

Interoperable Server-based Cache Consistency Algorithm

Peter Bodorik*, Dawn Jutla**, and Yueping Lu***

Applications that access DBs require transactional support.
For efficient caching in support of transactions, caching
methods have been developed to also support transactional
properties. Thus transactional caches integrate the caching
and concurrency control functions and perform these far more
efficiently then if these functions were performed
independently [Franklin 1997, Bodorik 1998].

Abstract — Numerous caching algorithms have been

investigated for the client-server object databases management
systems. The algorithms not only ensure cache consistency by
preventing applications’ access to stale data, but they also
support transactional properties by ensuring consistent access, to
the cached data at the numerous clients, thereby satisfying the
DB integrity constraints. Caching algorithms have been
classified in a number of ways – one classification is into
avoidance and detection categories, depending on whether access
to the stale data is avoided, usually by locking, or permitted and
then any conflict detected at commit time. Detection-based
algorithms have better performance but can lead to high abort
rate that is unacceptable for interactive applications. It is for this
reason that avoidance-based algorithms are usually adopted in
practice. This paper describes a server-based interoperable
transactional caching algorithm that concurrently supports the
leading avoidance-based (adaptive callback locking (ACBL)) and
detection -based (adaptive optimistic concurrency control(AOCC))
algorithms. At a client either the avoidance or the detection
caching algorithm is used without any changes. It is the server-
side caching algorithm that concurrently supports both
avoidance and detection client-side caching.

A taxonomy of transactional caching methods has been
proposed in [Franklin, 1997]. The first classification is based
on one of two methods that deal with potential access to
invalid/stale data. Stale data is such that it has been updated
in the DB by some other application. There are two basic
methods: detection and avoidance. A detection-based
algorithm lets a transaction access locally cached data even
though it may be stale. It checks whether any of the data
accessed by the transaction is stale later, usually during the
transaction’s commit. A transaction that has read data
modified by other transactions is aborted. An avoidance-
based algorithm prevents a transaction to see stale data in the
first place. Detection-based algorithms are further classified
on when validation is performed (synchronous, asynchronous,
or deferred until commit), change notification hints (none or
after-commit), and remote update action (invalidation,
propagation, or dynamic). Avoidance-based algorithms are
further categorized by write intention declaration
(synchronous, asynchronous, or deferred to commit), write
permission duration (end of transaction or until
revoked/dropped), remote conflict priority (wait or preempt),
and remote update duration. Although the taxonomy applies
to caching that uses data shipping, we claim that with some
modifications the above taxonomy can also be applied to
caching methods that use query shipping. In [Voruganti
1999], classification of algorithms concentrates on the
granularity of data, either pages or objects (in a page), for the
purposes of data transfer, cache consistency, buffer
management, recovery, and pointer swizzling. Adaptive
callback locking (ACBL) has been considered to be the
leading avoidance-based caching algorithm, while adaptive
optimistic concurrency control (AOCC) has been considered
as the leading detection-based algorithm.

Index Terms— Caching, Cache Coherence, Transactional

cache, Object Oriented Database, Integrated Coherence and
Concurrency Control Algorithms, Client-server architecture,
Interoperability, Cache server

I. INTRODUCTION
Caching is an important technique used to improve

performance of applications that access DB systems. Client-
server architectures utilize either query shipping or data
shipping. In relational DBMS that use the client-server
architecture, query shipping is utilized. The query is shipped
to the server that executes it and sends the result to the client
where it is cached. Object DBMS or object-relational DBMS,
on the other hand, utilize data shipping, in which the client
requests data/objects while queries are executed by the client.
The server is thus off-loaded by executing queries on the
clients and, furthermore, the locality of reference, exhibited by
applications that navigate through complex data structures, is
exploited.

Studies that have been performed to investigate the
performance of the algorithms generally use simulation with
the workload being based on the OO7 benchmark [Carey
1994]. Simulations model clients that execute one transaction
at a time on systems with limited buffer space and given CPU
speed (instructions per second). Transaction requests generate
load on the CPU (number of instructions) and also requests
for data (pages, objects). Transaction’s access to data,
whether it is read/write, and whether it is locally cached, are
governed by probability distributions. If data is not available
locally, it is fetched from the server, which generates load on

This work was supported in part by a grant from the National Science and

Engineering Research Council of Canada.
*Peter Bodorik is a professor in Faculty of Computer Science, Dalhousie

University, Halifax, Nova Scotia, Canada, Peter.Bodorik@cs.dal.ca.
**Dawn Jutla is an associate professor in Faculty of Commerce, Saint Mary's

University, Canada , Dawn.Jutla@stmarys.ca.
***Yueping Lu is a graduate student in Faculty of Computer Science,

Dalhousie University, Halifax, Nova Scotia, Canada.

1

mailto:Peter.Bodorik@cs.dal.ca
mailto:Dawn.Jutla@stmarys.ca

Interoperable Server-based Cache Consistency Algorithm 2

the CPU and also on the network. Network cost to transfer a
message has fixed (set-up) and variable (per byte)
components. The server has a CPU of a given speed, limited
buffer space, and a number of disks. In addition to caching,
simulation may also take into account recovery requirements
by modeling update activities.

There have been a number of performance studies that
have compared the various algorithms for object DBs under
varying scenarios [Carey 1991, Wang 1991, Chang 1994,
Carey 1994, Adya 1995, Chang 1997, Franklin 1997, Ozsu
1998, Voruganti 1999]. It has been concluded that under
expected workloads invalidation performs better than update
propagation and thus invalidation has been adopted by most
caching algorithms. Comparison of the avoidance-based
algorithms and detection-based algorithms generally
concluded that detection-based algorithms, such as AOCC,
outperform avoidance-based algorithms, such as ACBL, even
in situation where AOCC encounters a high abort-rate. In
[Ozsu 1998] it has been observed that this is due to the low
cost of abort and transaction’s re-execution. It is assumed that
the clients have sufficient memory to avoid eviction of data
due to shortage of buffer space. As a consequence, if a
transaction is aborted, most pages in the transaction’s working
set are already present in the cache when the transaction is re-
executed.

An important observation made in [Ozsu 1998] is that in
spite of the fact that studies show that avoidance-based
algorithms outperform synchronous detection ones, most
commercial client caches use ACBL or its variants because
the cache is used by interactive applications for which a high
abort rate is unacceptable. Restated, the problem is that
although various applications may benefit from the good
performance of the AOCC caching algorithms, these
applications are forced to use ACBL that is required for
(interactive) applications that cannot tolerate high abort rate.

There are two approaches to this problem. One is to
continue towards an efficient algorithm that is mostly
avoidance based but in performance is close to the detection-
based AOCC. Indeed, this approach has been taken in
[Voruganti 1999] by proposing a new algorithm, called
asynchronous-based cache consistency algorithm (AACC),
which is claimed to have a low abort rate and a good
performance. Both the server and the clients manage locks at
the page and also object levels. Each page can be locked in a
private read mode, shared read mode, and write mode.
Different transactions can write to different objects on the
same page. After a transaction’s commit, pages that were
written by the committed transaction are retained in the client
cache in the private-read mode (as private-read locked). If a
page is read at more than one location then it is locked in a
shared-read mode. If a transaction needs to modify a page it
must first be locked by the client cache in the write mode.
Asynchronous messages that are piggy-backed are used for
changes in the lock-modes. The server has to perform
deadlock detection when conflicting operations are performed
by the transactions in conflicting modes on the same object
and also sends callback messages if there is no deadlock to
force a change of state from shared-read to write.

Another approach to this problem is to allow both
algorithms to interoperate in the same environment. This is
the approach we have adopted. We allow the clients to
specify whether they want to use the AOCC or ACBL caching
algorithm. Furthermore, the caching operations of the client-
side algorithms are not affected – only the server-side is
changed. Thus, in the environment in which the ACBL
(AOCC) caching algorithm is used and new applications are
introduced that should use the AOCC (ACBL) algorithm, we
can do so without affecting already existing clients.

The paper is organized as follows. The second section
provides further background on the relevant caching
algorithms. The third section presents requirements and
assumptions. The interoperable server is described in the
fourth section. Relevant literature is reviewed in the fifth
section. The final section provides summary and conclusions.

II. BACKGROUND
This section reviews in detail the two, considered to be

leading, caching algorithms. One is avoidance-based, ACBL,
while the other one is detection-based optimistic algorithm,
AOCC. Recall, that the following sections present a server
that will support both types of caching clients and thus we
shall concentrate on the interaction between the clients and
servers.

When a transaction completes, pages that the transaction
has accessed are retained and are accessible by subsequent
transactions. Furthermore, for simplicity but without loss of
generality, it is assumed that each client executes only one
transaction at a time. Pages have version identifications that
enable the server to determine whether a cached page and the
page on the server are the same or whether the server’s page is
newer and the cached page is thus stale.

A. AOCC
The AOCC is a simple optimistic algorithm that allows a

transaction to access locally cached data and defers checking
whether the data is stale until the transaction’s commit phase.
If a page is not in the local cache it is requested from the
server that delivers it without delay. Upon the transaction’s
commit request, the client sends a commit-request message to
the server together with the transaction’s read and write sets,
where the read and write sets are the sets of pages respectively
read and written by the transaction. The server determines
whether or not any of the pages in the read and write sets of
the transaction are stale (have been updated by some
transaction since it was cached). If so, the server aborts the
transaction. Otherwise the transaction is committed and each
page in the transaction’s write set is invalidated at clients
other than the transaction’s home client.

To present the caching method we shall use a finite state
machine (FSM) to represent the states and transitions for a
page on a client and another FSM for pages on the server.
Inputs include transactions’ actions, client cache action (e.g.,
evict page), and messages passed between the server and the
clients. The client-side state diagram for a page as it is
affected by the AOCC client-server interaction is shown in

Interoperable Server-based Cache Consistency Algorithm 3

Figure 1 (figures are located after references and prior to the
appendix). The state of a page is affected by the operations of
the local transaction (operations are the transaction’s read and
write), management of the transaction and the local cache
(commit or abort transaction and evict a page), and interaction
with the server (invalidate a page). The server-side state
diagram is shown in Figure 2, while the complete definition of
the state transitions are shown in tables A-1 and A-2 in
Appendix.

Interaction between the client and the server can be
summarized as follows:
- The client requests a page.
- The server supplies a requested page to the client without

delay.
- The client requests a commit of a transaction while

supplying the server with the transaction’s read and write
sets.

- Upon the request to commit a transaction, the server
aborts the transaction if it has read or wrote stale pages.
Otherwise, the server commits the transaction and
invalidates all cached data pages modified by the
committed transaction (of course, with the exception that
the modified pages are not invalidated at the client
hosting the committed transaction).

- When a client receives a page’s invalidation, it checks
whether the page has been read by the local transaction
and if so, it aborts the transaction.

- If a page is evicted from the client’s buffer pool, the client
informs the server of this fact.

Note that page invalidations and page eviction messages
are piggybacked and not sent by explicit messages. Local
abort of a transaction need not be communicated to the server.

B. ACBL
ACBL is a synchronous avoidance-based algorithm as it

uses lock-escalation messages in a synchronous manner – it
sends a request for lock-escalation and waits for a reply before
proceeding. As in AOCC, pages are retained across
transaction boundaries by a client cache and the cached pages
are assumed to be read-locked. Both the server and the clients
keep track of read and write locks first at the granularity of
pages and then, in case of conflicts on pages, at the level of
objects. If conflicts arise, call-backs are used for resolution.
If resolution is not possible due to a deadlock, a transaction is
aborted. Without loss of generality it is assumed that only one
transaction executes at a client at a time. Furthermore, only
one client (transaction) is allowed to write to a page. This
simplifies discussion and associated coordination of merging
updates in comparison to the case when more than one
transaction is allowed to write to different objects on the same
page. It is possible, however, that one transaction writes to an
object on a page while another transaction(s) on a different
client reads objects on the cached copy of the same page as
long as they are different objects, that is objects not written to
which are write-locked.

The client side stage diagram for a page is shown in Figure
3 (located after references and prior to the appendix). The
state of a page is affected by the transaction’s reads and
writes, by the transaction’s commit or abort, eviction of a
page, and messages received from the server. The server state
diagram for a page is shown in Figure 4. The state transition
diagrams show only inputs that effect transitions from one
state to another state. Transitions from one state to the same
state are not shown in figures. However, definitions of all
state transitions are given in tables A-3 and A-4 in Appendix.

The page states for the ACBL client (Figure 3) are:
• Not-cached – the page is not cached on the client.
• Cached-Not-locked – the page is cached but no items

have been accessed (read/written) and hence no objects
are read-locked or write-locked.

• Cached-read-locked – the page is cached and some of the
objects have been accessed by the local transaction and
are thus read-locked.

• Not-cached-read-locked – the page is not cached by the
client but it is read locked as some of the objects have
been read by the local transaction. Consider a page P that
is cached and read-locked in client C1. The page P is also
cached and read-locked in a client C2 by a transaction T.
The transaction T also acquires a write lock on object O
located on the page P, action which involves a callback to
the client C1. Assume that T gets a write lock on the
object O, writes to it, and subsequently commits. As part
of the commitment, the cached copies of the page are
invalidated at all clients (here client C1) but at the client
C2 where the transaction T committed. Thus, the page P
is not cached in C1 but it is read-locked at that site as the
local transaction had read objects on the page. If there is
another read on the page P at C1, the page will be
requested from the server.

• Exclusive – the page is cached and it (the whole page) is
write-locked in an exclusive write mode by the local
transaction.

• Objects-write-locked-local – the page is cached and some
of its objects are write-locked by the local transaction.

• Objects-write-locked-foreign – the page is cached and
some of its objects are read-locked by the local
transaction while some of the objects are write-locked by
a foreign transaction (transaction executing on another
client).

The page states for the ACBL server (Figure 4) are:
• Not-cached – the page is not cached at any clients.
• Cached-read-locked – the page is cached at one or more

clients that have the page share read-locked.
• Exclusive – the page is cached and it (the whole page) is

locked in an exclusive write-mode at exactly one client.
• Objects-write-locked – the page is cached at one or more

clients and at one client the transaction also has write
locks on some of the objects.

A whole page is write-locked in an exclusive mode only if
there is exactly one cached copy. The server assumes that any

Interoperable Server-based Cache Consistency Algorithm 4

cached copy is automatically read-locked. Interaction
between the server and clients can be summarized as follows:
- Upon read or write by a local transaction to a page that is

not cached, the client requests a page and waits for the
server’s reply; to request a page for a read, message
ACBL-pg-req-rd-locked is used, while for a write the
message ACBL-pg-req-wr-locked is used.

- When a transaction attempts a write to an object, to which
it does not have a write-lock, that is on a page which is
not in the state Objects-wr-locked-foreign, the client
sends a lock escalation message, ACBL-wr-lock-req, to
the server with identification of the page and object to be
written. The request is for a write-lock on the whole page
and, if that is not possible (because the page is read-
locked at some clients), then for a write-lock on the object
the transaction is trying to write. The client waits for the
server’s response. The server sends a call-back request, a
ACBL-callb message that contains the page and object
IDs, to all other cached copies – the request is to
relinquish the read-lock on the specified object. If a
client that received the ACBL-callb message has not read
the page, and hence the page is in the Cached-NOT-
locked state at the client, then the client invalidates the
page by changing its state to Not-cached and sends the
server a ACBL-callb-reply message together with the
indication that the page was purged locally. If the client
has already read the page, and hence the page is in the
Cached-read-locked state, then the client checks whether
the object was read locally. If not, the client changes the
state of the page to Objects-wr-locked-foreign and sends
a ACBL-callb-reply to the server with indication that the
page has been read locally, but not the particular object.
If the object has been read locally, the client does not
reply to the request until the transaction, which read the
object in question, terminates; only then does the client
send a ACBL-callb-reply. When all replies to the
callback arrive, the server gives the write-lock to the
requesting client by sending it a ACBL-wr-lock-grant
message.

- If a page is locked exclusively at client C1 and at a client
C2 a transaction issues a read to the page (which is not
cached), the client C2 sends the server a request for the
page by sending it a ACBL-pg-req-rd-locked message
together with the page and object IDs. The server then
sends a callback for a write-lock to the client C1, which
holds the exclusive lock, by sending it a ACBL-callb-wr-
lock message that identifies the page and the object. If
the object at the client C1 has not been written to, the
client relinquishes the exclusive lock to the page by
sending the server a ACBL-callb-wr-lock message and
changing the page state to Objects-wr-locked-local. The
server then informs C2 by sending it a copy of the page
using the ACBL-serve-pg-rd-locked message. If the
object was written to at the client C1, ACBL-callb-wr-
lock reply is not sent. Eventually, the transaction at C1
terminates, and the server then sends the ACBL-wr-lock-
grant the client C2.

- When a transaction is attempting a read to an object that
is write-locked by a foreign transaction (the page is in the
Cached-wr-locked-foreign state), the local transaction
cannot proceed and has to wait for the lock release. It
piggybacks the request for a read-lock to the server by
sending it a ACBL-rd-lock-req message. Furthermore,
when the transaction holding the write-lock commits, the
server sends to the waiting client/transaction a ACBL-
serve-pg-rd-locked message containing: the invalidation
of the page in question (and thus information that all
write-locks have been released), the new page, and a
grant of shared-read lock on the page. If the transaction
holding a write-lock on the page is aborted, the server
sends the client requesting a ACBL-rd-lock-grant
message.

- When a transaction is successfully committed, the server
removes all of the transaction’s write locks and
invalidates pages modified by the transaction at all clients
but the one hosting the committed transaction. Also, if
there are waiting requests for the page, the pages is served
by using the ACBL-pg-req-rd-locked or ACBL-pg-req-
wr-locked messages, as is appropriate.

Note that a request for a commit by a transaction does not
cause aborts and is granted by the server. Also, in case of
conflicts on pages or objects, the server invokes a deadlock
detection algorithm and if a deadlock is detected, victim is
chosen and aborted.

III. ASSUMPTIONS AND REQUIREMENTS
Assumptions are presented first, followed by the

requirements.

A. Assumptions
Each client cache supports only one of the caching

algorithms while the server knows which cache clients are
using which caching algorithms. While a client uses one of
the caching algorithms it is not aware that there are clients that
may use different types of caching algorithms.

Pages have version IDs (eg., timestamps) so that a server
can determine whether a page in a transaction’s read or write
set is stale, i.e., that a page has been updated at the server by
some other transaction since it has been cached by the client.

A page has a number of objects. For simplicity, it is
assumed that an object does not span a page. Removal of this
assumption can be made without much complexity. Each
client keeps track of objects on a page so that it knows
whether they have been written to or read locally (and thus are
write or read locked). For simplicity and without loss of
generality, it is assumed that the server deals with one client
request at a time and that a client executes only one
transaction at a time. It is assumed that a client has sufficient
space to store the working set of a transaction. When a
transaction commits, pages in its working set (read and write
sets) are not purged from memory but are accessible to
subsequent transactions executing on the client.
Consequently, when a page is evicted from the client’s cache,

Interoperable Server-based Cache Consistency Algorithm 5

it is assumed that the current transaction has not accessed such
a page.

We concentrate only on transactional caching as defined in
[Franklin 1997], that is we are only dealing with the issues of
consistent access to cached data and concurrency control and
we do not address problems dealing with logs and updates of
the server’s pages. For example, we do not address how
update of server pages is performed – one option is for the
client to send the server an updated (whole) page while
another option is to send only updates to objects on a page
that the server has to implement on its page. Similarly, we do
not deal with issues stemming from recovery of various faults
such as failed message delivery, which is assumed to be
handled by the communication subsystem.

These assumptions are similar to those adopted in
[Franklyn 1997; Ozsu 1998, Voruganti 1999].

B. Requirements
Each client supports only one of the caching algorithms

and is not aware, and hence does not support, any other
caching algorithm. The server must support both types of
caching algorithms while still guaranteeing correct operation –
it must support operations that are one-copy serializable. The
interaction between the server and clients, interaction that
must be supported by the server, is summarized below. Of
course, the sender and receiver are known for each message.

The server’s interaction with an AOCC client consists of:
client’s request for a page; client purging an unused page from
the cache; client’s request to commit a transaction; client’s
letting know the server that it has evicted/purged a page;
server’s reply to a commit request; and server’s invalidation of
a page(s) at the client. In AOCC, if a transaction aborts
locally, the server need not be notified as all of the
transaction’s work is performed locally until the commit.

The server’s interaction with an ACBL client consists of:
client’s request for a page; client purging an unused page from
the cache; client’s request for a write lock on a page/object;
server’s reply to the client’s request for a write lock; server’s
call-backs for a lock on a page; client’s reply to a call-back
request; client’s informing the server that it is waiting for a
read/write lock on an object locked by some other transaction;
client’s request to commit/abort a transaction; server’s reply to
client’s request to commit a transaction; and server’s
invalidation of a page(s) in the client’s cache.

IV. INTEROPERABLE SERVER-BASED CACHE
CONSISTENCY (ISCC)

Before we present the algorithm, we discuss the design
philosophy as it relates to the server handling the AOCC and
ACBL clients. A FSM for server pages is presented next. The
messaging interaction between the server and the AOCC and
ACBL clients completes the description of our algorithm to
support server-side interoperability.

A. Integrating the AOCC and ACBL Functions
Integration of the functions of the caching algorithm on the

server calls for design choices that deal with conflicts and how

they are resolved. If resolution requires assigning priorities, or
choosing a victim, we specify how the choices are made. We
adhere to the design philosophies of the AOCC and ACBL
algorithms. On the one hand, the ACBL algorithm is used for
applications that do not tolerate high abort rate. On the other
hand, the AOCC algorithms are suitable for applications that
tolerate aborts. Because the AOCC’s abort cost is low and is
incurred primarily on the client, it leads to high performance.
Thus, in case of conflicting access between an AOCC and an
ACBL client, the ACBL client has a priority. The optimistic
nature of AOCC is also retained in that the client access to
cached data proceeds without delays while checking for
consistency/correctness is deferred until the commit phase –
AOCC’s design philosophy.

Having decided on priorities in case of conflicts between
the ACBL and AOCC client transactions, integration of the
AOCC and ACBL functions on the server is relatively straight
forward with some minor difficulties. The ease of integration
is facilitated by the fact that interaction between the AOCC
clients and the server is simple, with the exception of the
client’s request to commit. AOCC client simply requests a
page, purges a page, and requests a commit of a transaction.
The server simple sends or invalidates pages. Because ACBL
clients have higher priorities than AOCC clients in case of
conflicts, AOCC clients do not functionally affect ACBL
clients. In the following we shall first discuss the server
states, then the server’s page-states and transitions, and finally
the interaction between the server and the ACBL and AOCC
clients.

It should be noted that when ACBL clients/transactions
attempting to access pages in a conflicting manner which, at
the server, results in a wait, a deadlock detection and
resolution mechanism is invoked by the server.

B. Server’s Pages – States
There are four states in the ACBL server and two states on

the AOCC server. They both have one common state that is
Not-cached. Besides the Not-cached state, the AOCC server
has just one more state Cached; because this state cannot be
combined with any of the ACBL server’s states, the states for
the ISCC server include the states in the ACBL server plus the
Cached state from the AOCC server that is renamed to
Cached-AOCC-only and it denotes the state when only AOCC
clients have a page in their caches. Consequently, the ISCC
server has the following states:
• Not-cached – the page is not cached at any clients.
• Cached-read-locked – the page is cached in at least one

or more ACBL clients that have the page locked in a
shared-read mode. The page may also be cached in zero,
one or more AOCC clients.

• Exclusive – the page is cached and (the whole page)
locked in an exclusive write mode at exactly one ACBL
client. The page may also be cahed at zero, one or more
AOCC clients.

• Objects-write-locked – the page is cached at one or more
ACBL clients such that one transaction at an ACBL client

Interoperable Server-based Cache Consistency Algorithm 6

has write locks on some of the page’s objects. The page
may be cached in AOCC clients as well.

• Cached-AOCC-only – the page is cached only by AOCC
clients.

Recall that each client keeps track of the local state of
pages and which pages and objects have been read or written
by the locally executing transaction. The server also keeps
track of similar information. For each page that is cached, the
server not only has the set of clients where the page is cached,
but also which mode it is locked in local caches. Also, for
each page that is in the Objects-write-locked state, the server
has a list of objects that are write-locked.

As there are transactions that may be waiting for access to
pages or objects that are locked in an incompatible mode, each
page has a list of waiting transactions with relevant
information for each blocked transaction/client that includes
the transaction ID, operation (read/write), and page and object
IDs for which the transaction is waiting.

For each client the server has a queue of messages that are
waiting to be piggybacked to the client.

We now describe the server protocol in handling
interactions with the caching clients.

C. Server page state transitions
Recall that the AOCC algorithm is simple and that the

server needs to deal with only three messages from the server:
AOCC-page-req, request from a client for a page; AOCC-
purge, a message informing the server that a page has been
purged/evicted from the client’s cache; and AOCC-com-req, a
request by a client to commit a transaction. Messages passed
by the server to the AOCC client are: AOCC-serve-pg,
message that delivers a page to the client; AOCC-invalidate,
used to invalidate a page at a client; AOCC-com-cmnd, used
by the server as a reply to AOCC-com-req to command the
client to commit a transaction; AOCC-abort-cmnd, used by
the server as a reply to AOCC-com-req to command the client
to abort a transaction.

To integrate the functionalities of the ACBL and AOCC
servers, we have modified the ACBL server with the
functionality to support the AOCC clients. In comparison to
the page state-transition FSM shown in Figure 4, there is one
additional state, AOCC-cached-only, as discussed in the
previous subsection, and for each state there are three
additional inputs due to AOCC: AOCC-page-req, AOCC-
purge, and AOCC-com-req. The resulting FSM is shown
graphically in Figure 5. Note that only state transitions
between different states are shown. Full FSM is defined in
Table 1 (located just prior to the appendix). The state
transitions due to inputs that represent reception of messages
from AOCC clients are bolded in Table 1. The state transitions
due to inputs from ACBL clients are not bolded and are
similar to those of the ACBL server.

As will be seen shortly, the messages passed between the
server and AOCC clients are relatively straight-forward in that
they are very close to the original AOCC algorithm. The main
difference is in the server’s actions when committing. As
expected, if the committing transaction has read or written
stale pages then it is aborted as the server does not keep track

of the read and write sets of already committed transactions.
However, unlike in a pure AOCC environment, here
complications arise if the committing transaction has read or
written to pages that are currently locked by ACBL
transactions. Since we avoid aborting ACBL clients and also
avoid delaying AOCC clients, the committing AOCC
transaction is aborted in case of conflict. Consider an AOCC
transaction To that is being committed. If it (To) has written to
a page read-locked by an ACBL transaction Tb, the AOCC
transaction To is aborted because in the serialization order Tb
has occurred before To, but the still executing transaction Tb
could in future read pages in the write set of To. If Tb is not
to be affected by the AOCC transaction To and To should not
be delayed, the AOCC transaction has to be aborted. Similar
reasoning applies when To has read a page that is write-locked
by Tb and To is a write transaction – To is aborted because To
occurred before Tb but Tb, which is still executing, could read
a page written by To. Note that if To has written to pages
written to by Tb but the read-set of To does not intersect with
the write set of Tb and vice-versus, then To could be
committed. However, since the server assumes that a
transaction that has a write lock on a page/object may have
also read it (it does not know otherwise), the ACBL’s
transaction’s write-set is also a part of its transaction’s read
set.

In summary, for a committing AOCC transaction, if a page
in its read set is write-locked by an ACBL transaction, or if a
page in the write-set is read-locked or write-locked by an
ACBL transaction, then the AOCC transaction is aborted.

When an aborted transaction is restarted, it is likely that it
will require the same pages as when it was aborted. If a
transaction was aborted because it has read a stale page, then
that stale page will be invalidated and the transaction will re-
fetch the page from the server while the server will deliver it
without delays. Similarly, when a transaction is restarted
because it has read a page that is write-locked, when the
transaction holding the write-lock terminates, the lock will be
released and the page will be accessible.

The situation is more subtle if a transaction is aborted
because it has written to a page that is read-locked by an
ACBL transaction. Recall that if a page is cached by an
ACBL client then the server assumes that it is read-locked
even if it is not actually accessed by any transaction at that
client and the page is in the Cached-not-locked state. If an
AOCC transaction To is aborted because it has written to a
page P that is cached at an ACBL client Cb and, upon its
restart, it writes to the same page P, then it will be aborted
again if there is no activity on that page P at the client Cb
where it is Cached-not-locked state. The server invalidates
such pages; that is, when an AOCC transaction is aborted
because it has written to a page P that on the server is the
Cached-read-locked state, then the page is invalidated on the
ACBL servers while on the server it still remains in the
Cached-read-locked state. When an ACBL client receives the
invalidation, if it has read the page, the page moves to Not-
cached-read-locked state. If the transaction reads an object on
P again it has to be re-fetched. If the transaction terminates
without re-reading the page, the client cache moves the page
locally to Not-cached and informs the server of this fact by

Interoperable Server-based Cache Consistency Algorithm 7

piggybacking the information that P was purged together with
its termination message (ACBL-com-req or ACBL-abort-req).

D. Server’s interaction with ACBL clients
Interaction between the server and the ACBL clients, in

the absence of AOCC clients, is of course, the same as for the
pure ACBL server. In fact, because of the design philosophy
that we have adopted in that the ACBL clients have a priority
in resource (page and lock) acquisition over the AOCC
clients, presence of AOCC clients does not affect the
interaction between the ISCC server and the AOCC clients
with the exception of the one subtle case just described in the
previous subsection.

In the following, unless stated otherwise, any reference to
a state of a page refers to the state of the page on the server.
• ACBL-pg-req-rd-locked: client-to-server message

containing the transaction ID, Page ID, and object ID.
This message is sent by the client if the transaction issues
a read operation on a page that is not cached, i.e., on a
page that is in Not-cached or Not-cached-read-locked
states on the client. If the page, or an object on the page,
is not write locked, then the page is served by sending it a
ACBL-serve-pg-rd-locked message and the page moves
to the Cached-read-locked state.

• ACBL-pg-req-wr-locked: client-to-server message
containing the transaction ID, Page ID, and object ID.
This message is sent by the client if the transaction issues
a write operation on a page that is not cached. If the page
is in Not-cached or Cached-AOCC-only states, the server
sends the page to the requesting client by sending it the
ACBL-serve-pg-wr-locked message indicating an
exclusive write-lock on the page and the page state moves
to Exclusive. If the page is in the Cached-read-locked
state, the server sends a ACBL-callb message to all other
ACBL clients where the page is cached. Only when all
callback replies are received does the server send the
requesting client the page using the ACBL-serve-pg-wr-
locked message indicating that the object is write-locked;
the page moves to the Objects-wr-locked state.

• ACBL-purge: client-to-server piggybacked message
letting the server know that an unused page (not read or
written by a local transaction) was purged from the
client’s buffer pool.

• ACBL-rd-lock-req: client-to-server piggybacked message
requesting a read-lock for an object on a page that is
locked for write by another transaction. The message
includes the transaction ID, page ID, and object ID. The
message is sent so that the server would perform deadlock
detection and was aware of the local wait. When the
transaction holding the write-lock aborts, the read lock is
granted by sending the ACBL-rd-lock-grant. If the
transaction holding the write-lock commits, the server
sends the requested read-lock and the page to the
requesting transaction using the ACBL-serve-pg-rd-
locked message.

• ACBL-rd-lock-grant: server-to-client message that
contains the page ID, object ID, and transaction ID, and it

indicates to the client that a read-lock on the object is
granted. This is a reply to the client’s ACBL-rd-lock-req
message issued when the page, or an object on the page,
that the transaction wants to read is write-locked. If the
transaction holding the write-lock aborts, this message is
sent to the client requesting the read-lock.

• ACBL-wr-lock-req: client-to-server message requesting
a lock escalation. The message includes the transaction
ID, page ID, and object ID. If the page, or an object on a
page is already write-locked by another transaction (at
another client), the request is queued at the server and
served when the transaction holding the lock terminates.
If the requesting transaction is the only ACBL transaction
having the only copy of the page, the server grants the
exclusive lock on the page. It sends the client a ACBL-
wr-lock-grant message indicating exclusive lock and the
page moves to the Exclusive state on the server.
Otherwise, the server issues ACBL-callback messages to
ACBL clients where the page is cached. When all
callback replies are received, a write-lock on the object is
given by sending the client ACBL-wr-lock-grant
indicating a write-lock on object and the page moves to
the Objects-wr-locked state.

• ACBL-wr-lock-grant: server-to-client message that
contains the page ID, object ID, and transaction ID, and it
indicates to the client that the write-lock on the object is
granted. This is a reply to the client’s ACBL-write-lock-
request.

• ACBL-callb: server-to-client callback message that
contains the page ID, object ID, and transaction ID. It is
send by the server to the client to request a write lock on
the specified object. If the object was not read locally
then the lock is granted by sending the server a ACBL-
callb-reply message. If the page was not accessed at the
client (it is in the Cached-not-locked state at the client),
the page is purged and it moves to the Not-cached state
(on the client); otherwise it moves to the Objects-wr-
locked-foreign state (on the client). In either case, the
server is informed of the outcome in the callback reply
message.

• ACBL-callb-reply: client-to-server message that includes
the page ID and object ID indicating that the call-back
was successful. The message also indicates whether at
the client the page was invalidated.

• ACBL-abort-req: client-to-server message requesting
abort of a transaction to which the server responds with a
ACBL-abort-cmnd message. If the transaction is holding
any write locks for which other clients/transactions are
waiting then when the locks of the aborting transactions
are released, a waiting client that has requested the lock
by using the ACBL-rd-lock-req message is granted the
lock with a ACBL-rd-lock-grant message, while a client
that has requested a page by using ACBL-pg-rq-rd-locked
message is sent the page with the ACBL-serve-pg-rd-
locked. Finally, if clients are not waiting to read the page
but a writer is waiting, then the write-lock is given by

Interoperable Server-based Cache Consistency Algorithm 8

using the ACBL-serve-pg-wr-locked or ACBL-wr-lock-
grant, as is appropriate.

• ACBL-com-req: client-to-server message, requesting the
commit of a transaction identified by a transaction ID, to
which the server responds with a ACBL-com-cmnd
message. If the transaction is holding any write locks for
which other clients/transactions are waiting then when the
locks of the aborting transactions are released, a waiting
client that has requested a read lock by using either of the
ACBL-rd-lock-req or ACBL-pg-rq-rd-locked messages is
granted the lock together with the page by using the
ACBL-serve-pg-rd-locked message. If clients are not
waiting to read the page but a writer is waiting, then the
write-lock is given by using the ACBL-serve-pg-wr-
locked message.

• ACBL-com-cmnd: server-to-client message indicating to
the client that the commit was successful at the server and
thus commanding the client to commit the transaction
locally.

• ACBL-abort-cmnd: server-to-client message
commanding the client to abort transaction.

E. Server’s interaction with AOCC clients
The server’s interaction with the AOCC clients is straight-

forward with the exception of the transaction’s commit.
• AOCC-page-req: client-to-server message identifying the

requested page. The server replies with the requested
page without delay even if the page is locked in an
exclusive mode by an ACBL client. This is recognizing
that AOCC client’s abort cost is absorbed by the client
and the effects on the system performance in terms of
other clients and the server are minimal.

• AOCC-serve-page: server-to-client message used by the
server to send a page to an AOCC client. If the page was
originally in the Not-cached state then it moves to
Cached-AOCC-only state, otherwise there is no page-
state transition.

• AOCC-purge: client-to-server piggybacked message
letting the server know that an unused page was purged
from memory. The server simply updates its internal
structures to reflect the fact that the page is no longer
cached at that client. Also, if there is a message queued
for piggybacking to invalidate the page at that client then
that message is deleted.

• AOCC-invalidate: server-to-client piggybacked message
to invalidate a page. The client invalidates the page and
aborts a transaction if it has read the page.

• AOCC-commit-request: client-to-server message
requesting the commit of a transaction. The message
contains the transaction ID and the transaction’s read and
write sets. Each page in the read/write set has its version
number. The server checks the version numbers in the
read-set of the transaction with its version numbers.

If the committing transaction has accessed stale
pages then it is aborted by sending the client a AOCC-
abort-cmnd message. (Invalidation of stale pages on the

client should already be queued for piggybacking or be in
transit). The transaction is also aborted if any of its read-
set pages are write-locked or if any of its write-set pages
are read or write locked. Furthermore, any pages in the
transaction’s write set that are read-locked at other clients
are invalidated; the reason has been discussed at the end
of subsection C.

Otherwise, the transaction is committed. Each page
in the transaction’s write set is invalidated at each client
but the client of the committing transaction.

• AOCC-commit-cmnd: server-to-client message sent as a
reply to the transaction’s request to commit; it commands
the client to commit the transaction .

• AOCC-abort-command: server-to-client message
commanding an abort of a transaction at the AOCC client.
The server generates the message to abort a transaction as
a reply to the client’s request to commit that cannot be
satisfied due to conflicts on pages with other transactions.

F. Discussion
The design of the interoperable server gives priorities to

the ACBL clients over the AOCC ones. This was done under
the assumption that makes AOCC algorithm attractive in that
the cost of an abort of an AOCC client is born primarily by
the client without much effect on the rest of the system. If
only AOCC clients are present, a transaction is aborted only if
it has accessed stale data. Even in such a situation, there is a
problem that an AOCC transaction may be repeatedly aborted
and hence starved. The problem here, however, is
exacerbated in presence of ACBL transactions. When an
AOCC transaction is aborted due to access to pages that are
locked by ACBL transactions, the chances of repeated abort
upon the transaction restart are higher when ACBL
transactions are interactive and of long duration. However,
considering the fact that ACBL algorithm is used for
interactive transactions that should have a low abort rate while
AOCC algorithm is used for transactions that can tolerate high
abort rate this is deemed to be a reasonable approach.

V. RELATED WORK
There is extensive work on coherency of cached data in

different environments, for instance [Stenstrom 1990
(multiprocessors), Eggers 1991 (single-bus shared memory
multiprocessors), and Franklin 1997 (transactional database),
Zheng 2002 (mobile)]. DSM is one of the early environments
for which coherency and concurrency control mechanisms
were integrated [Hsu 1989, Jutla 1993]. Coherence control
has also been integrated for efficiency purposes with recovery
[Voruganti 1999, Bodorik 1999, Morin 2000]. Work in web
DB processing that utilizes client-server architecture can be
found in [Candan 2001, Challenger 1999, Datta 2001].
Middle-tier database caching in IBM and Oracle products are
described in [Luo 2002, Anton 2002]. The project on
Performance and Caching in Middleware Systems at IBM
Watson Labs [Degenaro, 2000, 2001; Iyengar, 1999] included
development of a General Purpose Cache (GPS) used to store
objects, results of queries processed by a DB, in memory, or

Interoperable Server-based Cache Consistency Algorithm 9

disk, or both. A GPS is targeted to support application-level
caching within a middleware system based on the Accessible
Business Rules (ABR) for IBM’s WebSphere. Objects are
results of queries executed on base tables but may also be
derived/comprised of other objects. Consequently, when a
base table is updated, the GPS must efficiently invalidate all
objects formed directly or indirectly from such a table. The
GPS also provides for purging objects from the cache based
on their age.

Caching when accessing OODBs or relational OODBs has
also received a lot of attention [Carey 1991, Wang 1991,
Franklin 1994, Chang 1994, Carey 1994, Agrawal 1994, Adya
1995, Chang 1997, Franklin 1997, Ozsu 1998, Voruganti
1999]. The review of cache coherence algorithms in [Franklin
1997] provides taxonomy of protocols, and evaluation of
several protocols under different scenarios. Good overview of
interrelated problems of cache consistency, concurrency
control, updating, and recovery can be found in [Voruganti
1999]. The authors propose architecture for a server that
dynamically serves pages and/or objects on pages and deals
with issues of data transfer, updating, and recovery.

Closest to our work is [Franklin 1994] that presents
ACBL, [Adya 1995] that deals with AOCC, and [Ozsu 1998,
Voruganti 1999] that deal with AACC. As was already
mentioned earlier, AACC algorithm improves on AOCC and
ACBL and thus addresses the problem of requiring avoidance
based algorithm because high abort rate, which can be
exhibited by AOCC algorithm, is not acceptable, and thus
lower performance ACBL algorithm is used. Experiments
simulation experiments were conducted in [Ozsu 1998 and
Voruganti 1999] to examine the performance of various
algorithms and approaches under different scenarios in which
loads and resources were varied. It was concluded that using
objects, instead of pages, as granularity of data unit for
various purposes, such as data transfer and updates, is
advantageous, while under different circumstance using a
page as granularity of data is preferred. Also, it was observed
that ACBL is actually better in situations where AOCC was
thought to be superior – the difference was that more detailed
simulation was conducted for a more detailed environment.

VI. SUMMARY AND CONCLUSIONS
It has been generally accepted that the AOCC algorithm

has a better overall performance than the ACBL algorithm.
Yet, ACBL or its variants are used in practice because AOCC
may lead to high abort rate unacceptable to some transactions,
such as interactive ones. We present a server-side caching
algorithm that supports both ACBL and AOCC clients. This
would be beneficial particularly in a situation where there are
two groups of transactions that access different areas of the
DB such that one gourp requires the ACBL algorithm,
because a high abort rate is unacceptable, while the other
group prefers the AOCC algorithm for performance. The
interoperable server is also preferred in a situation where there
are already existing client caches using say the ACBL
algorithm, but we client(s) that use the AOCC algorithm need
to be added.

We are currently conducting simulation experiments that,
for various simulated environments and work-loads, compare
the performance of the server to the performance of using
AOCC, ACBL, and AACC caching methods. We are also
examining interoperable caching servers in the middleware
environment in which not only data shipping but also query
shipping caches exist [Kossmann 2000].

REFERENCES
[Adya 1995] Adya, A., Gruber, R., Liskov, B., and

Maheshawari, U. Efficient Optimistic Concurrency Control
Using Loosely Synchronized Clocks. In ACM SIGMOD
Conference Proceedings, 1995.

[Agrawal 1987] Agrawal, R., Carey, M., and Livny, M.
Concurrency Control Performance Modeling: Alternatives
and Implications. ACM TODS, December 1987.

[Anton 2002] Anton J., Jacobs, L., Parker J., Zeng Z., Zhang
T., Web Caching for DB Applications with Pracle Web
Cache, ACM SIGMOS, 2002, pp. 594-599.

[Bodorik 1998] Bodorik, P. and Jutla, D. N., “Multi-view
Memory Support to Operating Systems in Locking for
Transaction and Database Systems,” The Computer
Journal, Vol. 41, No. 2, 1998, 84-97.

 [Bodorik 1999] Bodorik P., Jutla D., Agarwal A.,
"Recoverable Virtual Memory through the MultiView
Computer System", Hawaii International Conference on
System Sciences, Maui, Jan 5-8, 1999.

 [Candan 2001], K.S.Candan , Wen-Syan Li , Qiong Luo ,
Wang-Pin Hsiung , Divyakant Agrawal, Enabling dynamic
content caching for database-driven web sites, Proceedings
of the 2001 ACM SIGMOD international conference on
Management of data, p.532-543, May 21-24, 2001, Santa
Barbara, California, United States.

[Carey 1991] Carey, M., Franklin, M., Livny, M., and
Shekita, E. Data Caching Tradeoffs in Client-Server
DBMS Architectures. In Proceedings of ACM SIGMOD
Conference, 1991.

[Carey 1994] Carey, M., Franklin, M., and Zahaariodakis, M.
Fine Grained Sharing in a Page Server OODBMS. In
Proceedings of ACM SIGMOD Conference, 1994.

 [Challenger 1999] Challenger J., , A. Iyengar, P. Dantzig., "A
Scalable System for Consistently Caching Dynamic Web
Data", Proc. 18th Annual Joint Conference of the IEEE
Computer and Communications Societies, IEEE
INFOCOM'99, New York, 1999.

[Chang 1997] Chung, I., Lee, J., and Hwang, C. A
Contention Based Dynamic Consistency Maintenance
Scheme for Client Cache. In Proceedings of CIKM
Conference, 1997.

Interoperable Server-based Cache Consistency Algorithm 10

 [Datta 2001], A. Datta, K. Dutta, H. Thomas, D.
VanderMeer, K. Ramamritham, D. Fishman. A
Comparative Study of Alternative Middle Tier Caching
Solutions to Support Dynamic Web Content Acceleration.
In Proceedings of the 27th VLDB Conference, Roma, Italy,
2001.

 [Degenaro 2000] Degenaro L., Iyengar,A., Lipkind I., “A
Middleware System Which Intelligently Caches Query
Results", Proceedings of ACM/IFIP Middleware 2000,
Palisades, New York, April 2000.

[Degenaro 2001] Degenaro L., Iyengar, A., and Rouvellou, I.
"Improving Performance with Application-Level Caching",
Proceedings of the SSGRR 2001 International Conference
on Advances in Infrastructure for Electronic Business,
Science, and Education on the Internet, L'Aquila, Italy,
August 2001.

[Eggers 1991] S. J, Eggers. Simplicity versus accuracy in a
model of cache coherency overhead, IEEE Transactions on
Computers, Vol. 40, No. 8, August 1991.

[Hsu 1989], Hsu M. and Tam V., Transaction Synchronization
in Distributed Shared Virtual Memory Systems, Proc. Of
the 13th Annual Int. Computer and Software Applications
Conference, COMPSAC, September, 1989.

[Franklin 1994] Franklin, M., and Carey, M. Client-Server
Caching Revisited. In Distributed Object Management.
Edited by T. Ozsu, U. Dayal, and P. Valduriez. Morgan
Kaufmann, 1994.

[Franklin 1997] Franklin M.J., "Transactional Client-Server
Cache Consistency: Alternatives and Performance", ACM
Transactions on Database Systems, Vol. 22, No. 3, 1997,
pp. 315-363.

 [Iyengar 1999] Iyengar A., "Design and Performance of a
General-Purpose Software Cache", Proceedings of the 18th
IEEE International Performance, Computing, and
Communications Conference (IPCCC'99),
Phoenix/Scottsdale, Arizona, February 1999.

[Jutla 1993] Jutla D.N., Bodorik P., Riordon, J.S., “Integrated
Concurrency-Coherence Control in Distributed Shared
Memory, Fifth International Conference on Computing and

 [Kossman 2000] Kossman D., Franklin M.J., Drasch, G.,
Cache Investment: Integrating Query Optimization and
Distributed Data Placement, ACM Transactions on
Database Systems, Vol. 25, No. 4, December 2000, pages
517-558.

 [Luo 2002] Luo Q., Krishnamurthy, S., Mohan, C., Pirahesh,
H., Woo, H., Lindsay, B.G., Naughton, J.F. Middle-Tier
Database Caching for e-Business, ACM SIGMOD,
Madison, Wisconsin, 2002, pp. 600-611.

[Morin 2000] Morin C.,Kermarrec, A-M.,, Banatre M.,
Gefflaut, A., “An Efficient and Scalable Approach for
Implementing Fault-Tolerant DSM Architectures,” IEEE
Transactions on Computers, Vol. 49, No. 5, May 2000., pp.
414-429.

[Ozsu 1998] Ozsu M.T., Voruganti, K., Unrau, R.C. "An
Asynchronous Avoidance-Based Cache Consistency
Algorithm for Client Caching DBMSs", Proc. 24th VLDB
Conf., New York, 1998, pp. 440-451.

[Stenstrom 1990] Stenstrom P., A Survey of Cache
Coherence Schemes for Multiprocessors, IEEE Computer.
June 1990.

[Voruganti 1999] Voruganti, K., Ozsu, T., and Unrau, R. An
Adaptive Hybrid Server Architecture for Client Caching
Object DBMSs. In Proceedings of 25th VLDB Conference,
1999, pp. 150-161.

[Wang 1991] Wang, Y., and Rowe, L. Cache Consistency
and Concurrency Control in a Client/Server DBMS
Architecture. In Proceedings of ACM SIGMOD
Conference, 1991.

 [Zheng 2002] Zheng B., Xu, J., Lee, D.L., Cache Invalidation
and Replacement Strategies for Location-Dependent Data in
Mobile Environments, IEEE Transactions on Computers,
Vol. 51, No. 10, October 2002, 1141-1153.

Not cached
Cached-
accessed

Notation:

Figure 1. AOCC Client — State Transition Diagram for a Page

In: AOCC-serve-pg
out: permit trans read/write

In: transaction read/write
out: permit read/write

state
In: input action

out: output action (if any)
In: input action

out: output action (if any)

In: trans read/write
out: AOCC-pg-req

In: AOCC-invalidate
out: abort-trans (if any)

Cached-not-
accessed

In: tra
ns read/write

out: permit read/write

In: evict page
Out: AOCC-purgeIn: AOCC-invalidate

Out:
In: trans commit request

out: AOCC-com-req

Not cached
Cached

Figure 2. AOCC Server — State Transition Diagram for a Page

In: AOCC-pg-req
out: AOCC-serve-pg

In: AOCC-pg-req
out: AOCC-serve-pg

In: AOCC-purge (there is one cached copy
only)
out:

In: AOCC-com-req
out:[if no conflict] AOCC-com-cmnd;AOCC-invalidate

[if conflict] AOCC-abort-cmnd

11

Interoperable Server-based Cache Consistency Algorithm 12

Not-cached

Cached-
read-locked
(accessed)

Figure 3. ACBL Client — State Transition Diagram for a Page

Objects-
write-locked-
local (by locla

trans)

Notes:
* Trans read and trans write represent read and write operations issued by a local transaction.
* Inputs that do not lead to state changes are NOT shown.

… State transition to the Cached-NOT-locked state upon reception of ACBL-com-cmnd or ACBL-abort-cmnd from the
server.

Cached-
NOT-locked

In: ACBL-serve-pg-rd-locked

out: permit read

Objects-
write-locked-
foreign (by

foreign trans)

In
: A

C
B

L-
se

rv
e-

pg
-w

r-l
oc

ke
d

(p
ag

e)
ou

t:
pe

rm
it

w
rit

e

Exclusive
(whole page
write locked)

in: ACBL-serve-pg-wr-locked

(object)
out: permit write

In
: A

CB
L-

se
rv

e-
pg

-rd
-lo

ck
ed

ou
t:

pe
rm

it
tra

ns
 re

ad

Not-cached-
read-locked

In:
 ACBL-w

r-lo
ck

-gr
an

t (p
ag

e)

ou
t: p

erm
it w

rite

in
: A

C
B

L-
ca

llb
ac

k
[n

o-
co

nf
lic

t]

ou
t:

A
C

B
L-

ca
llb

-r
ep

ly
 (p

os
iti

ve
)

In: ACBL-callb-wr-lock (obj not written locally)

out: ACBL-callb-wr-lock-reply(yes)

In
: A

C
B

L-
re

ad
-lo

ck
-g

ra
nt

ou
t:

pe
rm

it
re

ad

In: ACBL-invalidate
out:

In
: A

C
B

L-
se

rv
e-

pg
-w

r-
lo

ck
ed

 (p
ag

e)

ou
t:

pe
rm

it
tra

ns
 w

rit
e

In
: A

CB
L-

se
rv

e-
pg

-w
r-l

oc
ke

d
(o

bj
ec

t)

ou
t:

pe
rm

it
tra

ns
 w

rit
e

In: ACBL-wr-lock-grant (object)out: permit write

In
: A

C
BL

-c
al

lb
ac

k

ou
t:

AC
BL

-c
al

lb
-re

pl
y(

ye
s)

In
: A

C
B

L-
co

m
-c

m
nd

 o
r A

C
B

L-
ab

or
t-c

m
nd In

: A
C

B
L-

in
va

lid
at

e

*

In
: A

C
B

L-
co

m
-c

m
nd

 o
r

A
C

B
L-

ab
or

t-c
m

nd
ou

t:

*

*

*

Interoperable Server-based Cache Consistency Algorithm 13

Not cached

Cached
read-locked

Figure 4. ACBL Server — State Transition Diagram for a Page

Exclusive
(cached write

locked
page)

Objects write
locked

In: ACBL-callb-wr-lock (positive)

out: ACBL-rd-lock-grant or ACBL-serve-pg-rd-locked

In: ACBL-page-req-wr-locked

out: ACBL-serve-pg-wr-locked (excl)

In: ACBL-com-req (trans holds wr-lock)
out: ACBL-com-cmnd; ACBL-serve-pg-rd-locked (if waiting) or

ACBL-serve-pg-wr-locked (if waiting);
ACBL-invalidate (to clients not waiting for read lock)

In: ACBL-request-page [for read]

out: ACBL-serve-page (read locked)
In: ACBL-abort-req (trans holds wr-lock)

out: ACBL-abort-cmnd; ACBL-serve-pg-rd-locked (if waiting);
ACBL-invalidate (to clients not waiting for read lock)

In: ACBL-com-req (tra
ns holds wr-lo

cks)

out: A
CBL-com-cmnd; ACLB-serve-pg-rd-locked; ACBL-

invalidate

In: ACBL-abort-re
q (tra

ns holds w
r-lo

cks)

out: A
CBL-abort-c

mnd; ACLB-serve-pg-rd-locked and/or ACBL-

read-lock-grant;

 ACBL-invalidate

Note: State transitions to the same state are not shown!

Not-cached

Cached-
read-locked

Figure 5. ISCC Server — State Transition Diagram for a Page

Exclusive
(cached write

locked
page)

Objects-
write-locked

In: ACBL-callb-wr-lock (positive)

out: ACBL-rd-lock-grant or ACBL-serve-pg-rd-locked

In: ACBL-page-req-wr-locked

out: ACBL-serve-pg-wr-locked (excl)

In: ACBL-com-req (trans holds wr-lock)
out: ACBL-com-cmnd; ACBL-serve-pg-rd-locked (if waiting) or

ACBL-serve-pg-wr-locked (if waiting);
ACBL-invalidate (to clients not waiting for read lock)

In: ACBL-request-page [for read]

out: ACBL-serve-page (read locked)
In: ACBL-abort-req (trans holds wr-lock)

out: ACBL-abort-cmnd; ACBL-serve-pg-rd-locked (if waiting);
ACBL-invalidate (to clients not waiting for read lock)

In: ACBL-com-req (tra
ns holds wr-lo

cks)

out: A
CBL-com-cmnd; ACLB-serve-pg-rd-locked; ACBL-

invalidate

In: ACBL-abort-re
q (tra

ns holds w
r-lo

cks)

out: A
CBL-abort-c

mnd; ACLB-serve-pg-rd-locked and/or ACBL-

read-lock-grant;

 ACBL-invalidate

Note: State transitions to the same state are not shown!

Cached-
AOCC-only

In
: A

O
C

C
-p

g-
re

q
ou

t:
A

O
C

C
-s

er
ve

-p
g

In
: A

O
C

C
-p

ur
ge

 [t
he

 o
nl

y
co

py
]

ou
t:

In: ACBL-pg-req-rd-locked

out: ACBL-serve-pg-rd-locked

In:
 A

CBL-p
g-r

eq
-w

r-lo
ck

ed

ou
t: A

CBL-s
erv

e-p
g-w

r-lo
ck

ed

Interoperable Server-based Cache Consistency Algorithm 14

Table 1 ISCC Server -- State transition diagram for a page

state input condition new state output description

ACBL-pg-req-rd-locked Cached-rd-locked ACBL-serve-pg-rd-locked req for a pg with a rd-lock
ACBL-pg-req-wr-locked Exclusive ACBL-serve-pg-wr-locked(excl) req for a pg with a wr-lock (exclusive or object)
AOCC-pg-req Cached-AOCC AOCC-serve-pg Page request served
ACBL-pg-req-rd-locked ACBL-serve-pg-rd-locked Request for a page
ACBL-pg-req-wr-locked -- ACBL-callbs Send callbs for wr-lock

1 cached only Not-cached The only cached copy was purged
>1 cached -- Note in data structures

ACBL-wr-lock-req -- ACBL-callbs Send callbs to cached copies for wr-lock

ACBL-callb-reply all replies received Objects-wr-locked ACBL-wr-lock-grant or ACBL-serve-page-
wr-locked (exl or object)

All callbs replies received - either (grant wr-lock on object or
the whole page) or (serve page with a write lock on page or
object)

waiting callback Objecs-wr-locked ACBL-com-cmnd; ACBL-wr-lock-grant Commit cmnd to requesting client; send reply to waiting client

no waiting callb -- ACBL-com-cmnd Send commit command

waiting callback -- ACBL-com-cmnd; ACBL-wr-lock-grant
Abort cmnd to requesting client;sent callback reply to waiting
client

no waiting callb -- ACBL-abort-cmnd Abort cmnd to requesting client
AOCC-page-req -- AOCC-serve-pg Page request by AOCC client served
AOCC-purge -- Note in data structures

no conflict -- AOCC-com-cmnd; AOCC-invalidate;
ACBL-invalidate

Commit trans. Transaction's write-set must be invalidate
at other clients.

conflict -- AOCC-abort-cmnd; ACBL invalidate AOCC trans aborted; page invalidated

ACBL-pg-req-rd-locked -- ACBL-callb-wr-lock Send callbac for wr-lock
ACBL-pg-req-wr-locked -- Req by trans not holding wr-lock; blocked
ACBL-purge -- Note in data structures
ACBL-rd-lock-req N/A- only one copy exists
ACBL-wr-lock-req -- Request blocked

ACBL-callb-wr-lock-reply Objects-wr-locked ACBL read-lock-grant or ACBL-serve-
page-rd-locked

Client released exclusive wr-lock on page; page has objects
write-locked with the rest of objects read-locked

ACBL-com-req has write locks Cached-read-locked
ACBL-com-cmnd; ACBL-serve-pg-rd-
locks or ACBL-serve-pg-wr-locked;
ACBL-invalidate

Commit cmnd to requesting client; send page read-locked to
waiting clients; invalidate page if read-lock not requested

ACBL-abort-req has write locks Cached-read-locked

ACBL-abort-cmnd; (ACBL-serve-pg-rd-
locked and/or ACBL-rd-lock-grant) or
(ACBL-wr-lock-grant or ACBL-serve-pg-
wr-locked)

Abort cmnd to requesting client; send read-locks to waiting
clients

AOCC-page-req -- AOCC-serve-pg Page request by AOCC client served
AOCC-purge -- Note in data structures

no conflict -- AOCC-com-cmnd; AOCC-invalidate;
ACBL-invalidate

Commit trans. Transaction's write-set must be invalidate
at other clients.

conflict -- AOCC-abort-cmnd AOCC trans aborted; page invalidated
conflict -- Object already wr-locked - blocked

no conflict -- ACBL-serve-pg-rd-locked Read on a reqeusted page does not conflict with object write-
locks

ACBL-pg-req-wr-locked -- Request blocked
ACBL-purge -- Note in data structures

ACBL-rd-lock-req -- Request blocked

not have wr locks -- Page write-locked; request blocked
has write locks -- ACBL-callbs Send callbs to cached copies-wait
all positive -- ACBL-wr-lock-grant All callbs positive - grant wr-lock
negative replies -- Negative reply(ies) - req blocked

ACBL-com-req trans has write-locks Cached-read-locked ACBL-com-cmnd; ACBL-serve-pg-rd-
lock; ACBL-invalidate

Commit cmnd to requesting client; send page read-locked to
waiting clients; invalidate page if read-lock not requested

ACBL-abort-req trans has write-locks Cached-read-locked ACBL-abort-cmnd; ACBL-rd-lock-grant;
ACBL-serve-pg-rd-lock

Abort cmnd to requesting client; read-lock sent to waiting
clients; page read-locked sent to waiting clients

AOCC-page-req -- AOCC-serve-pg Page request by AOCC client served
AOCC-purge -- Note in data structures

no conflict -- AOCC-com-cmnd; AOCC-invalidate;
ACBL-invalidate

Commit trans. Transaction's write-set must be invalidate
at other clients.

conflict -- AOCC-abort-cmnd; ACBL invalidate AOCC trans aborted; page invalidated

ACBL-pg-req-rd-locked Cached-rd-locked ACBL-serve-pg-rd-locked req for a pg with a rd-lock
ACBL-pg-req-wr-locked Exclusive ACBL-serve-pg-wr-locked(excl) req for a pg with a wr-lock (exclusive or object)
AOCC-page-req -- AOCC-serve-pg Page request by AOCC client served

1 cached only Not-cached The only cached copy was purged
>1 cached -- Note in data structures

no conflict -- AOCC-com-cmnd; AOCC-invalidate Commit trans. Transaction's write-set must be invalidate
at other clients.

conflict -- AOCC-abort-cmnd AOCC trans aborted

Notes: N/A … not applicable to the page in this state
ACBL-com-req, and ACBL-abort-req are not shown as inputs if they have no effect on the page.
 (There is no page transition but corresponding ACBL-com-req and ACBL-abort-req messages/requests are sent to the server.)
 Similarly to ACBL-com-req and ACBL-abort-req, inputs that do not have effect on the page are not shown.

ACBL-purge

ACBL-com-req

ACBL-com-req

Cached-
AOCC-

only (only
at AOCC
clients)

AOCC-com-req

AOCC-purge

AOCC-com-req

Objects-wr
locked

Not-
cached

Cached-rd-
locked

Exclusive

AOCC-com-req

AOCC-com-req

ACBL-pg-req-rd-locked

ACBL-callb-reply

ACBL-wr-lock-req

Interoperable Server-based Cache Consistency Algorithm 15

APPENDIX

Table A-1 AOCC Client -- State transition diagram for a page

state input condition new state output description

AOCC-serve-pg Cached-accessed permit trans read/write Server sent a page for read or write
trans read -- AOCC-pg-req
trans write -- AOCC-pg-req
trans read -- permit trans read
trans write -- permit trans write
trans commit -- AOCC-com-req Trans requested commit
trans abort -- Local trans abort
AOCC-invalidate Not-cached trans abort Abort local transaction
AOCC-com-cmnd -- commit transaction Command from server to commit trans
AOCC-abort-cmnd -- trans abort Command from server to abort trans
trans read Cached-accessed permit trans read
trans write Cashed-accessed permit trans write
evict Not-cached AOCC-purge
AOCC-invalidate Not-cached

Cached-
accessed

Cached-not-
accessed

Not-cached

Table A-2 AOCC Server -- State transition diagram for a page

state input condition new state output description

Not-cached AOCC-pg-req Cached AOCC-serve-pg Client request for a page - served

AOCC-pg-req AOCC-serve-pg Client request for a page - served
1 cached only Not-cached The only cached copy was purged
>1 cached -- Note in data structures

no-conflict AOCC-com-cmnd; AOCC-
invalidate

Commit trans. Transaction's write-set must be
invalidate at other clients.

conflict -- AOCC-abort-cmnd Trans read/write set was updated

Notes: Inputs that do not have effect on the page are not shown.

AOCC-com-req

Cached
AOCC-purge

Interoperable Server-based Cache Consistency Algorithm 16

Table A-3 State transition diagram for pages on an ACBL client

state input/operation condition new state output description

trans-read -- ACBL-page-request-rd-locked Page requested for read
trans-write -- ACBL-page-request-wr-locked Page requested for write

Cached-rd-locked permit trans read Server sent page for read with a rd-lock
page wr-lock Exclusive permit trans write Server sent page with whole page wr-locked
obj wr-lock objs-wr-locked-local permit trans write Server sent page with obj wr-locked

trans-read -- permit trans read Read by a trans
trans-write -- ACBL-wr-lock-request Send a request for a write lock - trans is blocked
trans-abort -- ACBL-abort-request Client-to-server request to abort trans
trans-commit -- ACBL-com-request Client-to-server request to commit trans

page wr-lock Exclusive permit trans write Server sent wr-lock on the whole page
object wr-lock objs-wr-locked-local permit trans write Server sent wr-lock on object

ACBL-callback no-conflict objs-wr-locked-foreign ACBL-callb-reply Wr-lock asked by foreign trans --given locally
waiting callback objs-wr-locked-foreign Callback waiting for page/object
no waiting callb objs-wr-locked-foreign No callback waiting
waiting callback Cached-NOT-locked Callback waiting for page/object
no waiting callb Cached-NOT-locked No callback waiting

trans-read -- permit trans read Read by a trans
trans-write -- permit trans write Write by a transaciton
trans-abort -- ACBL-abort-request Client-to-server request to abort trans
trans-commit -- ACBL-com-request Client-to-server request to commit trans
ACBL-callb-wr-lock obj NOT written objs-wr-locked-local ACBL-callb-wr-lock-reply Object NOT written locally - positive reply
ACBL-com-cmnd Cached-NOT-locked Server-to-client cmnd to commit trans
ACBL-abort-cmnd Cached-NOT-locked Server-to-client cmnd to abort trans
trans-read -- permit trans read Read by trans

obj wr-locked -- Permit trans write Write to obj already wr-locked by the trans
obj not wr-locked -- ACBL-wr-lock-req Write to obj not wr-locked; wait

trans-abort -- ACBL-abort-request Client-to-server request to abort trans
trans-commit -- ACBL-com-request Client-to-server request to commit trans
ACBL-wr-lock-grant -- permit trans write Server sent wr-lock on obj
ACBL-com-cmnd Cached-NOT-locked Server-to-client cmnd to commit trans
ACBL-abort-cmnd Cached-NOT-locked Server-to-client cmnd to abort trans

obj not wr-locked -- permit trans read Read-- obj NOT wr-locked by foreign trans
obj wr-locked -- ACBL-rd-lock-request Read-- obj IS wr-locked by foreign trans; wait

trans-write -- write blocked Write by a trans -- trans is blocked
trans-abort -- ACBL-abort-request Client-to-server request to abort trans
trans-commit -- ACBL-com-request Client-to-server request to commit trans
ACBL-callback no-conflict -- ACBL-callb-reply-positive Wr-lock asked by foreign trans --given locally
ACBL-read-lock-grant Cached-read-locked permit trans read Foreign trans aborted -- read-lock granted
ACBL-invalidate Not-cached-rd-locked Foreign trans committed- trans read not waiting

waiting callback objs-wr-locked-foreign Callback waiting for page/object
no waiting callb objs-wr-locked-foreign No callback waiting
waiting callback Cached-NOT-locked Callback waiting for page/object
no waiting callb Cached-NOT-locked No callback waiting

trans-read Cached-rd-locked permit trans read Read by trans on a page not rd-locked
trans-write -- ACBL-wr-lock-request Write by trans - send req for wr-lock; wait
trans-abort -- ACBL-abort-request Client-to-server request to abort trans
trans-commit -- ACBL-com-request Client-to-server request to commit trans

page wr-lock Exclusive permit trans write Server-to-client wr-lock grant on whole page
obj wr-lock objs-wr-locked-local permit trans write Server-to-client wr-lock grant on obj

ACBL-callback Not-cached ACBL-callb-reply Foreign trans asked for wr-lock on object
ACBL-invalidate Not-cached
trans-read -- ACBL-page-req-read-locked Read by trans- page is not cached but rd-locked
trans-write -- ACBL-page-req-wr-locked Page requested for write
trans-abort -- ACBL-abort-request Client-to-server request to abort trans
trans-commit -- ACBL-com-request Client-to-server request to commit trans

Cached-read-locked permit trans read Server sent page for read with a rd-lock
page wr-lock Exclusive permit trans write Server sent page with whole page wr-locked
obj wr-lock objs-wr-locked-local permit trans write Server sent page with obj wr-locked

ACBL-callback no-conflict objs-wr-locked-foreign ACBL-callb-reply Wr-lock asked by foreign trans --given locally
waiting callback objs-wr-locked-foreign Callback waiting for page/object
no waiting callb objs-wr-locked-foreign No callback waiting
waiting callback Cached-NOT-locked Callback waiting for page/object
no waiting callb Cached-NOT-locked No callback waiting

Notes: N/A … not applicable to the page in this state
ACBL-com-req and ACBL-abort-req are not shown as inputs if they have no effect on the page.
 (There is no page transition but corresponding ACBL-com-req and ACBL-abort-req messages/requests are sent to the server.)
 Inputs that do not have effect on the page are not shown.

ACBL-abort-cmnd

ACBL-serve-page-rd-locked

ACBL-serve-page-wr-
locked

objs-wr-
locked-by-

foreign-
trans

Cached-not-
locked

Not-cached-
read-locked

ACBL-wr-lock-grant

trans-read

ACBL-com-cmnd

ACBL-abort-cmnd

ACBL-com-cmnd

ACBL-serve-pg-rd-locked

trans-write

ACBL-wr-lock-grant

ACBL-serve-page-wr-
locked

ACBL-com-cmnd

ACBL-abort-cmnd

Not-cached

Cached-rd-
locked

Exclusive

objs-wr-
locked-local

Interoperable Server-based Cache Consistency Algorithm 17

Table A-4 ACBL Server -- State transition diagram for a page

state input condition new state output description

ACBL-pg-req-rd-locked Cached-rd-locked ACBL-serve-pg-rd-locked req for a pg with a rd-lock

ACBL-pg-req-wr-locked Exclusive
ACBL-serve-pg-wr-
locked(excl) req for a pg with a wr-lock (exclusive or object)

ACBL-pg-req-rd-locked ACBL-serve-pg-rd-locked Request for a page
ACBL-pg-req-wr-locked -- ACBL-callbs Send callbs for wr-lock

1 cached only Not-cached The only cached copy was purged
>1 cached -- Note in data structures

ACBL-wr-lock-req -- ACBL-callbs Send callbs to cached copies for wr-lock

ACBL-callb-reply all replies received Objects-wr-locked
ACBL-wr-lock-grant or
ACBL-serve-page-wr-locked
(exl or object)

All callbs replies received - either (grant wr-lock
on object or the whole page) or (serve page with
a write lock on page or object)

waiting callback Objecs-wr-locked
ACBL-com-cmnd; ACBL-wr-
lock-grant

Commit cmnd to requesting client; send reply to
waiting client

no waiting callb -- ACBL-com-cmnd Send commit command

waiting callback --
ACBL-com-cmnd; ACBL-wr-
lock-grant

Abort cmnd to requesting client;sent callback
reply to waiting client

no waiting callb -- ACBL-abort-cmnd Abort cmnd to requesting client
ACBL-pg-req-rd-locked -- ACBL-callb-wr-lock Send callbac for wr-lock
ACBL-pg-req-wr-locked -- Req by trans not holding wr-lock; blocked
ACBL-purge -- Note in data structures
ACBL-rd-lock-req N/A- only one copy exists
ACBL-wr-lock-req -- Request blocked

ACBL-callb-wr-lock-reply Objects-wr-locked
ACBL read-lock-grant or
ACBL-serve-page-rd-locked

Client released exclusive wr-lock on page; page
has objects write-locked with the rest of objects
read-locked

ACBL-com-req has write locks Cached-read-locked

ACBL-com-cmnd; ACBL-
serve-pg-rd-locks or ACBL-
serve-pg-wr-locked; ACBL-
invalidate

Commit cmnd to requesting client; send page
read-locked to waiting clients; invalidate page if
read-lock not requested

ACBL-abort-req has write locks Cached-read-locked

ACBL-abort-cmnd; (ACBL-
serve-pg-rd-locked and/or
ACBL-rd-lock-grant) or
(ACBL-wr-lock-grant or
ACBL-serve-pg-wr-locked)

Abort cmnd to requesting client; send read-locks
to waiting clients

conflict -- Object already wr-locked - blocked

no conflict -- ACBL-serve-pg-rd-locked Read on a reqeusted page does not conflict with
object write-locks

ACBL-pg-req-wr-locked -- Request blocked
ACBL-purge -- Note in data structures

ACBL-rd-lock-req -- Request blocked

not have wr locks -- Page write-locked; request blocked
has write locks -- ACBL-callbs Send callbs to cached copies-wait
all positive -- ACBL-wr-lock-grant All callbs positive - grant wr-lock
negative replies -- Negative reply(ies) - req blocked

ACBL-com-req trans has write-locks Cached-read-locked
ACBL-com-cmnd; ACBL-
serve-pg-rd-lock; ACBL-
invalidate

Commit cmnd to requesting client; send page
read-locked to waiting clients; invalidate page if
read-lock not requested

ACBL-abort-req trans has write-locks Cached-read-locked
ACBL-abort-cmnd; ACBL-
rd-lock-grant; ACBL-serve-
pg-rd-lock

Abort cmnd to requesting client; read-lock sent
to waiting clients; page read-locked sent to
waiting clients

Notes: Inputs that do not have effect on the page are not shown. E.g.,
 ACBL-com-req and ACBL-abort-req are not shown as inputs if they have no effect on the page.
 N/A … not applicable to the page in this state

ACBL-pg-req-rd-locked

Not-cached

Cached-rd-
locked

Exclusive

Objects-wr-
locked

ACBL-wr-lock-req

ACBL-callb-reply

ACBL-purge

ACBL-com-req

ACBL-com-req

	Introduction
	Background
	AOCC
	ACBL

	Assumptions and Requirements
	Assumptions
	Requirements

	Interoperable Server-based Cache Consistency (ISCC)
	Integrating the AOCC and ACBL Functions
	Server’s Pages – States
	Server page state transitions
	Server’s interaction with ACBL clients
	Server’s interaction with AOCC clients
	Discussion

	Related Work
	Summary and Conclusions
	References
	Appendix

