
Parallel MO-PBIL: Computing Pareto Optimal
Frontiers Efficiently with Applications in

Reinsurance Analytics

Leah Brown∗, Anirudha Ashok Beria†, Omar A. C. Cortes‡ Andrew Rau-Chaplin∗, Duane Wilson∗, Neil Burke∗, and
Jürgen Gaiser-Porter§
∗Risk Analytics Lab

Dalhousie University
Halifax, Nova Scotia, CA

lbrown@cs.dal.ca, arc@cs.dal.ca, dwilson@gmail.com, Neil.Burke@cs.dal.ca
†International Institute of Information Technology

Gachibowli, Hyderabad, India
anirudha.beria@students.iiit.ac.in
‡Informatics Academic Department

Instituto Federal de Educação, Ciência e Tecnologia do Maranhão
São Luis, MA, Brazil

omar@ifma.edu.br
§Global Analytics

Willis Group
London, UK

gaiserporterj@willis.co

Abstract—In this paper we propose MO-PBIL, a parallel
multidimensional variant of the Population Based Incremental
Learning (PBIL) technique that executes efficiently on both
multi-core and many-core architectures. We show how MO-PBIL
can be used to address an important problem in Reinsurance
Risk Analytics namely the Reinsurance Contract Optimization
problem. A mix of vectorization and multithreaded parallelism
is used to accelerate the three main computational steps: objective
function evaluation, multidimensional dominance calculations,
and multidimensional clustering. Using MO-PBIL, reinsurance
contract optimization problems with a 5% discretization and 7
or less contractual layers (subcontracts) can be solved in under a
1 minute on a single workstation or server. Problems with up to
15 layers, which previously took a month or more of computation
to solve, can now be solved in less than 10 minutes.

Keywords—Component; formatting; style; styling; insert (key
words)

I. INTRODUCTION

Parallel algorithms for evolutionary heuristic search meth-
ods are becoming increasingly important in order to lever-
age hardware advances and perform complex optimizations
quickly and scalably in competitive domains such as computa-
tional finance [4]. In this paper, we study an important variant
of the Reinsurance Contract Optimization problem [5], [7],
viewed from the perspective of a primary insurance com-
pany. Namely, given a reinsurance contract consisting of a
fixed number of layers (subcontracts) and a simulated set of

expected loss distributions (one per layer), plus a model of
reinsurance costs, identify optimal combinations of placements
(i.e. percentage shares) such that for a given expected return
the associated risk value is minimized. The solution to this
high-dimensional multi-objective optimization problem is a
Pareto frontier that quantifies the available trade-offs between
expected risk and returns, as illustrated in Figure 1.

Figure 1. The studied reinsurance contract optimization problem: Inputs and
Outputs

This problem, which was first addressed in [5], is central to

the placement of reinsurance risk in the marketplace. Mistry et
al. took a straightforward enumeration approach and addressed
the performance challenge by harnessing a distributed memory
cluster to perform the search in parallel. Unfortunately, while
this approach allows one to solve low dimensional problems
(e.g. 5 layers or less), assuming a fairly coarse discretization
(e.g. 10% increments), in a reasonable amount of time, it is of
limited use for practical industrial problems where the number
of layers may be between 7 and 15 and finer discretization (e.g.
1%) is required. For instance, a contract with 7 layers and 5%
discretization takes more than a week to be solved by the
enumeration approach on a sequential machine as we can see
from the timing chart given in Figure 2, which was obtained by
estimation after some executions of the enumeration method
implemented in R.

Figure 2. Time required by the enumeration

This problem was further studied by Cortes et al. in [7].
The main advance here was to discard the enumurative search
in favour of an evolutionary heuristic search method called
Population Based Incremental Learning [6], or PBIL. This
work advanced the state-of-the-art by demonstrating that an
evolutionary search approach, called Discretized PBIL (DiP-
BIL), could generate results of acceptable quality and solve
interesting industrially relevant problems on a single multi-
core workstation (rather than a 36 node cluster) in a timely
manner. For example, contract optimization problems with a
5% discretization and 7 or less contractual layers could be
solved in less than an hour. However, the DiPBIL approach
suffered from a number of weaknesses. In converting the
multi-objective contract optimization problem into a mono-
objective, it reduced the quality of the results. Secondly, the
Pareto frontier had to be built point-by-point, with the method
basically searching for the risk/return tradeoff for each level of
expected return. This led to both unnecessary computational
overhead and a search procedure that spreads its work evenly
over the frontier rather than dedicating more computation to
the more important regions of the curve.

In this paper, in order to overcome the problems inherent

in the DiPBIL approach and to increase the dimensionality
of solvable contract optimization problems, we propose an
approach based on Multi-Objective PBIL (MO-PBIL) and
describe a parallel version of this optimization technique that
runs efficiently on both multi-core and manycore architectures.
The algorithm mixes vectorization and multithreaded paral-
lelism to accelerate the three main computational steps, namely
objective function evaluation, multidimensional dominance
calculations, and multidimensional clustering. Using this new
method reinsurance contract optimization problems with a 5%
discretization and 7 or less contractual layers can be solved
in less than 1 minute on a single workstation, while problems
with up to 15 layers (that previously would have taken a month
or more of computation to solved) can be run in less than 10
minutes.

The remainder of this paper is structured as follows: In Sec-
tion II, we introduce multi-objective search and the MO-PBIL
approach. We then introduce a parallel version of MO-PBIL
that can efficiently exploit modern multicore and many-core
architectures (Section III). Afterwards, Section IV presents
how the parallelization was implemented. An extensive ex-
perimental evaluation of the proposed method on a variety
of hardware is presented in Section V. Finally, Section VI
concludes and describes the planned future work.

II. MO-PBIL: A MULTI-OBJECTIVE OPTIMIZATION
TECHNIQUE

In this section we review the required multi-objective opti-
mization fundamentals and describe the sequential MO-PBIL
algorithm that will be parallelized.

Sometimes generating a Pareto set for a particular problem
using classical methods might be infeasible due to the time
required to compute it, especially when real world problems
are being solved. In this context, evolutionary algorithms
appear as an alternative to discover approximate solutions.
Many real world problems are hard to optimize because
they are involve tradeoffs between two, three, or even many
objectives. In these cases, effective optimization must take into
account multi-objective functions.

A. Multiobjective Fundamentals

As the name suggests, a multi-objective optimization prob-
lem considers multiple conflicting objective function [11].
Typically, the objective functions are in conflict, otherwise the
solution is only a point in the search space (i.e. there is no
Pareto set). In other words, for a multi-objective optimization
problem there exist no single global solution. Given an ar-
bitrary optimization problem with k objective functions to be
maximized and assuming that a solution to this problem can be
represented by a vector in a search space X with m elements,
a function f : X → Y is used to evaluate the quality of a
solution by mapping it into an objective vector in an objective
space Y ∈ < as depicted in Figure 3.

Figure 3. Moving from the search space to objective space

In this context, a multi-objective problem is defined as
presented in Equation 1, where f is a vector of objective
functions, m is the dimension of the problem and n the number
of objective functions.

Min y = f(x) = (f1(x1, ..., xm), ..., fn(x1, ..., xm)) (1)

As mentioned previously, there is no single global solution,
thus it is necessary to determine which solutions are better
for the problem being solved. We can use the concept of
optimality, where given two vectors x, x∗ ∈ < and x 6= x∗,
x dominates x∗ (denoted by x ≺ x∗) if fi(x) ≤ fi(x∗),∀ i.
Hence, a solution x is said to be Pareto optimal if there is
no solution that dominates x in all dimensions. In this case,
x is called non-dominated solution. So, considering the set of
non-dominated solutions ℘, we can build the Pareto frontier
(pf) according to pf = {fi(x) ∈ <|x ∈ ℘}.

B. The MO-PBIL

PBIL was first proposed by Baluja [12] in 1994. The
algorithm’s population are encoded using binary vectors and
an associated probability vector, which is then updated based
on the best members of a population. Unlike other evolutionary
algorithms which seek to transform the current population into
new populations, a new population is generated at random us-
ing the updated probability vector for each generation. Baluja
describe his algorithm as a “combination of evolutionary
optimization and hill-climbing” [12].

Since Baluja’s work, extensions to the algorithm have
been proposed for continuous and base-n represented search
spaces [6], [13], [14]. In [7] the intervals are replaced for
equidistant increments in the lower and upper bounds of the
search space, thereby defining a discrete version of PBIL,
called DiPBIL. However, DiPBIL still requires that all of the
objective functions get transformed into a single objective. In
order to address this issue and compute a better Pareto frontier
a true multi-objective optimization approach called MOPBIL
is presented in Algorithm 1.

Basically, the MO-PBIL divides the search space into n
overlapping slabs as illustrated in Figure4. Within each
slab, the population is created using the probability matrix

Input: NG = number of generations;
Estimate the min and the max of the mean;
Divide the interval [min, max] into n slabs;
while (NG not reached) do

for s from 1 to slabs in parallel do
1. Create the population using probability matrix;
2. Evaluate objective function on each member of
the population;
3. Determine the non-dominated set;
4. Cluster the non-dominated set into k clusters
and then select k representative individuals;
5. Insert the k individuals into the population;
6. Update and mutate the probability matrix;

end
end
Combine the results of each slab;
Determine the Pareto frontier;

Algorithm 1: Parallel MO-PBIL (Sketch)

exactly as proposed in [7]. This set of non-dominated solutions
is found using Kung’s dominance algorithm [11] and the
resulting set is clustered. Finally, k representative solutions are
chosen to update the probability matrix. The clustering process
is introduced to help to keep the diversity along the genera-
tions, i.e., the algorithm tries to chose representatives from
kth most different solutions keeping them in the population
and also updating the probability matrix. The individual which
presents the best risk value is chosen to represent a cluster. In
other words, we are trying to drive the search towards the
optimal risk values and keep the diversity in the population
at the same time. When the number of generations is reached
the results within each slab are combined in order to get the
final Pareto frontier. Figure 5 graphically illustrates the high
level structure of the process.

Figure 4. Dividing the work into slabs

III. PARALLEL MO-PBIL

We parallelized MO-PBIL using OpenMP and the
#pragma omp parallel for directive since much of

Figure 5. How the MOPBIL creates points and update the probability matrix.

the work in the MO-PBIL algorithm used looping structures
to iterate through the array structures. While Algorithm 1
sketches the basic MO-PBIL method and its primary source
of independent parallel work, namely slabs, there are several
other sources of parallelism that can be exploited. In our
implementation, which is described in detail in Algorithm 2,
we generally tried to parallelize over the longest loops in order
to be able to effectively utilize large processor core counts.

Our implementation also split the evaluation function into
two parts to address the problem that arose when the calculated
mean (expected return) fell outside the current slab boundaries.
By breaking the evaluation function into two parts, one to
evaluate the mean of each member of the population and the
other to evaluate the risk, the algorithm could discard any “Out
of Range” points generated between these steps.

The evaluation of mean values was performed by iterating
over the population size, since each member of the population
could be independently evaluated and the population provided
a high loop count for parallelization. For the risk evaluation,
the “In Range” population was divided into equal parts so
that each thread would have equal work, avoiding the work
imbalance otherwise caused by “Out of Range” points. This
lead to a solution in which the parallel evaluation of risk
was performed over the “In Range” points rather than the
slabs. Finally, each of the evaluation functions calculated the
linear extrapolation (i.e. duplicating work), since it was found
that the cost of computing the linear extrapolation multiple
times was less than the overhead of storing them for later use.
In addition to parallelizing the main algorithm, each of the
evaluation functions was also parallelized as shown below.

IV. SPEEDING UP PARALLEL MO-PBIL

A single C++ code base was developed and run on both a
standard Intel Xeon multi-core processor and a machine con-
sisting of a host Xeon multi-core processor with a coprocessor
based on a Intel Phi many-core chip [10].

Although the code was recompiled to run on each architec-
ture natively, the basic code optimizations for both machines

Parallel MO-PBIL;
Inputs: sliceSize, q1, q2, nSlabs, nBest, LR2,
mRate, mShift, numObj, ppln, iter;
Outputs: The Pareto frontier with the optimal
placements;

Estimate min and max of the mean;
Divide the interval [min, max] into nSlabs slabs.;
for (each slab in parallel) do

Initialize the probability matrices;
end
for (i from 1 to iter) do

for s from 1 to slabs do
for (each layer in parallel) do

Generate cumulative probability matrix;
end
(1) Generate ppln from probability matrix;
for i from 1 to pplnSize in parallel do

(2) Evaluate mean of ppln member p;
end
Discard ps whose means are outside slab;
Divide valid population between threads;
for (each p in division in parallel) do

(2) Evaluate risk of p;
end

end
for (s from 1 to slabs in parallel) do

(3) Determine non-dominated set (Kung’s alg.);
(4) Cluster non-dominated set into k clusters and
best nBest members (k-Means algorithm);
(5) Update ppln using best members from (4);
(6) Update and mutate the probability matrix p;

end
end
Combine results from each slab;
Determine Pareto frontier;

Algorithm 2: Parallel MO-PBIL (Details)

MO-PBIL Algorithm: Means Evaluation;
Inputs: ppln member p, exp. ret. val. of p’s slab erv;
Outputs: p’s mean m, isInSlab;

for (i each layer in p in parallel) do
Find linear interpolation;

end
Calculate the mean of p, m;
Calculate isInSlab using erv

Algorithm 3: Parallelization of Means Evaluation

MO-PBIL Algorithm: Risk Evaluation;
Inputs: population member p, p’s mean m;
Outputs: p’s risk values at q1 and q2 from main alg.;

for (i each layer in p in parallel) do
Find linear interpolation;

end
Find risk value atq1 (randomized k-means selection
algorithm Find risk value at q2 (randomized k-means
selection algorithm return m, isInSlab

Algorithm 4: Parallelization of Risk Evaluation

was largely the same. In fact, the final running code differed
primarily in the number of slabs used to compute the Pareto
frontier. For the Phi, this meant compiling with the -mmic flag
and off-loading the executable from the Xeon and running
it independently on Phi using the micnativeloadex utility.
Because both the Xeon and the Phi have relatively wide
vector registers (256 and 512 bits wide, respectively), both
codes were vectorized to help increase performance. Most
of the vectorization was automatically performed by Intel’s
compiler using a −O < optimizationlevel > compiler
flag. For MO-PBIL, level 3, the highest level of optimization
was used. It automatically performs vectorization, inlining,
constant propagation, dead-code elimination, loop unrolling,
loop fusion, block-unroll-and-jam, and if-statement collapse.
A -vec-report flag was also used to monitor where automatic
vectorization took place and where it did not. In addition,
several instances of loop exit statements (i.e. break, continue,
etc.) which prevent automatic vectorization were removed and
replaced with masked assignments.

The parallelism was implemented using OpenMP by means
of the instruction #pragma omp parallel for schedule(guided)
num threads(NUM THREADS) parallelism on both the Xeon
and Phi. The main advantage of doing so is there is no need
to perform any changes in the code when we move it from
Xeon to Phi. The “guided” schedule option which instructs
the scheduler to distribute increasingly smaller sizes of work
to threads, was selected because it gave the best performance
in practice. In addition, some parallelized loops with work
independent of each other were fused together. This removed
the implicit wait barrier at the end of each #pragma omp
parallel for that allows all threads to synchronize, which can
be an expensive operation. By fusing two loops together, it
was possible to remove a synchronization.

Unfortunately, many of the loops had relatively small it-
eration counts because they were over the number of layers
(typically 7-15) or the number of slabs. This raised concerns
for parallelism on both architectures; with a smaller number
of layers, MO-PBIL could not take advantage of the Xeon’s
16 cores, and on the Phi, the 240 threads available could not
be fully utilized even for the largest test problems. The largest
loops were over the iteration size, but because iterations had
to be executed sequentially, parallelization over this was not
possible. Despite these challenges significant parallel speedup

was achieved, especially on the Xeon platform, as described
in the following experimental evaluations.

V. EXPERIMENTAL RESULTS

A. Setup

The experiments were conducted on two different architec-
tures. The first one is an Intel Xeon comprising of two Xeon
processors E5-2650 running at 2.0 Ghz with 8 cores and 256
GB of memory. The second one is an Intel Xeon with Phi
5110p Card with 60 cores and 8Gb of memory.

The Intel Xeon Phi Coprocessor [10] is Intel’s latest solution
to find a middle ground between obtaining lowpowered, GPU-
like performance improvements while keeping programming
overhead at a minimum. Unlike GPU programming, code
compiled for the Intel Xeon Phi Coprocessor can be run on
both the Xeon and the Phis architecture. It uses the Multi
Integrated Core (MIC) architecture and features 60 processing
cores, caches, memory controllers, PCIe client logic, and a
very high bandwidth bidirectional interconnection ring. Each
core comes complete with a private L2 cache that is kept
fully coherent by a global distributed tag directory, uses 512-
bit wide vector registers, and is capable of 4-way hyper-
threading for up to 240 threads of execution. The memory
controllers and the PCIe client logic provide a direct interface
to the GDDR5 memory on the coprocessor and the PCIe bus,
respectively. All these components are connected together by
the interconnection ring [10] as we can see in Figure 6. The
coprocessor cannot function as a standalone processor and is
therefore dependent on being connected to a host Intel Xeon
processor through a PCI Express (PCIe) bus.

Figure 6. Intel Phi architecture [10]

All experiments involved running MO-PBIL with 500, 1000,
or 2000 iterations, 128 individuals, and 2 objective functions
(Expected Loss and Risk) on contract optimization problems
involve between 7 and 15 layers (ie. subcontracts). Each exper-
iment is composed of 10 trials, i.e., 10 runs. The elapsed-time
presented corresponds to the mean of these trials, although
very little variation was observed in practice.

The instances of the reinsurance contract optimization prob-
lem being solved attempt to find for a given contract structure
the best combination of placements (i.e. percentage shares)

in order to transfer the maximum of risk and at the same
time receive the maximum of the expected return. Equation 2
represents the underlying optimization problem, where VaR
is a risk metric, R is a function and π is a combination of
shares. The first one is the quantile representing the 1 in 200
year risk. Roughly speaking these represent the actuarial and
investor perspectives, where the intention is to hedge more risk
and receive more money back in case of massive claims. For
further details about the problem refer to [7] and [17].

maximize f1(x) = V aRα(R(π))
maximize f2(x) = E[R(π)]

(2)

B. Quality of Solutions

Ideally, the results obtained by the heuristic search technique
described in this paper would be compared directly against an
exact method to determine the quality of the results obtained.
While this was possible for extremely small problems, it was
not possible for the high-dimensional contract optimization
problems that were our research target. Such problems are
not solvable by exact methods in a feasible amount of time.
This being the case, three metrics have been used to quantify
the quality of solutions obtained. First, the number of non-
dominated points found in the Pareto frontier was determined.
Second, the hypervolume, which is the volume of the domi-
nated portion of the objective space as presented in Equation 3,
was measured, where for each solution i ∈ Q a hypercube vi is
constructed with a reference point W ((0, 0) in this particular
case because we are maximizing negative values). Having each
vi we calculated the final hypervolume by the union of all vi.

hv = volume(

|Q|⋃
i=1

vi) (3)

Third, the dominance relationship between Pareto frontiers
obtained with increasing iterations, i.e. the coverage, was
calculated as depicted in Equation 4. Roughly speaking, the
coverage is the ratio between the number of solutions domi-
nates by A divided by the number of solution of set B.

C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(4)

For further details about the use of these metrics see [11].
Finally, the resulting frontiers were reviewed by experts for
reasonability.

Figure 7 shows the average number of non-dominated points
found per threads (from 7 to 15) on the Pareto frontier for
contracts with varying number of layers on the Intel Xeon
and Intel Phi, respectively. We expected that as we increase
the number of layers, and therefore the size of the search
space, it would become harder to find solutions on the Pareto
frontier. Interestingly, this was not the case. The size of the
Pareto frontier diminished between 7 and 11 layers but then

began to grow again. We also observed, as we would hope,
that as we increased the number of iterations the size of the
Pareto frontiers found also increased. Increasing the number
of iterations positively effected the number of solutions that
the algorithm identified in all observed cases.

Figure 7. Average number of solution - Iteration vs Layers on Xeon and
Phi, respectively.

Figure 8 shows, for both architectures, the size of the
average dominated hypervolume per threads (from 7 to 15) as
a function of the number of layers and the iteration count. We
observe that as the number of layers increases so does the size
of the dominated hypervolume. Interestingly, increasing the
number of iterations has only a modest effect on hypervolume
size. Five hundred iterations appears to be enough to capture
the basic shape of the Pareto frontier, and while more iterations
refine that shape there are no large changes observed.

The coverage observed on both Intel Xeon and Phi architec-
tures is shown in Table I. Each line represents the comparison
between iterations, for example, 500-1000 depicts the rate of
the number of solution obtained by 1000 iterations which are
dominated by the solutions reached by 500 iterations. For
instance, the number 0.38 indicates that 38% of solutions
obtained by 1000 iterations are dominated by the other one.
A result equal to 1 would indicate that the first Pareto frontier
dominates all points of the second one. On the other hand,
an outcome equal to 0 indicates the inverse. Here we observe
that in all cases performing more iterations improve the quality
of the results,as expected. Either, when the problem becomes
more complex the differences start being perceptible with 2000
iterations. However, a careful review of these improvements
shows that they tend to be very small in relative numeric terms

Figure 8. Average hypervolume - Iteration vs Layers on Xeon and Phi,
respectively.

as shown in Figure 9.

TABLE I
COVERAGE FOR SOLUTIONS USING 32 THREADS PER LAYER ON XEON

AND 128 THREADS ON PHI

Xeon - 16 threads
#Iter/#layers 7L 9L 11L 13L 15L
500-1000 0.42 0.17 0.29 0.25 0.31
500-2000 0.20 0.10 0.17 0.11 0.17
1000-500 0.53 0.72 0.67 0.63 0.57
1000-2000 0.24 0.18 0.46 0.10 0.30
2000-500 0.67 0.76 0.71 0.85 0.76
2000-1000 0.69 0.68 0.41 0.77 0.67

Phi - 64 threads
#Iter/#layers 7L 9L 11L 13L 15L
500-1000 0.31 0.42 0.43 0.34 0.45
500-2000 0.27 0.39 0.16 0.20 0.28
1000-500 0.55 0.44 0.42 0.67 0.45
1000-2000 0.25 0.31 0.11 0.31 0.31
2000-500 0.64 0.52 0.70 0.71 0.65
2000-1000 0.62 0.48 0.74 0.54 0.63

C. Run-time and Speedup on the Intel Xeon

Figure 10 and 11 depict the elapsed time and the speedup
observed on the Intel Xeon architecture, with 500, 1000 and
2000 iterations, and layers ranging from 7 to 15. In general,
as we increase the number of threads performance improves
up to 16, which is the number of physical cores we have
available. Between 16 and 32 threads performance actual drops
showing that hyperthreading is actually counterproductive in
this particular case. The speedup observed ranges from near
linear for small thread counts to just a factor of 4 with 16

Figure 9. Pareto frontier varying the iteration count on Xeon and Phi with
15 layers

threads and 11 layer. However, the speedup tends to be larger
for harder problems with longer run times and smaller for the
fast easy problems, so the use of parallelism is helping us when
it counts most. In all cases, the run time using sixteen threads
(on sixteen cores) is less than 100 seconds for 500 iterations,
200 seconds for 1000 iterations and 500 seconds for 2000
iterations. This is fast enough to make practical the analysis
of large reinsurance contracts which previously would have
been infeasible. Reducing runtimes from weeks or months to
minutes permits the effective evaluation of many scenarios in
less time than it would previously have taken to evaluate a
single one.

D. Run-time and Speedup on the Intel Phi

The Intel Phi coprocessor offers potentially 2-3 times more
performance than the Intel Xeon processors (i.e. 2.0 Ghz E5-
2650s) we had available. However, realizing that additional
performance is not always easy and depends heavily on the
problem under consideration. While the Intel Phi boasts over
1 TFlop of raw performance it is designed around a high core
count (60 1.052 GHz cores each capable of executing four
concurrent threads) where each core has a 512 wide vector
instruction unit for floating point arithmetic.

Figure 10. Runtime vs number of threads on Xeon

While in principle MO-PBIL is reasonably well suited to
such an architecture, the particular problem under consid-
eration, that is reinsurance contract optimization, poses the
following significant challenges: 1) Many of the loops have
low iteration counts (for example loops of the number of
layers 7-15), and 2) many of the key algorithmic steps such
as clustering and the calculation of VaR values are memory
bandwidth intensive, rather than floating point intensive.

Figures 12 and 13 show the results for the elapsed time and
speedup on Intel Phi. While the basic shape of these curves
is fine the absolute values are disappointing. In general, even
after extensive profiling and hand optimization the resulting
times are significantly slower than observed on the Xeon
architecture. While MO-PBIL runs efficiently on the Intel
Phi, the reinsurance contract optimization problem does not
present enough independently parallelizable work to really

Figure 11. Speedup vs number of threads on Xeon

take advantage of the coprocessor. Increasing the number
of slabs may address this problem, but has the potential to
introduce anomalies in the shape of the Pareto frontier and
more overhead. This is an area that we are actively exploring.

VI. CONCLUSION

In this paper we have presented a parallel approach for
solving a multiobjective contract optimization problem. The
experimental results show that the approach when run on a
standard Intel Xeon multicore significantly outperforms pre-
vious approaches (even those that exploited large distributed
memory clusters) in terms of time, speedup, and efficiency.
Practical reinsurance contract optimization problems involving
up to 15 layers (subcontracts) can now be solved in under 10
minutes when previously they would have required months of
computation, if they were solvable at all.

Figure 12. Runtime vs number of threads on Phi

ACKNOWLEDGMENT

The authors would like to thank the Willis Group for
providing the actual data and, CNPq and Flagstone for funding
this research.

REFERENCES

[1] G. Misra and N. Kurkure and A. Das and M. Valmiki and S. Das and A.
Gupta, “Evaluation of Rodinia Cdes on Intel Xeon Phi”, International
Conference on Intelligent Systems Modelling & Simulation (ISMS),
pp.415-419, 2013.

[2] TOP 500 Supercomputer Sites. http://www.top500.org.
[3] S. Potluri and A. Venkatesh and D. Bureddy and K. Kandalla and D.

K. Panda, “Efficient Intra-node Communication on Intel-MIC Clusters”,
13th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp.128-135, 2013.

Figure 13. Speedup vs number of threads on Phi

[4] Zircon Computing LLC, “Parallel Computing for Computational
Finance Applications: A Case Study Parallelizing NAG with
Zircon Software”, Goethe University, Frankfurt, available at
http://extwww.nag.co.uk/industryarticles/goetheuni zircon nag.pdf,
2010.

[5] S. Mistry, (n.d.), et al. Parallel Computation of Reinsurance Models.
Unpublished Manuscript.

[6] S. Bureerat, “Improved Population-Based Incremental Learning in Con-
tinuous Spaces”, Soft Computing in Industrial Applications, p. 77-86,
Springer, 2011.

[7] O. A. C. Cortes and A. Rau-Chapliny and D. Wilson and J. Gaiser-
Porterz, “Efficient Optimization of Reinsurance Contracts using Dis-
cretized PBIL”, In Proceedings of Data Analytics, London, 2013.

[8] D. E. Culler and J.P. Singh, “Parallel Computer Architectures: A Hard-
ware/Software Approach”, Morgan Kauffman Publisher, 1999.

[9] M. Klemm and A. Duran and X. Tian and H. Saito and D. Caballero and
X. Martorell, “Extending OpenMP with Vector Constructs for Modern
multi-core SIMD Architectues”, OpenMP in a Heterogeneous World,
LNCS 7312, pp. 59-72, 2012.

[10] Intel Xeon Phi Coprocessor - the Architecture,
http://software.intel.com/en-us/articles/, Visit in 02-jul-2013.

[11] K. Deb, “Multi-objective Optimization using Evolutionary Algorithms”,
John Wiley and Sons LTDA, 2001.

[12] S. Baluja, “Population based incremental learning”. Technical Report,
Carnegie Mellon University.

[13] B. Yuan and M. Gallagher, “Playing in continuous spaces: Some analysis
and extension of population-based incremental learning”, CEC2003, CA,
USA, 443-450, 2003.

[14] M.P. Servais and G. Jager and J. R. Greene, “Function optimisation using
multi-base population based incremental learning”. PRASA 97, Rhodes
University, 1997.

[15] K. K. Mishra and S. Harit, “A Fast Algorithm for Finding the Non
Dominated Set in Multi objective Optimization”, International Journal of
Computer Applications 1(25):3539, 2010.

[16] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering”, Structural and Multidisciplinary Optimization,
26, 369395, 2004.

[17] J. Cai, et al. (2008). “Optimal reinsurance under VaR and CTE risk
measures”, Insurance: Mathematics and Economics, 43, 185-196.

