation of physically realistic animations of articulated figures and of the use of
evolutionary search algorithms to produce meaningful behaviors. The problems related to
the task of physically simulating three-dimensional articulated figures subject to frictional
collisions and static contacts have been introduced, and algorithms for their solution have
been outlined. In particular, the derivation of the equations describing the effect of a con-
tact force on the acceleration of an articulated figure is an original contribution of this
thesis, and the algorithm for handling multiple static contacts developed here is, apart from
MirTicH’s [33] impulse-based method, the first of its kind which does not have to resort
to penalty spring forces to enforce interpenetration constraints. Moreover, it allows for in-
teractive simulation speeds. Then, some issues accompanying the automatic evolution of
useful behavior were introduced. Particular stress was put on the need for evolvable encod-
ings for virtual creatures, and as another contribution of this thesis, spectral synthesis was
suggested as a useful tool for generating creature control systems. Subsequently, the ability
of this method to lead to useful creature behavior was demonstrated by reporting results
from computer experiments in which virtual legged creatures with a comparatively large

number of controlled degrees of freedom were evolved for land-based locomotion behavior.

A result of this thesis is the insight that the amount of physical accuracy required to
produce realistic behavior grows with the complexity of the morphology of a creature, and
that the simple models which have been used to simulate locomotion behavior of stick
figures, in statically stable cases, or in two dimensions cannot always be easily generalized
to cope with dynamic, three-dimensional motion with multiple concurrent contacts. While

systematic errors may not be immediately obvious in single simulations, an evolutionary

56

it
Chapter 4. Conclusion A

algorithm inevitably finds deficiencies in the physical model or its implementation and will
ultimately exploit them.

Virtual creatures generated as the result of an automatic evolutionary search process
are not likely to replace other approaches to character animation in the near future. While a
range of interesting and highly realistic looking motion can be generated without requiring
cumbersome user specifications, design efforts, or any knowledge of physics or biomechanics,
the amount of control that the animator has on the resulting animation is insufficient for
most applications. However, the approach is capable of producing virtual creatures of a

complexity that would be hard to devise for a human animator.

Future Work

A number of steps can be taken to improve on and extend this work. First, a physical model
able to handle multiple static contacts with static friction in a more exact manner can be
expected to further enhance the physical realism of the generated motion. Moreover, it is
conceivable that also the quality of the locomotion behavior that can be achieved would
be improved as less creatures would have to be discarded simply because the simulation of
their behavior went astray.

Second, while the control systems evolved in this thesis are versatile enough to allow for
a wide range of forms of locomotion, due to the choice of generating control signals for the
actuators without using sensor input there are natural limits to the potential capabilities
of a creature. The lack of a stimulus-response system makes it impossible for creatures to
develop a sense of balance or to alter their gait pattern as a response to changing environ-
mental conditions or a command by the animator. Creatures would have to be equipped
with sensors delivering information on the current state of the creature, on contacts with
other objects, or on other external stimuli. Possibly the most promising approach of mod-
eling a stimulus-response system while preserving evolvability is to incorporate the spectral
synthesis approach introduced in this thesis into the framework of gait controllers and mo-
tor programs as used by McKENNA and ZELTZER [29]. In particular, Fourier spectra are
a prime candidate for the representation of motor programs which are to be automatically
evolved.

Third, incorporating terms awarding energetic efficiency and smoothness of the gener-
ated motion into the fitness function may help producing creatures more akin to real animals
and reduce the need for interactive evolution. Other objectives, such as maximum average
height of the center of a creature’s trunk, are conceivable too.

Fourth, the rendering of the virtual creatures could be improved by surrounding them

57

e~
Chapter 4. Conclusion ———

with a flexible skin and by adding surface details such as fur, eyes, or hair.

Lastly, creature morphologies other than the simple four or six legged shapes used in
this thesis are worth exploring. An obvious extension is to allow for different types of joints,
such as prismatic or spherical joints in addition to rotational joints. Even more interesting
is the possibility of constraining morphologies to ranges of geometric and inertial properties
as measured in real animals or human beings. However, more potent control systems and
improved strategies for coordinating motions of different parts of a creature are necessary to
control the increased number of degrees of freedom needed for a biomechanically sufficiently

exact simulation of the human body.

58

S

Appendix

Implementation Issues

A software system for the evolution of articulated three-dimensional creatures capable of
locomotion has been implemented in C on SGI workstations running IRIX 5.3. Most ex-
periments were Tun on Indigo? computers with R4400 processors. A client-server approach
has been used to decouple the task of physical simulation from the evolutionary compo-
nent of the program and thus to allow for parallel execution. While at any point in time
there is a single client process implementing the evolutionary algorithm and a user interface
for interactive evolution and displaying features, a multitude of server processes perform-
ing physical simulation can run on different machines, with each one simulating its own

creature. Communication between the client and the server processes is via sockets.

The client side can run in either batch or interactive mode. In batch mode, it runs
as a background process, performing an automatic evolutionary search on a population of
creatures. For that purpose, the process keeps track of the available hosts running server
processes. Whenever a host is known to be idle, the client process chooses two creatures
for recombination, mutates the result, and sends a description of the creature to the server
process for evaluation. By periodically polling the connections, the client process can receive
evaluations from server processes that have finished their job and time out connections that
have run astray. In interactive mode, the client process provides the user interface for
interactive evolution shown in Figure A.1. Its features include the ability to interactively
load, save, and merge populations, thereby mixing genetic information from independently

evolved gene pools, or to delete single creatures.

For displaying the simulated motion, the creatures are rendered using smooth shading,
and the shadow they cast on the ground plane is added to give a better idea of their location.

The display can be continuous or advanced in single frames both forwards and backwards

59

&
Appendix. Implementation Issues t—

[a] 2outofi2s
[¥] fitness: 299

[_| Serverrunning

Figure A.1: A screenshot of the client window in interactive mode.

in time. The motion can be displayed with a static camera aiming at a particular point
on the ground plane, with the camera dynamically following the moving creature, or in
a stroboscopic rendering of a creature in various positions along its path. Furthermore,
controls for repositioning the camera and a facility for automatically generating a movie file
from a series of frames are provided.

The server side handles all of the physical simulation. A server process is designed as
an endless loop forking off child processes whenever a connection is requested by a client.
A child process receives a description of a creature and an initial state from the client and
starts simulating the motion of the creature. If the connection was requested by a client
running in batch mode, the server proceeds with the simulation until it either reaches the

end of the specified simulation time interval or the connection is timed out by a signal sent

60

&

Appendix. Implementation Issues -

by the client. If the end of the simulation time interval has been reached, the server replies
with the absolute distance traveled by the creature during the simulation. If the connection
was requested by a client running in interactive mode, the simulation can be started or
stopped at any point in time by signals from the client. Whenever sufficient information for
computing the state of the creature during the next time frame has been generated, it is

sent to the client.

61

Bibliography

[1]

[2]

[3]

BAck, T., Evolutionary Algorithms in Theory and Practice, (Oxford University
Press, New York, 1996).

BADLER, N.I., B.A. BARsKY, and D. ZELTZER (eds.), Making Them Move, (Mor-
gan Kaufmann Publishers, San Mateo, CA, 1991).

BarAFF, D., “Coping with Friction for Non-Penetrating Rigid Body Simulation”,
Computer Graphics 24(4), pp.31-40, (1991).

BARAFF, D., Dynamic Simulation of Non-Penetrating Rigid Bodies, Ph.D. thesis,
Cornell University, Department of Computer Science, (1992).

BarzeL, R. and A.H. BARR, “A Modeling System Based On Dynamic Con-
straints”, Computer Graphics 22(4), pp.179-188, (1988).

BuatT, V. and J. KoEcHLING, “Classifying Dynamic Behavior During Three Di-
mensional Frictional Rigid Body Impact”, Proceedings of the IEEFE International
Conference on Robotics and Automation, pp.2342-2348, (1994).

BuarT, V. and J. KOECHLING, “Partitioning the Parameter Space According
to Different Behaviors During Three-Dimensional Impacts”, Transactions of the
ASME 62(3), pp.740-746, (1995).

BranDL, H., R. JOHANNI and M. OTTER, “A Very Efficient Algorithm for the
Simulation of Robots and Similar Multibody Systems Without Inversion of the
Mass Matrix”, Proceedings of the IFAC/IFIP/IMACS International Symposium
on the Theory of Robots, pp.95-100, (1986).

BranDL, H., R. JoHAaNNI, and M. OTTER, “An Algorithm for the Simulation of
Multibody Systems with Kinematic Loops”, Proceedings of the IF'ToMM Seventh
World Congress on the Theory of Machines and Mechanisms, pp.407-411, (1987).

62

Bibliography el

[10] BRUDERLIN, A. and T.W. CALVERT, “Goal-Directed, Dynamic Animation of Hu-
man Walking”, Computer Graphics 23(3), pp.233-242, (1989).

[11] CuaNg, C.-C. and R.L. HusTon, “Computational Methods for Studying Impact
in Multibody Systems”, Computers & Structures 57(3), pp.421-425, (1995).

[12] CoHEN, M.F., “Interactive Spacetime Control for Animation”, Computer Graph-
ics 26(2), pp.293-302, (1992).

[13] Crala, J.J., Introduction to Robotics: Mechanics and Control (2nd ed.), (Addison
Wesley, Reading, MA, 1989).

[14] Dawkins, R., “The Evolution of Evolvability”, in C.G. LANGTON (ed.), Artificial
Life, pp.201-220, (Addison Wesley, Reading, MA, 1989).

[15] FEATHERSTONE, R., “The Calculation of Robot Dynamics Using Articulated-
Body Inertias”, Robotics Research 2(1), pp.13-30, (1983).

[16] FEATHERSTONE, R., Robot Dynamics Algorithms, (Kluwer Academic Publishers,
Norwell, MA, 1987).

[17] GovaL, S., E.N. Pinson, and F.W. SINDEN, “Simulation of Dynamics of Inter-
acting Rigid Bodies Including Friction I: General Problem and Contact Model”,
Engineering with Computers 10, pp.162-174, (1994).

[18] HanN, J.K., “Realistic Animation of Rigid Bodies”, Computer Graphics 22(4),
pp.299-308, (1988).

[19] Hopcins, J.K., W.L.WooTEeN, D.C. BRoGaN, and J.F. O’BRIEN, “Animating
Human Athletics”, Computer Graphics 29(4), pp.71-78, (1995).

[20] Isaacs, P.M. and M.F.CoHEN, “Controlling Dynamic Simulation With Kine-
matic Constraints, Behavior Functions and Inverse Dynamics”, Computer Graph-
ics 21(4), pp.215-224, (1987).

[21] KELLER, J.B., “Impact with Friction”, Journal of Applied Mechanics 53(1), pp.1-
1, (1986).

[22] KiLgarDp, M.J., “OpenGL and X, Part 1: An Introduction”, The X Journal,
Nov/Dec, (1993).

63

Bibliography bt

[23] KiLgarD, M.J., “OpenGL and X, Part 2: Using OpenGL with Xlib”, The X
Journal, Jan/Feb (1994).

[24] KiLgarD, M.J., “OpenGL and X, Part 3: Integrating OpenGL with Motif”, The
X Journal, Jul/Aug (1994).

[25] Koza, J.R., Genetic Programming: On the Programming of Computers by Means
of Natural Selection, (MIT Press, Cambridge, MA, 1992).

[26] Koza, J.R., Genetic Programming II: Automatic Discovery of Reusable Pro-
grams, (MIT Press, Cambridge, MA, 1994).

[27] LASSETER, J., “Principles of Traditional Animation Applied to 3D Computer
Animation”, Computer Graphics 21(4), pp.35-44, (1987).

[28] Liry, K.W., Efficient Dynamic Simulation of Robotic Mechanisms, (Kluwer Aca-
demic Publishers, Norwell, MA, 1993).

[29] McKENNA, M. and D. ZELTZER, “Dynamic Simulation of Autonomous Legged
Locomotion”, Computer Graphics 24(4), pp.29-38, (1990).

[30] MILLER, G.S.P., “The Motion Dynamics of Snakes and Worms”, Computer
Graphics 22(4), pp.169-177, (1988).

[31] MirTIcH, B. and J. CANNY, “Impulse-based Dynamic Simulation”, in K. GoLD-
BERG, D. HarLperIN, J.C. LaTOMBE and R. WILsON (eds.), The Algorithmic
Foundations of Robotics, (A.K. Peters, Boston, MA, 1995).

[32] MirTicH, B. and J. CANNY, “Impulse-Based Simulation of Rigid Bodies”, Pro-
ceedings of the 1995 Symposium on Interactive 3D Graphics, pp.181-188, (1995).

[33] MirTicH, B., Impulse-based Dynamic Simulation of Rigid Body Systems, Ph.D.
thesis, University of California at Berkeley, Department of Computer Science,

(1996).

[34] MooRE, M. and J. WiLHELMS, “Collision Detection and Response for Computer
Animation”, Computer Graphics 22(4), pp.289-298, (1988).

[35] Nco, T. and J. MARKs, “Spacetime Constraints Revisited”, Computer Graphics
27(4), pp.343-350, (1993).

64

Bibliography ﬁ——

[36] PETERSON, P.R., A Genetic Engineering Approach to Texture Synthesis, M.Sc.
thesis, Simon Fraser University, School of Computing Science, (1997).

[37] PrEss, W.H., B. FLANNERY, S. TEUKOLSKY, and W. VETTERLING, Numerical
Recipes in C: The Art of Scientific Computing (2nd ed.), (Cambridge University
Press, Camgridge, 1992).

[38] RaiBERT, M.H. and J.K. HopcINs, “Animation of Dynamic Legged Locomo-
tion”, Computer Graphics 25(4), (1991).

[39] RECHENBERG, l., Evolutionsstrategie, (Frommann, Stuttgart, 1973).

[40] REYNOLDS, C.W., “Competition, Coevolution and the Game of Tag”, in R.A.
Brooks and P. MAEs (eds.), Artificial Life IV, pp.59-69, (MIT Press, Cambridge,
MA, 1994).

[41] RoBERsON, R.E. and R. SCHWERTASSEK, Dynamics of Multibody Systems,
(Springer Verlag, Berlin, 1987).

[42] RupoLpH, G., Globale Optimierung mit parallelen Evolutionsstrategien, Diplo-
marbeit, Universitdt Dortmund, Fachbereich Informatik, (1990).

[43] SCHWEFEL, H.-P., Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie, (Birkhduser, Basel, 1977).

[44] Sivs, K. “Evolving Virtual Creatures”, Computer Graphics 28(4), pp.15-22,
(1994).

[45] Sivs, K., “Evolving 3D Morphology and Behavior by Competition”, in R.A.
Brooks and P. MAEs (eds.), Artificial Life IV, pp.28-39, (MIT Press, Cambridge,
MA, 1994).

[46] STRONGE, W.J., “Rigid Body Collisions With Friction”, Proceedings of the Royal
Society London A 431, pp.169-181, (1990).

[47] STRONGE, W.J., “Swerve During Three-Dimensional Impact of Rough Rigid Bod-
ies”, Journal of Applied Mechanics 61(3), pp.605-611, (1994).

[48] Tu, X. and D. TERzZOPOULOS, “Artificial Fishes: Physics, Locomotion, Percep-
tion, Behavior”, Computer Graphics 28(4), (1994).

65

Bibliography ﬂ——

[49] vaN DE PanNNE, M. and E. FiuMmE, “Sensor-Actuator Networks”, Computer
Graphics 27(4), pp.335-342, (1993).

[50] VENTRELLA, J., “Explorations in the Emergence of Morphology and Locomo-
tion Behavior in Animated Characters”, in R.A. Brooks and P. MaEs (eds.),
Artificial Life 1V, pp.436-441, (MIT Press, Cambridge, MA, 1994).

[51] WALKER, M.W. and D.E. OriN, “Efficient Dynamic Computer Simulation of
Robotic Mechanisms”, Journal of Dynamic Systems, Measurement, and Control
104, pp.205-211, (1982).

[62] WaNaG, Y. and M.T. MasoN, “Two-Dimensional Rigid-Body Collisions With
Friction”, Journal of Applied Mechanics 59(3), pp.635-642, (1992).

[53] WITKIN, A. and M. Kass, “Spacetime Constraints”, Computer Graphics 22(4),
pp.159-168, (1988).

66

