
 Procedia Computer Science 18 (2013) 2317 – 2326

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.403

International Conference on Computational Science, ICCS 2013

A MapReduce Framework for Analysing Portfolios of
Catastrophic Risk with Secondary Uncertainty

A. Rau-Chaplina, B. Varghesea,∗, Z. Yaoa

aFaculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada

Abstract

The design and implementation of an extensible framework for performing exploratory analysis of complex property portfolios

of catastrophe insurance treaties on the Map-Reduce model is presented in this paper. The framework implements Aggregate

Risk Analysis, a Monte Carlo simulation technique, which is at the heart of the analytical pipeline of the modern quantitative

insurance/reinsurance pipeline. A key feature of the framework is the support for layering advanced types of analysis, such as

portfolio or program level aggregate risk analysis with secondary uncertainty (i.e. computing Probable Maximum Loss (PML)

based on a distribution rather than mean values). Such in-depth analysis is not supported by production-based risk management

systems since they are constrained by hard response time requirements placed on them. On the other hand, this paper reports

preliminary experimental results to demonstrate that in-depth aggregate risk analysis can be realized using a framework based

on the MapReduce model.

Keywords: MapReduce model, secondary uncertainty, risk modelling, aggregate risk analysis

1. Introduction

At the heart of the analytical pipeline of the modern quantitative insurance/reinsurance company are pro-
ductions systems that perform Aggregate Risk Analysis on portfolios of complex property catastrophe insurance

treaties (for example, the Risk Management Solutions reinsurance platform [1], and the research reported in

[2, 3, 4, 5]). Such systems typically perform a small set of core analytical functions and are highly optimized

for speed, reliability, and regulatory compliance. Production systems often achieve very high performance, but

at a cost in that (i) they ruthlessly aggregate results up to the entire portfolio level making detailed analysis of

sub-components of the portfolio difficult or almost impossible and (ii) they exploit specialized software-hardware

design methodologies that make them difficult or impossible to extend.

In this paper, the design and implementation of an extensible framework for performing ad hoc analysis of

portfolios of catastrophic risk based on the MapReduce programming model [6, 7, 8] using the Hadoop platform

[9, 10, 11] is explored. The goal is to employ the framework to facilitate an environment for analysts in which they

can (i) explore risk management questions not anticipated by the designers of production systems, (ii) perform a

more in-depth analysis at a finer level of detail than what is supported by the production system, and (iii) prototype

significant extensions which provides an insight into the portfolio on a monthly or quarterly basis (this may be too

computationally expensive for production use).

∗Corresponding author

E-mail address: varghese@cs.dal.ca.

Available online at www.sciencedirect.com

2318 A. Rau-Chaplin et al. / Procedia Computer Science 18 (2013) 2317 – 2326

Aggregate risk analysis can be used to compute Probable Maximum Loss (PML) [12, 13] and the Tail Value-

at-Risk (TVAR) [14, 15] metrics for an entire portfolio. However, in addition the analysts may want to compute

(a) Portfolio or Program level Probable Maximum Loss (PML) analysis taking into account secondary uncertainty,

that is computing PMLs based on a distribution rather than just a mean value, (b) Year Loss Table/Return Period

Losses by Treaty Line of Business, that is taking a defined portfolio and filtering the Layers by Line of Business

(LOB), (c) Year Loss Table/Return Period Losses by Class of Business (CoB), that is taking a defined portfolio

and filtering the Layers by CoB, (d) Region Peril filtering, that is taking a loss sets broken down by peril region

and analysing just the selected peril regions for specific programs or a set of programs, (e) Iterative Marginals,

that is adding/subtracting a specified program to/from a portfolio and computing every combination of marginal

for each program, (f) STEP Analysis, that is taking events in the catalogue and using them to make a combine loss

distribution for a single event, and (g) Monthly/Weekly Loss Distributions, that is using the portfolio analysis to

see the yearly distribution of losses (i.e the portfolio’s loss seasonality).

While such in-depth analysis is typically not supported by production systems that have hard response time

requirements, this paper explores how it can be realized by a MapReduce framework.

In the remainder of this paper, the design and implementation of the fundamental aggregate risk analysis sim-

ulations using MapReduce, and an example of how the calculation of secondary uncertainty can be layered on

top of the simulations is performed. Section 2 presents the aggregate analysis, firstly the sequential algorithm

followed by the Map-Reduce algorithm. Section 3 shows how to compute secondary uncertainty within the ag-

gregate analysis problem. Section 4 considers the implementation of aggregate analysis on the Apache Hadoop

platform. The preliminary results obtained from experiments are reported in Section 5. The paper concludes by

presenting areas of future work in Section 6.

2. Aggregate Risk Analysis (ARA)

In this section, firstly the sequential aggregate risk analysis algorithm is presented, followed by the parallel

aggregate risk analysis algorithm on the Hadoop Map-Reduce platform. The inputs and the output of ARA are the

same. There are three inputs to the ARA algorithm, namely the YET , PF, and a pool of ELT s. The YET is the

Year Event Table which is the representation of a pre-simulated occurrence of Events E in the form of trials T .

Each Trial captures the sequence of the occurrences of Events for a year using time-stamps in the form of event

time-stamp pairs. The PF is a portfolio that represents a group of Programs, P, which in turn represents a set of

Layers, L that covers a set of ELT s using financial terms. The ELT is the Event Loss Table which represents the

losses that correspond to an event based on an exposure (one event can appear over different ELTs with different

losses). An eXtended ELT (XELT) contains additional information based on the Event, the independent and

correlated standard deviations, the mean and the maximum expected losses for an event to compute secondary

uncertainty considered in Section 3.

Two intermediary output of ARA are the Layer Loss Table LLT and the Program Loss Table PLT both con-

sisting Trial-Loss pairs. The final output of ARA algorithm is YLT , which is the Year Loss Table that contains the

losses covered by a portfolio.

2.1. Sequential ARA
Algorithm 1 shows the sequential analysis of aggregate risk. The algorithm scan through the hierarchy of the

portfolio, PF; firstly through the Programs, P, followed by the Layers, L, then the Event Loss Tables, ELT s. Line

no. 5-9 shows how the loss associated with an Event in the ELT is computed. For this, the loss, lE associated with

an Event, E is retrieved, after which secondary uncertainty is applied. The computation of secondary uncertainty

will be considered in the next section. Contractual financial terms to the benefit of the Layer are applied to the

losses and are summed up as l′E .

In line no. 10 and 11, two Occurrence Financial Terms, namely the Occurrence Retention and the Occurrence

Limit are applied to the loss, l′E and summed up as lT . The lT losses correspond to the total loss in one trial.

Occurrence Retention refers to the retention or deductible of the insured for an individual occurrence loss, where

as Occurrence Limit refers to the limit or coverage the insurer will pay for occurrence losses in excess of the

retention. The Occurrence Financial Terms capture specific contractual properties of ’eXcess of Loss’ treaties as

they apply to individual event occurrences only.

2319 A. Rau-Chaplin et al. / Procedia Computer Science 18 (2013) 2317 – 2326

Input : YET , ELT pool, PF
Output: YLT

for each Program, P do1

for each Layer, L, in P do2

for each Trial, T , in YET do3

for each Event, E, in T do4

for each ELT covered by L do5

Lookup E in the ELT and find corresponding loss, lE ;6

Apply Secondary Uncertainty and Financial Terms to lE ;7

l′E ← l′E + lE ;8

end9

Apply Occurrence Financial Terms to l′E;10

lT ← lT + l′E;11

end12

Apply Aggregate Financial Terms to lT ;13

Populate Trial-Loss pairs in LLT using lT ;14

end15

end16

Sum losses of Trial-Loss pairs in all LLT ;17

Populate Trial-Loss pairs in PLT ;18

end19

Aggregate losses of Trial-Loss pairs in PLT ;20

Populate YLT ;21

Algorithm 1: Pseudo-code for Sequential Aggregate Risk Analysis

In line no. 13 and 14, two Aggregate Financial Terms, namely the Aggregate Retention and the Aggregate

Limit are applied to the loss, lT to produce aggregated loss for a Trial. Aggregate Retention refers to the retention

or deductible of the insured for an annual cumulative loss, where as Aggregate Limit refers to the limit or coverage

the insurer will pay for annual cumulative losses in excess of the aggregate retention. The Aggregate Financial

terms captures contractual properties as they apply to multiple event occurrences. The trial-loss pairs are then used

to populate Layer Loss Tables LLT s; each Layer is represented using a Layer Loss Table consisting of Trial-Loss

pairs.

In line no. 17 and 18, the trial losses are aggregated from the Layer level to the Program level. The losses

are represented again as a trial-loss pair and are used to populate Program Loss Tables PLT s; each Program is

represented using a Program Loss Table.

In line 20 and 21, the trial losses are aggregated from the Program level to the Portfolio level. The trial-loss

pairs are populated in the Year Loss Table YLT which represents the output of the analysis of aggregate risk.

Financial functions or filters are then applied on the aggregate loss values.

2.2. Map-Reduce ARA
MapReduce is a programming model developed by Google for processing large amount of data on large

clusters. A map and a reduce function are adopted in this model to execute a problem that can be decomposed into

sub-problems with no dependencies; therefore the model is most attractive for embarrassingly parallel problems.

This model is scalable across large number of computing resources. In addition to the computations, the fault

tolerance of the execution, for example, handling machine failures are taken care by MapReduce. An open-source

software framework that supports the MapReduce model, Apache Hadoop [9, 10, 11], is used in the research

reported in this paper.

The MapReduce model lends itself well towards solving embarrassingly parallel problems, and therefore, the

analysis of aggregate risk is explored on MapReduce. In the analysis of aggregate risks, the Programs contained

in the Portfolio are independent of each other, the Layers contained in a Program are independent of each other

and further the Trials in the Year Event Table are independent of each other. This indicates that the problem

2320 A. Rau-Chaplin et al. / Procedia Computer Science 18 (2013) 2317 – 2326

of analysing aggregate risks requires a large number of computations which can be performed on independent

parallel problems.

Another reason of choice for the MapReduce model is that it can handle large data processing for ARA. All

Events in the Year Event Table need to be processed for every Layer which accounts for the largeness of the data.

For example, consider a Year Event Table comprising one million simulations, which is approximately 30 GB. So

for a Portfolio comprising 2 Programs, each with 10 Layers, then the approximate volume of data that needs to be

processed is 600GB.

Further MapReduce implementations such as Hadoop provide dynamic job scheduling based on the availabil-

ity of cluster resources and distributed file system fault tolerance.

Algorithm 2 shows the map-reduce analysis of aggregate risk. The aim of this algorithm is similar to the

sequential algorithm in which the algorithm scans through the Portfolio, PF; firstly through the Programs, P, and

then through the Layers, L. The first round of MapReduce jobs, denoted as MapReduce1 are launched for all

the Layers. The Map function (refer Algorithm 3) scans through all the Event Loss Tables ELT s covered by the

Layers L to compute the losses l′E in parallel for every Event in the ELT. The computations of loss lT at the Layer

level are performed in parallel by the Reduce function (refer Algorithm 4). The output of MapReduce1 is a Layer

Loss Table LLT .

Input : YET , ELT pool, PF
Output: YLT

forall Programs of P do1

forall Layers L in P do2

LLT ← MapReduce1(L, YET);3

end4

end5

YLT ← MapReduce2(LLT s);6

Algorithm 2: Pseudo-code for Parallel Aggregate Risk Analysis

The second round of MapReduce jobs, denoted as MapReduce2 are launched for aggregating all the LLT s in

each Program to a YLT . Unlike the sequential algorithm no PLT s are generated as the intermediate output as the

Reducer can aggregate all the trial-loss pairs from the Layer level to the Portfolio level.

The master node of the cluster of nodes solving a problem partitions the input data to intermediate files effec-

tively splitting the problem into sub-problems. The sub-problems are distributed to the worker nodes by the master

node, often referred to as the ‘Map’ step performed by the Mapper. The map function executed by the Mapper

receives as input a < key, value > pair to generate a set of < intermediate key, intermediate value > pairs. The

results of the decomposed sub-problems are then combined by the Reducer referred to as the ‘Reduce’ step. The

Reduce function executed by each Reducer merges the < intermediate key, intermediate value > pairs to generate

a final output. The Reduce function receives all the values corresponding to the same intermediate key.

Algorithm 3 and Algorithm 4 show how parallelism is achieved by using the Map and Reduce functions in a

first round at the Layer level in ARA. Algorithm 3 shows the Map function whose inputs are a set of T, E from

the YET , and the output is a Trial-Loss pair < T, l′E > which corresponds to an Event. To estimate the loss,

it is necessary to scan through every Event Loss Table ELT covered by a Layer L (line no. 1-5). Similar to

the sequential algorithm the loss, lE associated with an Event, E in ELT is fetched from memory in line no. 2.

Secondary uncertainty and contractual financial terms to the benefit of the layer are applied to the losses (line no.

3) to aggregate the losses as l′E (line no. 4). The loss for every Event in a Trial is emitted as < T, l′E >.

Algorithm 4 shows the Reduce function used in the ARA. The inputs are the Trial T and the set of losses

(l′E) corresponding to that Trial, represented as L′E , and the output is a Trial-Loss pair < T, lT >. Similar to

the sequential algorithm for every loss value l′E in the set of losses L′E , the Occurence Financial Terms, namely

Occurrence Retention and the Occurrence Limit, are applied to l′E (line no. 2) and summed up as lT (line no. 3).

The Aggregate Financial Terms, namely Aggregate Retention and Aggregate Limit are applied to lT (line no. 5).

The aggregated loss for a Trial, lT is emitted as < T, lT > to populate the Layer Loss Table.

2321 A. Rau-Chaplin et al. / Procedia Computer Science 18 (2013) 2317 – 2326

Input : < T , E >
Output: < T , l′E >

for each ELT covered by L do1

Lookup E in the ELT and find corresponding loss, lE ;2

Apply Secondary Uncertainty and Financial Terms to lE ;3

l′E ← l′E + lE ;4

end5

Emit(T , l′E)6

Algorithm 3: Pseudo-code for Map function in MapReduce1 of Aggregate Risk Analysis

Input : T , L′E
Output: < T , lT >

for each l′E in L′E do1

Apply Occurrence Financial Terms to l′E ;2

lT ← lT + l′E ;3

end4

Apply Aggregate Financial Terms to lT ;5

Emit(T , lT)6

Algorithm 4: Pseudo-code for Reduce Function in MapReduce1 of Aggregate Risk Analysis

Algorithm 5 and Algorithm 6 show how parallelism is achieved by using the Map and Reduce functions in a

second round for aggregating all Layer Loss Tables to produce the YLT in ARA (the operations in the sequential

algorithm are shown in line no. 17, 18, 20 and 21). Algorithm 5 shows the Map function whose inputs are a set of

Layer Loss Tables LLT s, and the output is a Trial-Loss pair < T, lT > which corresponds to the Layer-wise loss

for Trial T .

Algorithm 6 shows the Reduce function whose inputs are a set of losses corresponding to a Trial in all Layers

LT , and the output is a Trial-Loss pair < T, l′T > which is an entry to populate the final output of ARA, the Year

Loss Table YLT . The function sums up all trial losses lT across all Layers to produce a portfolio-wise aggregate

loss l′T .

Input : LLT s
Output: < T , lT >

for each T in LLT do1

Emit(< T, lT >)2

end3

Algorithm 5: Pseudo-code for Map function in MapReduce2 of Aggregate Risk Analysis

Input : < T, LT >
Output: < T , l′T >

for each lT in LT do1

l′T ← l′T + lT2

end3

Emit(< T, l′T >)4

Algorithm 6: Pseudo-code for Reduce function in MapReduce2 of Aggregate Risk Analysis

3. Applying Secondary Uncertainty

In this section, the methodology to compute secondary uncertainty is presented; this method heavily draws on

industry wide practices. The inputs and their representations are firstly presented, followed by the sequence of

2322 A. Rau-Chaplin et al. / Procedia Computer Science 18 (2013) 2317 – 2326

steps for combining independent and correlated standard deviations, and finally computing the losses which are

calculated based on the Beta distribution.

3.1. Inputs

There are six inputs required for computing secondary uncertainty, which are:

i. Program-and-Event-Occurrence-Specific random number, denoted as z(Prog,E) = P(Prog,E) ∈ U(0, 1). Each

Event occurrences across different Programs have different random numbers, obtained from YET.

ii. Event-Occurrence-Specific random number, denoted as z(E) = P(E) ∈ U(0, 1). Each Event occurrence across

different Programs have the same random number obtained from XELT.

iii. Mean loss, denoted as μL obtained from XELT.

iv. Independent standard deviation of loss, denoted as σI , which represents the variance within the event-loss

distribution obtained from XELT.

v. Correlated standard deviation of loss, denoted as σC , which represents the error of the event-occurrence

dependencies obtained from XELT.

vi. Maximum expected loss, denoted as Lossmax obtained from XELT.

3.2. Steps for combining standard deviation

Given the above inputs, the independent and correlated standard deviations need to be combined to reduce the

error in estimating the loss value associated with an event. For this, firstly, the raw standard deviations is produced

as σ = σI + σC . Secondly, the probabilities of occurrences, z(Prog,E) and z(E) are transformed from uniform

distribution to normal distribution using, f (x; μ, σ2) =
x∫
−∞

1

σ
√

2π
e−

1
2

(
x−μ
σ

)2
dx. This is applied to the probabilities of

event occurrences as v(Prog,E) = f (z(Prog,E); 0, 1) ∈ N(0, 1) and v(E) = f (z(E); 0, 1) ∈ N(0, 1). Thirdly, the linear

combination of the transformed probabilities of event occurrences and the standard deviations is computed as

LC = v(Prog,E)

(
σI
σ

)
+ v(E)

(
σC
σ

)
. Then the normal random variable is computed, fourthly, as v = LC√(

σI
σ

)2
+

(
σC
σ

)2 .

Finally, the normal random variable is transformed from normal distribution to uniform distribution as z = Φ(v) =

FNorm(v) = 1√
2π

v∫
−∞

e
−t2

2 dt.

The model used above for combining the independent and correlated standard deviations represents two ex-

treme cases. The first case in which σI = 0 and the second case in which σC = 0. The model also ensures that the

final random number, z, is drawn based on both the independent and correlated standard deviations.

3.3. Loss Calculation based on Beta distribution

The loss is calculated based on the Beta distribution as fitting such a distribution allows the representation

of risks quite accurately. The Beta distribution is a two parameter distribution, with an upper bound for the

standard deviation, and after normalising in the model above, three parameters are used. In the Beta-distribution

the standard deviation, mean, alpha and beta are defined as σβ =
σ

Lossmax
, μβ =

μL
Lossmax

, α = μβ

((
σβmax
σβ

)2 − 1
)
, and

β = (1 − μβ)
((
σβmax
σβ

)2 − 1
)
. An upper bound is set to limit the standard deviation using σβmax =

√
μβ(1 − μβ); if

σβ > σβmax , then σβ = σβmax . For numerical purpose in the algorithm a value very close to σβmax is chosen. The

estimated loss is then obtained by Loss = Lossmax ∗ PDFbeta(z;α, β), PDFbeta(z;α, β) =
z∫
−∞

Γ(α+β)
Γ(α)Γ(β)

zα−1(1 − z)β−1,

and Γ(z) is the gamma function. Therefore, Loss = Lossmax ∗ 1
B(α,β)

zα−1(1 − z)β−1, where B is the normalisation

constant.

2323 A. Rau-Chaplin et al. / Procedia Computer Science 18 (2013) 2317 – 2326

(a) First MapReduce round (b) Second MapReduce round

Fig. 1: MapReduce rounds in the Hadoop implementation of Aggregate Risk Analysis

4. Apache Hadoop Implementation

In this section, the experimental platform and the implementation of MapReduce ARA are presented. The

experimental platform is a heterogeneous cluster comprising (a) a master node which is an IBM blade of two

XEON 2.67GHz processors comprising six cores, memory of 20 GB per processor and a hard drive of 500GB

with an additional 7TB RAID array, and (b) six worker nodes each with an Opteron Dual Core 2216 2.4GHz

processor comprising four cores, memory of 4GB RAM and a hard drive of 150GB (b). The nodes are connected

via Infiniband.

Apache Hadoop, an open-source software framework is used for implementing the MapReduce ARA [9, 10,

11]. Other available frameworks [16, 17] require the use of additional interfaces, commercial or web-based, for

deploying an application and were therefore not chosen.

The Hadoop framework works in the following way for a MapReduce round. First of all, the data files from

the Hadoop Distributed File System (HDFS) is loaded using the InputFormat interface. HDFS provides a func-

tionality called distributed cache for distributing small data files which are shared by the nodes of the cluster. The

distributed cache provides local access to the shared data. The InputFormat interface specifies the input the

Mapper and splits the input data as required by the Mapper. The Mapper interface receives the partitioned data

and emits intermediate key-value pairs. The Partitioner interface receives the intermediate key-value pairs

and controls the partitioning of these keys for the Reducer interface. Then the Reducer interface receives the

partitioned intermediate key-value pairs and generates the final output of this MapReduce round. The output is

received by the OutputFormat interface and provides it back to HDFS.

The input data for MapReduce ARA which are the Year Event Table YET , the pool of Event Loss Table ELT

2324 A. Rau-Chaplin et al. / Procedia Computer Science 18 (2013) 2317 – 2326

and the Portfolio PF specification are stored on HDFS. The master node executes Algorithm 2 to generate the

Year Loss Table YLT which is again stored on the HDFS. The two MapReduce rounds are illustrated in Figure 1.

In the first MapReduce round the InputFormat interface splits the YET based on the number of Mappers

specified for the MapReduce round. The Mappers are configured such that they also receive the ELT s covered by

one Layer which are contained in the distributed cache. The Mapper applies secondary uncertainty and Financial

Terms to the losses. In this implementation combining the ELT s is considered for achieving fast lookup. A

typical ELT would contain entries for an Event ID and related loss information. When the ELT s are combined

they contain an Event ID and the loss information related to all the individual ELT s. This reduces the number of

lookups for retrieving loss information related to an Event when the Events in a Trial contained in the YET are

scanned through by the Mapper. The Mapper emits a trial-Event Loss pair which is collected by the Partitioner.

The Partitioner delivers the trial-Event Loss pairs to the Reducers; one Reducer gets all the trial-Event Loss pairs

related to a specific trial. The Reducer applies the Occurrence Financial and Aggregate Financial Terms to the

losses emitted to it by the Mapper. Then the OutputFormat writes the output of the first MapReduce round as

Layer Loss Tables LLT to the HDFS.

In the second MapReduce round the InputFormat receives all the LLT s from HDFS. The InputFormat

interface splits the set of LLT s and distributes them to the Mappers. The Mapper interface emits Layer-wise

Trial-Loss pairs. The Partitioner receives all the Trial-Loss pairs and partitions them based on the Trial for

each Reducer. The Reducer interface uses the partitioned Trial-Loss pairs and combines them to Portfolio-wise

Trial-Loss pairs. Then the OutputFormat writes the output of the second MapReduce round as a Year Loss Table

YLT to the HDFS.

5. Preliminary Results

MapReduce ARA experiments were performed for one Portfolio comprising one Program and one Layer and

sixteen Event Loss Tables. The Year Event Table has 100,000 Trials, with each Trial comprising 1000 Events.

The experiments are performed for up to 12 workers as there are 12 cores available on the cluster employed for

the experiments. The results for the two MapReduce rounds are considered in this section.

The graph shown in Figure 2 represents the total time taken in seconds by the workers (Mappers and Reducers)

of the first MapReduce rounds (MapReduce1) of Algorithm 2. There is close to 100% efficiency when 2 workers

are employed, but the performance deteriorates beyond the use of two workers on the cluster employed. The best

time obtained for MapReduce is on 12 workers taking a total of 370 seconds, with 280 seconds for the Mapper and

90 seconds for the Reducer. For both the Mappers and the Reducers it is observed that over half the total time is

taken for local I/O operations. In the case of the Mapper the mathematical computations take only 1/4th the total

time, and the total time taken for data delivery from the HDFS to the InputFormat, and from the InputFormat

to the Mapper and from the Mapper to the Partitioner is only 1/4th the total time. In the case of the Reducer

the mathematical computations take 1/3rd the total time, whereas the total time taken for data delivery from the

Partitioner to the Reducer, from the Reducer to the OutputFormat, and from the OutputFormat to HDFS is nearly

1/6th the total time. This indicates that the local I/O operations on the cluster employed is expensive though the

performance of Hadoop is exploited for both computations and for large data delivery. The two graphs shown in

Figure 3 presents the relative speedup of the Mapper and Reducer in the first MapReduce round.

The graph shown in Figure 3 represents the total time taken in seconds by the workers (Mappers and Reduc-

ers) of the second MapReduce rounds (MapReduce2) of Algorithm 2. The performance is poor on the cluster

employed, and the best time obtained for MapReduce is on 12 workers taking a total of 13.9 seconds, with 7.2

seconds for the Mapper and 6.7 seconds for the Reducer. In this case the I/O overheads and the worker initial-

isation overheads are large. The two graphs shown in Figure 4 presents the relative speedup of the Mapper and

Reducer in the second MapReduce round.

In summary, the results indicate that while there is scope for achieving speedup on mathematical computations

and data delivery within the Hadoop system, there seems to be a large overhead for the local I/O operations on

the workers. This large overhead is due to the bottleneck of the connectivity between the workers, and the latency

in reading data from local drives. However, the trade-off can be minimised if larger input data is employed. The

results indicate that the Hadoop implementation of Aggregate Risk Analysis has scope for efficient data delivery

2325 A. Rau-Chaplin et al. / Procedia Computer Science 18 (2013) 2317 – 2326

(a) First round (b) Second round

Fig. 2: Total number of workers vs time taken by the Mapper and Reducer of the MapReduce rounds in Algorithm

2

(a) Mapper (b) Reducer

Fig. 3: Speedup achieved on the first round of MapReduce

(a) Mapper (b) Reducer

Fig. 4: Speedup achieved on the second round of MapReduce

2326 A. Rau-Chaplin et al. / Procedia Computer Science 18 (2013) 2317 – 2326

and effective mathematical computations. Efforts need to be made towards reducing the I/O overhead to exploit

the full benefit of the Hadoop MapReduce model.

6. Conclusion

This paper has proposed a design of an extensible framework to facilitate ad hoc analysis of catastrophic

risk-based portfolios. Such an extensible framework can be used for performing analysis of portfolios by taking

into account the finer level of detail which is not supported by production-based risk management systems. The

proposed framework considers the aggregate risk analysis algorithm and supports the layering of in-depth analysis

on top of the basic algorithm that can capture finer level of detail of the Portfolio, Program and Layer levels. In

this paper, the consideration of secondary uncertainty while computing the Probable Maximum Loss (PML) adds

a layer on the basic aggregate risk analysis algorithm. The finer level of detail is captured by not just consider-

ing mean values of losses but a distribution of losses. The proposed framework has been implemented using the

MapReduce model on the Apache Hadoop platform. The implementation demonstrates how the calculation of

secondary uncertainty can be layered on top of the simulations performed by the basic aggregate risk analysis al-

gorithm. Preliminary results obtained from experiments show that in-depth aggregate risk analysis can be realized

using a framework based on the MapReduce model.

In the future, other examples of layering finer level of detail on the aggregate risk analysis algorithm will be

considered. Immediate efforts will be made to optimise the implementation for reducing the local I/O overheads

to achieve further speedup.

References

[1] RMS Reinsurance Platform, http://rms.com/.

[2] R. R. Anderson, W. Dong, Pricing catastrophe reinsurance with reinstatement provisions using a catastrophe model (1998) 303–322.

[3] A. K. Bahl, O. Baltzer, A. Rau-Chaplin, B. Varghese, Parallel simulations for analysing portfolios of catastrophic event risk, in: Workshop

of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2012.

[4] W. Dong, H. Shah, F. Wong, A rational approach to pricing of catastrophe insurance 12 201–218.

[5] G. G. Meyers, F. L. Klinker, D. A. Lalonde, The aggregation and correlation of reinsurance exposure (2003) 69–152.

[6] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, Communications of the ACM 51 (1) (2008) 107–113.

[7] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, R. Sears, Mapreduce online, Tech. Rep. UCB/EECS-2009-136, EECS

Department, University of California, Berkeley (Oct 2009).

URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-136.html

[8] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, B. Moon, Parallel data processing with mapreduce: A survey, SIGMOD Record 40 (4)

(2011) 11–20.

[9] T. White, Hadoop: The Definitive Guide, 1st Edition, O’Reilly Media, Inc., 2009.

[10] Apache Hadoop Project, http://hadoop.apache.org/.

[11] K. Shvachko, K. Hairong, S. Radia, R. Chansler, The hadoop distributed file system, in: 26th IEEE Symposium on Mass Storage Systems

and Technologies, 2010, pp. 1 –10.

[12] G. Woo, Natural catastrophe probable maximum loss, British Actuarial Journal 8.

[13] M. E. Wilkinson, Estimating probable maximum loss with order statistics, in: Casualty Actuarial Society Forum, 1982, pp. 195–209.

[14] A. A. Gaivoronski, G. Pflug, Value-at-risk in portfolio optimization: Properties and computational approach, Journal of Risk 7 (2) 1–31.

[15] P. Glasserman, P. Heidelberger, P. Shahabuddin, Portfolio value-at-risk with heavy-tailed risk factors, Mathematical Finance 12 (3)

239–269.

[16] Amazon Elastic MapReduce (Amazon EMR, http://aws.amazon.com/elasticmapreduce/.

[17] Google MapReduce, https://developers.google.com/appengine/docs/python/dataprocessing/overview.

