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Abstract—Modern insurance and reinsurance companies use
stochastic simulation techniques for portfolio risk analysis. Their
risk portfolios may consist of thousands of reinsurance contracts
covering millions of individually insured locations. To quantify
risk and to help ensure capital adequacy, each portfolio must
be evaluated in up to a million simulation trials, each capturing
a different possible sequence of catastrophic events (e.g., earth-
quakes, hurricanes, etc.) over the course of a contractual year.

In this paper, we explore the design of a flexible framework
for portfolio risk analysis that facilitates answering a rich variety
of catastrophic risk queries. Rather than aggregating simulation
data in order to produce a small set of high-level risk metrics
efficiently (as is often done in production risk management
systems), the focus here is on allowing the user to pose queries on
unaggregated or partially aggregated data. The goal is to provide
a flexible framework that can be used by analysts to answer a
wide variety of unanticipated but natural ad hoc queries. Such
detailed queries can help actuaries or underwriters to better
understand the multiple dimensions (e.g., spatial correlation,
seasonality, peril features, construction features, financial terms,
etc.) that can impact portfolio risk and thus company solvency.

We implemented a prototype system, called QuPARA (Query-
Driven Large-Scale Portfolio Aggregate Risk Analysis), using
Hadoop, which is Apache’s implementation of the MapReduce
paradigm. This allows the user to take advantage of large parallel
compute servers in order to answer ad hoc risk analysis queries
efficiently even on very large data sets typically encountered in
practice. We describe the design and implementation of QuPARA
and present experimental results that demonstrate its feasibility.
A full portfolio risk analysis run consisting of a 1,000,000 trial
simulation, with 1,000 events per trial, and 3,200 risk transfer
contracts can be completed on a 16-node Hadoop cluster in just
over 20 minutes.

Keywords—ad hoc risk analytics; aggregate risk analytics;
portfolio risk; MapReduce; Hadoop

I. INTRODUCTION

At the heart of the analytical pipeline of a modern insur-
ance/reinsurance company is a stochastic simulation technique
for portfolio risk analysis and pricing referred to as Aggregate
Analysis [1], [2], [3], [4]. At an industrial scale, a risk portfolio
may consist of thousands of annual reinsurance contracts
covering millions of individually insured locations. To quantify
annual portfolio risk, each portfolio must be evaluated in up
to a million simulation trials, each consisting of a sequence
of possibiliy thousands of catastrophic events, such as earth-
quakes, hurricanes or floods. Each trial captures one scenario
how globally distributed catastrophic events may unfold in a
year.

Aggregate analysis is computationally intensive as well
as data-intensive. Production analytical pipelines exploit par-
allelism in aggregate risk analysis and ruthlessly aggregate
results. The results obtained from production pipelines sum-
marize risk in terms of a small set of standard portfolio
metrics that are key to regulatory bodies, rating agencies, and
an organisation’s risk management team, such as Probable
Maximum Loss (PML) [5], [6] and Tail Value-at-Risk (TVaR)
[7], [8]. While production pipelines can efficiently aggregate
terabytes of simulation results into a small set of key portfolio
risk metrics, they are typically very poor at answering the
types of ad hoc queries that can help actuaries or underwriters
to better understand the multiple dimensions of risk that can
impact a portfolio, such as spatial correlation, seasonality, peril
features, construction features, and financial terms.

This paper proposes a framework for aggregate risk anal-
ysis that facilitates answering a rich variety of ad hoc queries
in a timely manner. A key characteristic of the proposed
framework is that it is designed to allow users with extensive
mathematical and statistical skills but perhaps limited program-
ming background, such as risk analysts, to pose a rich variety
of complex risk queries. The user formulates their query by
defining SQL-like filters. The framework then answers the
query based on these filters, without requiring the user to
make changes to the core implementation of the framework
or to reorganize the input data of the analysis. The challenges
that arise due to the amounts of data to be processed and
due to the complexity of the required computations are largely
encapsulated within the framework and hidden from the user.

Our prototype implementation of this framework for
Query-Driven Large-Scale Portfolio Aggregate Risk Analysis,
referred to as QuPARA, uses Apache’s Hadoop [9], [10]
implementation of the MapReduce programming model [11],
[12], [13] to exploit parallelism, and Apache Hive [14], [15]
to support ad hoc queries. Even though QuPARA is not as fast
as a production system on the narrow set of standard portfolio
metrics, it can answer a wide variety of ad hoc queries in an
efficient manner. For example, our experiments demonstrate
that an industry-size risk analysis with 1,000,000 simulation
trials, 1,000 events per trial, and on a portfolio consisting of
3,200 risk transfer contracts (layers) with an average of 5 event
loss tables per layer can be carried out on a 16-node Hadoop
cluster in just over 20 minutes.

The remainder of this paper is organized as follows.
Section II gives an overview of reinsurance risk analysis. Sec-
tion III proposes our new risk analysis framework. Section IV
considers an example query processed by the framework and
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various queries for fine-grained aggregate risk analysis. Sec-
tion V describes implementation details. Section VI presents a
performance evaluation of our framework. Section VII presents
conclusions and discusses future work.

II. AN OVERVIEW OF RISK ANALYSIS

A reinsurance company typically holds a portfolio of pro-
grams that insure primary insurance companies against large-
scale losses, like those associated with catastrophic events.
Each program contains data that describes (1) the buildings
to be insured (the exposure), (2) the modelled risk to that
exposure (the event loss tables), and (3) a set of risk transfer
contracts (the layers).

The exposure is represented by a table, one row per
building covered, that lists the building’s location, construction
details, primary insurance coverage, and replacement value.
The modelled risk is represented by an event loss table (ELT).
This table lists for each of a large set of possible catastrophic
events the expected loss that would occur to the exposure
should the event occur. Finally, each layer (risk transfer
contract) is described by a set of financial terms that includes
aggregate deductibles and limits (i.e., deductibles and maximal
payouts to be applied to the sum of losses over the year)
and per-occurrence deductibles and limits (i.e., deductibles and
maximal payouts to be applied to each loss in a year), plus
other financial terms.

Consider, for example, a Japanese earthquake program. The
exposure might list 2 million buildings (e.g., single-family
homes, small commercial buildings, and apartments) and, for
each, its location (e.g., latitude and longitude), constructions
details (e.g., height, material, roof shape, etc.), primary in-
surance terms (e.g., deductibles and limits), and replacement
value. The event loss table might, for each of 100,000 possible
earthquake events in Japan, give the sum of the losses expected
to the associated exposure should the associated event occur.
Note that ELTs are the output of stochastic region peril models
[17] and typically also include some additional financial terms.
Finally, a risk transfer contract may consist of two layers as
shown in Figure 1. The first layer is a per-occurrence layer that
pays out a 60% share of losses between 160 million and 210
million associated with a single catastrophic event. The second
layer is an aggregate layer covering 30% of losses between
40 million and 90 million that accumulate due to earthquake
activity over the course of a year.

Given a reinsurance company’s portfolio described in terms
of exposure, event loss tables, and layers, the most fundamental
type of analysis query computes an Exceedance Probability
(EP) curve, which represents, for each of a set of user-specified
loss values, the probability that the total claims a reinsurer
will have to pay out exceeds this value. Not surprisingly
there is no computationally feasible closed-form expression
for computing such an EP curve over hundreds of thousands
of events and millions of individual exposures. Consequently
a simulation approach must be taken. The idea is to perform a
stochastic simulation based on a year event table (YET). This
table describes a large number of trials, each representing one
possible sequence of catastrophic events that might occur in
a given year. This YET is generated by an event simulator
that uses the expected occurrence rate of each event plus other

Fig. 1. An example two-layer reinsurance program.

hazard information like seasonality. The process to generate
the YET is beyond the scope of this paper, and we focus on
the computationally intensive task of computing the expected
loss distribution (i.e., EP curve) for a given portfolio, given
a particular YET. Given the sequence of events in a given
trial, the loss for this particular trial can be computed, and the
overall loss distribution is obtained from the losses computed
for the set of trials.

While computing the EP curve for the company’s entire
portfolio is critical in assessing a company’s solvency, analysts
are often interested in digging deeper into the data and posing a
wide variety of queries with the goal of analysing such things
as cash flow throughout the year, diversity of the portfolio,
financial impact of adding a new contract or contracts to the
portfolio, and many others.

The following is a representative, but far from complete,
set of example queries. Note that while all of them involve
some aspects of the basic aggregate risk analysis algorithm
used to compute Exceedance Probability curves, each puts its
own twist on the computation.

EP Curves with secondary uncertainty: In the basic aggre-
gate risk analysis algorithm, the loss value for each event is
represented by a mean value. This is an oversimplification
because for any given event there are a multitude of possible
loss outcomes. This means that each event has an associated
probability distribution of loss values rather than a single
associate loss value. Secondary uncertainty arises from the
fact that we are not just unsure whether an event will occur
(primary uncertainty) but also about many of the exposure
and hazard parameters and their interactions.
Performing aggregate risk analysis accounting for sec-
ondary uncertainty (i.e., working with the loss distributions
associated with events rather than just mean values) is com-
putationally intensive due to the statistical tools employed—
for example, the beta probability distribution is employed in
estimating the loss using the inverse beta cumulative density
function [16]—but is essential in many applications.

Return period losses (RPL) by line of business (LOB),
class of business (COB) or type of participation (TOP):
In the reinsurance industry, a layer defines coverage on



different types of exposures and the type of participation.
Exposures can be classified by class of business (COB) or
line of business (LOB) (e.g., marine, property or engineer-
ing coverage). The way in which the contractual coverage
participates when a catastrophic event occurs is defined by
the type of participation (TOP). Decision makers may want
to know the loss distribution of a specific layer type in
their portfolios, which requires the analysis to be restricted
to layers covering a particular LOB, COB or TOP.

Region/peril losses: This type of query calculates the ex-
pected losses or a loss distribution for a set of geographic
regions (e.g., Florida or Japan), a set of perils (e.g., hurri-
cane or earthquake) or a combination of region and peril.
This allows the reinsurer to understand both what types
of catastrophes provide the most risk to their portfolio
and in which regions of the globe they are most heavily
exposed to these risks. This type of analysis helps the
reinsurer to diversify or maintain a persistent portfolio in
either dimension or both.

Multi-marginal analysis: Given the current portfolio and a
small set of potential new contracts, a reinsurer will have to
decide which contracts to add to the portfolio. Adding a new
contract means additional cash flow but also increases the
exposure to risk. To help with the decision which contracts
to add, multi-marginal analysis calculates the difference
between the loss distributions for the current portfolio and
for the portfolio with any subset of these new contracts
added. This allows the insurer to choose contracts or to
price the contracts so as to obtain the “right” combination
of added cash flow and added risk.

Stochastic exceedance probability (STEP) analysis:
This analysis is a stochastic approach to the weighted
convolution of multiple loss distributions. After the
occurrence of a natural disaster not in their event
catalogue, catastrophe modelling [17] vendors attempt to
estimate the distribution of possible loss outcomes for that
event. One way of doing this is to find similar events in
existing stochastic event catalogues and propose a weighted
combination of the distributions of several events that
best represents the actual occurrence. A simulation-based
approach allows for the simplest method of producing this
combined distribution. To perform this type of analysis,
a customized Year Event Table must be produced from
the selected events and their weights. In this YET, each
trial contains only one event, chosen with a probability
proportional to its weight. The final result is a loss
distribution of the event, including various statistics such
as mean, variance and quantiles.

Periodic Loss Distribution: Many natural catastrophes have
a seasonal component to them, that is, do not occur
uniformly throughout the year. For example, hurricanes
on the Atlantic coast occur between July and November.
Flooding in equatorial regions occurs in the rain season.
As a result, the reinsurer may be interested in how their
potential losses fluctuate throughout the year, for example
to reduce their exposure through reduced contracts or in-
creased retrocessional coverage during riskier periods. To
aid in these decisions, a periodic loss distribution represents
the loss distribution for different periods of the year, such
as quarters, months, weeks, etc.

III. QUPARA FRAMEWORK

In this section, we present our QuRARA framework. Be-
fore describing QuPARA, we give an overview of the steps
involved in answering an aggregate query sequentially. This
will be helpful in understanding the parallel evaluation of
aggregate queries using QuPARA.

The loss distribution is computed from the portfolio and
the YET in two phases. The first phase computes a year loss
table (YLT). For each trial in the YET, each event in this trial,
and each ELT that includes this event, the YLT contains a
tuple 〈trial, event, ELT, loss〉 recording the loss incurred by
this event, given the layer’s financial terms and the sequence
of events in the trial up to the current event. The second phase
then aggregates the entries in the YLT to compute the final loss
distribution. Algorithm 1 shows the sequential computation of
the YLT.

Algorithm 1: Sequential Aggregate Risk Analysis
Input: Portfolio and YET
Output: YLT

1 for each trial T in the YET do
2 for each event X in T do
3 for each program P in the portfolio do
4 for each layer L in P do
5 for each ELT E covered by L do
6 Lookup X in E to determine the

loss lX associated with X
7 lL ← lL + lX

8 Apply per-occurrence and aggregate
financial terms to lL

9 lP ← lP + lL

10 lPF ← lPF + lP

11 lT ← lT + lPF

12 Populate Y LT

After looking up the losses incurred by a given event in the
ELTs of a given layer and summing these losses, the resulting
layer loss lL is reduced by applying the layer’s per-occurrence
and aggregate financial terms. The remaining loss is added to
the program loss lP for this event, which in turn is added tho
the portfolio loss lPF for this event. Finally, the loss of an
entire trial, lT is computed by summing the portfolio losses
for all events in the trial. Depending on the level of detail of
the final analysis, the YLT is populated with the loss values
at different levels of aggregation. At one extreme, if only the
loss distribution for the entire portfolio is of interest, there is
one loss value per trial. At the other extreme, if the filtering of
losses based on some combination of region, peril, LOB, etc.
is required, the YLT contains one loss value for each 〈trial,
program, layer, ELT, event〉 tuple.

In order to answer ad hoc aggregate queries efficiently,
our QuPARA framework provides a parallel implementation of
such queries using the MapReduce programming model. The
computation of the YLT is the responsibility of the mapper,
while the computation of the final loss distribution(s) is done
by the reducer. Next we describe the components of QuPARA.



Fig. 2. The Query-Driven Portfolio Aggregate Risk Analysis (QuPARA) Framework

A. Components

Figure 2 visualizes the design of QuPARA. The framework
is split into a front-end offering a query interface to the user,
and a back-end consisting of a distributed file system and a
query engine that executes the query using MapReduce. As
already stated, the user poses a query to the query interface
using an SQL-like syntax and does not need to have any
knowledge of the implementation of the back-end.

The query interface offers a web-based portal through
which the user can issue ad hoc queries in an SQL-like syntax.
The query is then parsed and passed to the query engine.

The distributed file system, implemented using Hadoop’s
HDFS, stores the raw portfolio data, as well as the YET in
tabular form.

The query engine employs the MapReduce framework

to evaluate the query using a single round consisting of a
map/combine step and a reduce step. During the map step,
the engine uses one mapper per trial in the YET, in order to
construct a YLT from the YET, equivalent to the sequential
construction of the YLT from the YET using Algorithm 1.
The combiner and reducer collaborate to aggregate the loss
information in the YLT into the final loss distribution for
the query. There is one combiner per mapper. The combiner
pre-aggregates the loss information produced by this mapper,
in order to reduce the amount of data to be sent across
the network to the reducer(s) during the shuffle step. The
reducer(s) then carry out the final aggregation. In most queries,
which require only a single loss distribution as output, there is
a single reducer. Multi-marginal analysis is an example where
multiple loss distributions are to be computed, one per subset
of the potential contracts to be added to the portfolio. In this
case, we have one reducer for each such subset, and each



reducer produces the loss distribution for its corresponding
subset of contracts.

Each mapper retrieves the set of ELTs required for the
query from the distributed file system using a layer filter and
an ELT filter. Specifically, the query may specify a subset of
the layers in the portfolio to be the subject of the analysis.
The layer filter retrieves the identifiers of the ELTs contained
in these layers from the layer table. If the query specifies, for
example, that the analysis should be restricted to a particular
type of peril, the ELT filter then extracts from this set of
ELTs the subset of ELTs corresponding to the specified type
of peril. Given this set of ELT identifiers, the mapper retrieves
the actual ELTs and, in memory, constructs a combined ELT
associating a loss with each 〈event, ELT〉 pair. It then iterates
over the sequence of events in its trial, looks up the ELTs
recording non-zero losses for each event, and generates the
corresponding 〈trial, event, ELT, loss〉 tuple in the YLT, taking
each ELT’s financial terms into account.

The aggregation to be done by the combiner depends on
the query. In the simplest case, a single loss distribution for
the selected set of layers and ELTs is to be computed. In
this case, the combiner sums the loss values in the YLT
output by the mapper and sends this aggregate value to the
reducer. A more complicated example is the computation of
a weekly loss distribution. In this case, the combiner would
aggregate the losses corresponding to the events in each week
and send each aggregate to a different reducer. Each reducer
is then responsible for computing the loss distribution for one
particular week.

A reducer, finally, receives one loss value per trial. It sorts
these loss values in increasing order and uses this sorted list
to generate a loss distribution.

The following is a more detailed description of the mapper,
combiner, and reducer used to implement parallel aggregate
risk analysis in MapReduce.

1) Mapper: The mapper, shown in Algorithm 2, takes as
input an entire trial and the list of its events, represented as
a pair 〈T,E := {E1, E2, . . . , Em}〉. Algorithm 2 does not
show the construction of the combined ELT (CELT) and layer
list (LLT) performed by the mapper before carrying out the
steps in lines 1–9. The loss estimate of an event in a portfolio
is computed by scanning through every layer L in the LLT,
retrieving and summing the loss estimates for all ELTs covered
by this layer, and finally applying the layer’s financial terms.

2) Combiner: The combiner, shown in Algorithm 3, re-
ceives as input the list of triples 〈T , Ei, lPF 〉 generated by
a single mapper, that is, the list of loss values for the events
in one specific trial. The combiner groups these loss values
according to user-specified grouping criteria and outputs one
aggregate loss value per group.

3) Reducer: The reducer, shown in Algorithm 4, receives
as input the loss values for one specific group and for all trials
in the YET. The reducer then aggregates these loss values into
the loss statistic requested by the user. For example, to generate
an exceedance probability curve, the reducer sorts the received
loss values in increasing order and, for each loss value v in a
user-specified set of loss values, reports the percentage of trials

Algorithm 2: Mapper in parallel aggregate risk analysis
Input: 〈T,E := {E1, E2, · · · , Em}〉, where m is the

number of events in a trial
Output: A list of entries 〈T,Ei, lPF 〉 of the YLT

1 for each event, Ei in E do
2 Look up Ei in the CELT and find corresponding

losses, lEi = {l1Ei
, l2Ei

, · · · , lnEi
}, where ELT1, ELT2,

. . . , ELTn are the ELTS in the CELT
3 for each layer, L, in the LLT do
4 for each ELT ELTj covered by L do
5 Lookup ljEi

in lEi

6 lL ← lL + ljEi

7 Apply L’s financial terms to lL
8 lPF ← lPF + lL

9 Emit(〈T , Ei, lPF 〉)

Algorithm 3: Combiner in parallel aggregate risk anal-
ysis

Input: A list of YLT entries 〈T , Ei, lPF 〉 for the
events in a given trial T .

Output: A list of aggregate YLT entries 〈Gi, T , lG〉
with key Gi for the event groups in trial T

1 Join input tuples with event catalogue to annotate
events with their attributes (region, peril, etc.)

2 Group events in the input list by event features
according to the user’s query

3 for each group Gi do
4 lGi

← sum of the loss values associated with the
events in Gi in trial T

5 Emit(〈T , Gi, LG〉)

with a loss value greater than v as the probability of incurring
a loss higher than v.

Algorithm 4: Reducer in parallel aggregate risk analysis
Input: A list of loss tuples 〈Gi, T , lPF 〉 for an event

group Gi.
Output: Loss statistics for event group Gi based on

user’s query

1 Based on user query, generate:
(i) Group loss distribution, or
(ii) Group loss statistics, or
(iii) Group value-at-risk (VaR) and/or Tail value-at-risk
(TVaR), or
(iv) Exceedance probability curves

B. Data Organization

The data used by QuPARA is stored in a number of tables:

• The year event table YET contains tuples 〈trial_ID,
event_ID, time_Index, z_PE〉. trial_ID is a
unique identifier associated with each of the one million
trials in the simulation. event_ID is a unique identi-
fier associated with each event in the event catalogue.



time_Index determines the position of the occurrence
of the event in the sequence of events in the trial. z_PE
is a random number specific to the program and event oc-
currence. Each event occurrence across different programs
has a different associated random number.
• The layer table LT contains tuples 〈layer_ID, cob,
lob, tob, elt_IDs〉. layer_ID is a unique iden-
tifier associated with each layer in the portfolio. cob is
an industry classification according to perils insured and
the related exposure and groups homogeneous risks. lob
defines a set of one or more related products or services
where a business generates revenue. tob describes how
reinsurance coverage and premium payments are calcu-
lated. elt_IDs is a list of event loss table IDs that are
covered by the layer.
• The layer list table LLT contains tuples 〈layer_ID,
occ_Ret, occ_Lim, agg_Ret, agg_Lim〉. Each
entry is a simplified representation of the layer identified
by layer_ID. occ_Ret is the occurrence retention or
deductible of the insured for an individual occurrence
loss. occ_Lim is the occurrence limit or coverage the
insurer will pay for occurrence losses in excess of the
occurrence retention. agg_Ret is the aggregate retention
or deductible of the insured for an annual cumulative loss.
agg_Lim is the aggregate limit or coverage the insurer
will pay for annual cumulative losses in excess of the
aggregate retention.
• The event loss table pool ELTP contains tuples 〈elt_ID,
region, peril〉. Each such entry associates a particu-
lar type of peril and a particular region with the ELT with
ID elt_ID.
• The extended event loss table EELT contains tuples
〈event_ID, z_E, mean_Loss, sigma_I,
sigma_C, max_Loss〉. event_ID is the unique
identifier of an event in the event catalogue. z_E is
a random number specific to the event occurrence.
Event occurrences across different programs have the
same random number. mean_Loss denotes the mean
loss incurred if the event occurs. max_Loss is the
maximum expected loss incurred if the event occurs.
sigma_I represents the variance of the loss distribution
for this event. sigma_C represents the error of the
event-occurrence dependencies.
• The combined event loss table CELT is not stored on

disk but is constructed by each mapper in memory from
the extended event loss tables corresponding to the user’s
query. It associates with each event ID event_ID a list
of tuples 〈elt_ID, z_E, mean_Loss, sigma_I,
sigma_C, max_Loss〉, which is the loss information
for event event_ID stored in the extended ELT elt_ID.
• The year event loss table YELT is an intermediate ta-

ble produced by the mapper for consumption by the
combiner. It contains tuples 〈trial_ID, event_ID,
time_Index, estimated_Loss〉.
• The event catalogue ECT contains tuples 〈event_ID,
region, peril〉 associating a region and a type of peril
with each event.
• The year region peril loss table YRPLT contains tu-

ples 〈trial_ID, time_Index, region, peril,
estimated_Loss〉, listing for each trial the estimated
loss at a given time, in a given region, and due to a
particular type of peril. This is yet another intermediate

table, which is produced by the combiner for consumption
by the reducer.

C. Data Filters

QuPARA incorporates three types of data filters that allow
the user to focus their queries on specific geographic regions,
types of peril, etc. These filters select the appropriate entries
from the data tables they operate on, for further processing my
the mapper, combiner, and reducer.

• The layer filter extracts the set of layers from the layer
table LT and passes this list of layers to the mapper as the
“portfolio” to be analyzed by the query. The list of selected
layers is also passed to the ELT filter for selection of the
relevant ELTs.
• The ELT filter is used to select, from the ELT pool ELTP,

the set of ELTs required by the layer filter and for building
the combined ELT CELT.
• The event filter selects the features of events from the

event catalogue ECT to provide the grouping features to
the combiner.

IV. AN EXAMPLE QUERY

An example of an ad hoc request on QuPARA is to generate
a report on seasonal loss value-at-risk (VaR) with confidence
level of 99% due to hurricanes and floods that affects all com-
mercial properties in different locations in Florida. The user
poses the query through the query interface, which translates
the query into a set of five SQL-like queries to be processed
by the query engine:

Q1: The first part of processing any user query is the query
to be processed by the layer filter. In this case, we are
interested in all layers covering commercial properties,
which translates into the following SQL query:
SELECT * FROM LT
WHERE lob IN commercial

Q2: The second query is processed by the ELT filter to extract
the ELTs relevant for the analysis. In this case, we are
interested in all ELTs covered by layers returned by
query Q1 and which cover Florida (FL) as the region
and hurricanes (HU) and floods (FLD) as perils:
SELECT elt_ID FROM ELTP
WHERE elt_ID IN Q1
AND region IN FL
AND peril IN HU, FLD

Q3: This query is provided to the event filter for retrieving
event features required for grouping estimated losses in
the YELT.
SELECT event_ID AND region FROM YELT

Q4: This query is provided to the combiner for grouping all
events in a trial based on their order of occurrence. For
example, if there are 100 events equally distributed in a
year and need to be grouped based on the four seasons
in a year, then the estimated loss for each season is the
sum of 25 events that occur in that season.
SELECT trial_ID,
SEASON_SUM(estimated_Loss)
FROM YELT
GROUP BY time_Index



Q5: This query is provided to the reducer to define the final
output of the user request. The seasonal loss Value-at-Risk
(VaR) with 99% confidence level is estimated.

SELECT VaR IN 0.01 FROM YRPLT

V. IMPLEMENTATION

For our implementation of QuPARA, we used Apache
Hadoop, an open-source software framework that implements
the MapReduce programming model [9], [10], [18]. We chose
Hadoop because other available frameworks [20], [21] require
the use of additional interfaces, commercial or web-based, for
deploying an application.

A number of interfaces provided by Hadoop, such as the
InputFormat and the OutputFormat are implemented as
classes. The Hadoop framework works in the following way
for a MapReduce round. The data files are stored on the
Hadoop Distributed File System (HDFS) [19] and are loaded
by the mapper. Hadoop provides an InputFormat interface,
which specifies how the input data is to be split for processing
by the mapper. HDFS provides an additional functionality,
called distributed cache, for distributing small data files that
are shared by the nodes of the cluster. The distributed cache
provides local access to the shared data. The Mapper interface
receives the partitioned data and emits intermediate key-value
pairs. The Partitioner interface receives the intermediate
key-value pairs and controls the partitioning of these keys for
the Reducer interface. Then the Reducer interface receives
the partitioned intermediate key-value pairs and generates the
final output of this MapReduce round. The output is received
by the OutputFormat interface and provides it back to
HDFS.

The input data for a MapReduce round in QuPARA is
the year event table YET, the event loss table pool ELTP,
the list of layers LT, and the event catalogue ECT, which are
stored on HDFS. The master node executes Algorithm 5 and
requires access to the ELT pool and the portfolio before the
MapReduce round. Firstly, the master node uses the portfolio
to decompose the aggregate analysis job into a set of sub-jobs
{J1, · · · , Jx} as shown in line 1, each covering 200 layers.
This partition into sub-jobs was chose to ensure a balance
between Input/Output cost and the overhead for (sequentially)
constructing the combined ELT in each mapper; more sub-jobs
means reading the YET more often, whereas fewer and larger
jobs increase the overhead of the sequential combined ELT
construction. The layers and the corresponding ELTs required
by each sub-job are then submitted to the Hadoop job scheduler
in lines 2–6. The MapReduce round is illustrated in Figure 3.

The InputFormat interface splits the YET based on
the number of mappers specified for the MapReduce round.
By default, Hadoop splits large files based on HDFS block
size, but in this paper, the InputFormat is redefined to
split files based on the number of mappers. The mappers are
configured so that they receive all the ELTs covered by the
entire portfolio via the distributed cache. Each mapper then
constructs its own copy of the combined ELT form the ELTs
in the distributed cache. Using a combined ELT speeds up
the lookup of events in the relevant ELTs in the subsequent
processing of the events in the YET. If individual ELTs were
employed, then one lookup would be required for fetching the

Fig. 3. Apache Hadoop for MapReduce in the QuPARA Framework

Algorithm 5: Algorithm for master node in aggregate
risk analysis

Input: ELT pool, portfolio

1 Split the portfolio into jobs J1, · · · , Jx
2 for each Job Ji do
3 Distribute its layers to nodes via the distributed

cache
4 for each layer Lj in job Ji do
5 Distribute the ELTs covered by Lj to nodes via

the distributed cache
6 Submit Ji to Hadoop job scheduler

loss value of an event from each ELT. Using a combined ELT,
only a single lookup is required. The mapper now implements
Algorithm 2 to compute the loss information for all events in
its assigned portion of the YET.

The combiner implements Algorithm 3 to group the event-
loss pairs received from the mapper and emits the group-loss
pairs to the partitioner. The event catalogue is contained in the
distributed cache of the combiner and is used by the combiner
to implement the grouping of events. The Combiner delivers
the grouped loss pairs to the partitioner. The partitioner ensures



that all the loss pairs with the same group key are delivered
to the same reducer.

The reducer implements Algorithm 4 to collect the sorted
group-loss pairs and produces year region peril loss table
YRPLT. Based on the query, the OutputFormat generates
reports which are then saved to the HDFS.

The layer filter, ELT filter, and event filter, described
earlier, are implemented using Apache Hive [14], which is built
on top of the Hadoop Distributed File System and supports
data summarization and ad hoc queries using an SQL-like
language.

VI. PERFORMANCE EVALUATION

In this section, we discuss our experimental setup for
evaluating the performance of QuPARA and the results we
obtained.

A. Platform

We evaluated QuPARA on the Glooscap cluster of the
Atlantic Computational Excellence Network (ACEnet). We
used 16 nodes of of the cluster, each of which was an SGI
C2112-4G3 with four quad-core AMD Opteron 8384 (2.7
GHz) processors and 64 GB RAM per node. The nodes were
connected via Gigabit Ethernet. The operating system on each
node was Red Hat Enterprise Linux 4.8. The global storage
capacity of the cluster was 306 TB of Sun SAM-QFS, a
hierarchical storage system using RAID 5. Each node had
500GB of local storage. The Java Virtual Machine (JVM)
version was 1.6. The Apache Hadoop version was 1.0.4. The
Apache Hive version was 0.10.0.

B. Results

Figure 4 shows the total time taken in seconds for per-
forming aggregate risk analysis on our experimental platform.
Up to 16 nodes were used in the experiment. Each node
processed one job with 200 layers, each covering 5 unique
ELTs. Thus, up to 16,000 ELTs were considered. The YET
in our experiments contained 1,000,000 trials, each consisting
of 1,000 events. The graph shows a very slow increase in
the total running time, in spite of the constant amount of
computation to be performed by each node (because every
node processes the same number of layers, ELTs, and YET
entries). The gradual increase in the running time is due to
the increase in the setup time required by the Hadoop job
scheduler and the increase in network traffic (reflected in an
increase in the time taken by the reducer). Nevertheless, this
scheduling and network traffic overhead amounted to only
1.67%–7.13% of the total computation time. Overall, this
experiment demonstrates that, if the hardware scales with the
input size, QuPARA’s processing time of a query remains
nearly constant.

Figure 5 shows the increase in running time when the
number of layers is increased from 200 to 3200 while keeping
the number of nodes fixed. Once again, each layer covered
5 ELTs, the YET contains 1,000,000 trials, each consisting
of 1,000 events. 16 nodes were used in this experiment. As
expected, the running time of QuPARA increases linearly with
the input size as we increase the number of layers. With the

Fig. 4. Running time of QuPARA on an increasing number of nodes with a
fixed number of layers per job and one job per node

Fig. 5. Running time of QuPARA on an increasing number of layers with a
fixed number of nodes

increase in the number of layers, the time taken for setup,
I/O time, and the time for all numerical computations scale
in a linear fashion. The time taken for building the combined
ELT, by the reducer, and for clean up are a constant. For 200
Layers, only 30% of the time is taken for computations, and
the remaining time accounts for system and I/O overheads. For
3200 layers, on the other hand, more than 80% of the time is
spent on computations.

Figure 6 shows the decrease in running time when the
number of nodes is increased but the input size is kept fixed at
3,200 layers divided into 16 jobs of 200 layers. Figure 7 shows
the relative speed-up achieved in this experiment, that is, the
ratio between the running time achieved on a single node and
the running time achieved on up to 16 nodes. Up to 4 nodes, the
speed-up is almost linear. Beyond 4 nodes, the speed-up starts
to decrease. This is not due to an increase in overhead, but
since the computation times have significantly reduced after 4
nodes, the overheads start to take away a greater percent of
the total time.

In summary, our experiments show that QuPARA is capa-
ble of performing ad-hoc aggregate risk analysis queries on
industry-size data sets in a matter of minutes. Thus, it is a
viable tool for analysts to carry out such analyses interactively.



Fig. 6. Running time of QuPARA on a fixed input size using between 1 and
16 nodes

Fig. 7. Speed-up achieved on the QuPARA framework

VII. CONCLUSIONS

Typical production systems performing aggregate risk anal-
ysis used in the industry are efficient for generating a small
set of key portfolio metrics such as PML or TVAR required
by rating agencies and regulatory bodies and essential for
decision making. However, production systems can neither
accommodate nor solve ad hoc queries that provide a better
view of the multiple dimensions of risk that can impact a
portfolio.

The research presented in this paper proposes a framework
for portfolio risk analysis capable of expressing and solving a
variety of ad hoc catastrophic risk queries, based on MapRe-
duce, and provided a prototype implementation, QuPARA,
using the Apache Hadoop implementation of the MapReduce
programming model and Apache Hive for expressing ad hoc
queries in an SQL-like language. Our experiments demonstrate
the feasibility of answering ad hoc queries on industry-size
data sets efficiently using QuPARA. As an example, a portfolio
analysis on 3,200 layers and using a YET with 1,000,000 trials
and 1,000 events per trial took less than 20 minutes.

Future work will aim to develop a distributed system by
providing an online interface to QuPARA which can support
multiple user queries.
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