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Abstract—At the heart of the analytical pipeline of a modern
quantitative insurance/reinsurance company is a stochastic sim-
ulation technique for portfolio risk analysis and pricing process
referred to as Aggregate Analysis. Support for the computation
of risk measures including Probable Maximum Loss (PML) and
the Tail Value at Risk (TVAR) for a variety of types of complex
property catastrophe insurance contracts including Cat eXcess
of Loss (XL), or Per-Occurrence XL, and Aggregate XL, and
contracts that combine these measures is obtained in Aggregate
Analysis.

In this paper, we explore parallel methods for aggregate
risk analysis. A parallel aggregate risk analysis algorithm and
an engine based on the algorithm is proposed. This engine is
implemented in C and OpenMP for multi-core CPUs and in C
and CUDA for many-core GPUs. Performance analysis of the
algorithm indicates that GPUs offer an alternative HPC solution
for aggregate risk analysis that is cost effective. The optimised
algorithm on the GPU performs a 1 million trial aggregate
simulation with 1000 catastrophic events per trial on a typical
exposure set and contract structure in just over 20 seconds which
is approximately 15x times faster than the sequential counterpart.
This can sufficiently support the real-time pricing scenario in
which an underwriter analyses different contractual terms and
pricing while discussing a deal with a client over the phone.

Index Terms—GPU computing; Aggregate Risk Analysis; Risk
Management; Insurance and Reinsurance Analytics; Parallel
Risk Engine; Monte Carlo Simulation

I. INTRODUCTION

Risk analytics, the model based computational analysis of
risk [1], has become an integral part of business processes
in domains ranging from financial services to engineering.
Simulation based risk analytics has been applied to areas as
diverse as analysis of catastrophic events [2], [3], financial
instruments [4], structures [5], chemicals [6], diseases [7],
power systems [8], nuclear power plants [9], radioactive waste
disposal [10] and terrorism [11]. In many of these areas models
must both consume huge data sets and perform hundreds
of thousands or even millions of simulations making the
application of parallel computing techniques very attractive.
For financial analysis problems, especially those concerned
with the pricing of assets, parallelism and high-performance
computing has been applied to very good effect (for example
[12], [13], [14], [15] and [16]). However, in the insurance and
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reinsurance settings, where data sizes are arguably as large or
larger, relatively fewer HPC based methods have been reported
on.

In the insurance and reinsurance settings companies hold
portfolios of contracts that cover risks associated with catas-
trophic events such as earthquakes, hurricanes and floods. In
order to have a marketplace for such risk it is critical to be able
to efficiently quantify individual risks and portfolios of risks.
The analytical pipeline of the modern quantitative insurance or
reinsurance company typically consists of three major stages:
(i) risk assessment, (ii) portfolio risk management and pricing,
and (iii) enterprise risk management.

In the first stage, catastrophe models [17] are used to provide
scientifically credible loss estimates for individual risks by
taking two inputs. Firstly, stochastic event catalogs which are a
mathematical representation of the natural occurrence patterns
and characteristics of catastrophe perils such as hurricanes,
tornadoes, severe winter storms or earthquakes. Secondly,
exposure databases that describe thousands or millions of
buildings to be analysed, their construction types, location,
value, use, and coverage. Each event-exposure pair is then
analysed by a risk model that quantifies the hazard intensity
at the exposure site, the vulnerability of the building and
resulting damage level, and the resultant expected loss, given
the customer’s financial terms. The output of a catastrophe
model is an Event Loss Table (ELT) which specifies the
probability of occurrence and the expected loss for every event
in the catalog. However, an ELT does not capture which events
are likely to occur in a contractual year, in which order, and
how they will interact with complex treaty terms to produce
an aggregated loss.

Reinsurers may have thousands or tens of thousands of
contracts and must analyse the risk associated with their whole
portfolio. These contracts often have an ‘eXcess of Loss’ (XL)
structure and can take many forms, including (i) Cat XL or
Per-Occurrence XL contracts providing coverage for single
event occurrences up to a specified limit with an optional
retention by the insured and (ii) Aggregate XL contracts (also
called stop-loss contracts) providing coverage for multiple
event occurrences up to a specified aggregate limit and with
an optional retention by the insured. In addition, combinations
of such contract terms providing both Per-Occurrence and



Aggregate features are common.
In the second stage of the analysis pipeline, portfolio risk

management and pricing of portfolios of contracts necessitates
a further level of stochastic simulation, called aggregate anal-
ysis [18], [19], [20], [21], [22], [23] (see Figure 1). Aggregate
analysis is a form of Monte Carlo simulation in which each
simulation trial represents an alternative view of which events
occur and in which order they occur within a predetermined
period, i.e., a contractual year. In order to provide actuaries and
decision makers with a consistent lens through which to view
results, rather than using random values generated on-the-fly,
a pre-simulated Year Event Table (YET) containing between
several thousand and millions of alternative views of a single
contractual year is used. The output of aggregate analysis is a
Year Loss Table (YLT). From a YLT, a reinsurer can derive im-
portant portfolio risk metrics such as the Probable Maximum
Loss (PML) and the Tail Value at Risk (TVAR) which are used
for both internal risk management and reporting to regulators
and rating agencies. Furthermore, these metrics then flow into
the final stage in the risk analysis pipeline, namely Enterprise
Risk Management, where liability, asset, and other forms of
risks are combined and correlated to generate an enterprise
wide view of risk.

In this paper, we explore parallel methods for aggregate
risk analysis. A parallel aggregate risk analysis algorithm
and an engine based on the algorithm is proposed. This
engine is implemented in C and OpenMP for multi-core CPU
platforms and in C and CUDA for many-core GPU platforms.
Experimental studies are pursued on both the platforms.

GPUs offer an alternative machine architecture in three
ways. GPUs provide, firstly, lots of cycles for independent
parallelism, secondly, fast memory access under the right
circumstances, and finally, fast mathematical computation at
relatively low costs. A wide range of applications in the
scientific and financial domains, for example those presented
in [24], [25], [26], [27], [28] and [29], benefit from the merits
of the GPU architecture. Our current aggregate analysis engine
takes full advantage of the high levels of parallelism, some
advantage of the fast shared memory access, but relatively little
advantage of the GPUs fast numerical performance. Overall,
our experiments suggest that GPUs offer a cost effective HPC
architecture for aggregate risk analysis.

The remainder of this paper is organised as follows. Section
II describes the mathematical notations of the aggregate risk
analysis algorithm. Section III describes the experimental
evaluation of the implementation of the algorithm on the
CPU and GPU and factors affecting the performance of the
algorithm. Section IV concludes the paper and summarises the
performance results.

II. AGGREGATE RISK ANALYSIS

The Aggregate Risk Engine, referred to as ARE (see Figure
1) is considered in this section. The description of ARE is
separated out as the inputs to the engine, the basic sequential
algorithm for aggregate analysis and the output of the engine.

Fig. 1: The inputs and output of the Aggregate Risk Engine
(ARE)

A. Inputs

Inputs to the Aggregate Risk Engine are three main com-
ponents:

1) The Year Event Table (YET), denoted as Y ET , is a
database of pre-simulated occurrences of events from a
catalog of stochastic events. Each record in a YET called
a “trial”, denoted as Ti, represents a possible sequence
of event occurrences for any given year. The sequence of
events is defined by an ordered set of tuples containing
the ID of an event and the time-stamp of its occurrence
in that trial Ti = {(Ei,1, ti,1), . . . , (Ei,k, ti,k)}. The set
is ordered by ascending time-stamp values. A typical
YET may comprise thousands to millions of trials, and
each trial may have approximately between 800 to 1500
‘event time-stamp’ pairs, based on a global event catalog
covering multiple perils. The YET can be represented as:

Y ET = {Ti = {(Ei,1, ti,1), . . . , (Ei,k, ti,k)}}

where i = 1, 2, . . . and k = 1, 2, . . . , 800− 1500.
2) Event Loss Tables, denoted as ELT , represent collections

of specific events and their corresponding losses with
respect to an exposure set. An event may be part of
multiple ELTs and associated with a different loss in
each ELT. For example, one ELT may contain losses
derived from one exposure set while another ELT may
contain the same events but different losses derived from
a different exposure set. Each ELT is characterised by
its own metadata including information about currency
exchange rates and terms that are applied at the level
of each individual event loss. Each record in an ELT is
denoted as event loss ELi = {Ei, li}, and the financial
terms associated with the ELT are represented as a tuple
I = (I1, I2, . . . ). A typical aggregate analysis may
comprise 10,000 ELTs, each containing 10,000-30,000
event losses with exceptions even up to 2,000,000 event
losses. The ELTs can be represented as:

ELT =

{
ELi = {Ei, li},
I = (I1, I2, . . . )

}
with i = 1, 2, . . . , 10, 000− 30, 000.

3) Layers, denoted as L, cover a collection of ELTs
under a set of layer terms. A single layer Li is
composed of two attributes. Firstly, the set of ELTs
E = {ELT1, ELT2, . . . , ELTj}, and secondly, the Layer
Terms, denoted as T = (TOccR, TOccL, TAggR, TAggL).



A typical layer covers approximately 3 to 30 individual
ELTs. The Layer can be represented as:

L =

{
E = {ELT1, ELT2, . . . , ELTj},
T = (TOccR, TOccL, TAggR, TAggL)

}
with j = 1, 2, . . . , 3− 30.

B. Algorithm Sketch

The principal sequential algorithm for aggregate analysis
utilised in ARE consists of two stages: 1) a preprocessing
stage in which data is loaded into local memory, and 2) the
analysis stage performing the simulation and producing the
resulting YLT output. The algorithm for the analysis stage is
as follows:

Basic Algorithm for Aggregate Risk Analysis
1 for all a ∈ L
2 for all b ∈ Y ET
3 for all c ∈ (EL ∈ a)
4 for all d ∈ (Et ∈ b)
5 xd ← E ∈ d in El ∈ f ,

where f ∈ ELT and (EL ∈ f) = c
6 for all d ∈ (Et ∈ b)
7 lxd

← Apply Financial Terms(I)
8 for all d ∈ (Et ∈ b)
9 loxd

+ = lxd

10 for all d ∈ (Et ∈ b)
11 loxd

= min(max(loxd
− TOccR, 0), TOccL)

12 for all d ∈ (Et ∈ b)

13 loxd
=

d∑
i=1

loxi

14 for all d ∈ (Et ∈ b)
15 loxd

= min(max(loxd
−TAggR, 0), TAggL)

16 for all d ∈ (Et ∈ b)
17 loxd

= loxd
− loxd−1

18 for all d ∈ (Et ∈ b)
19 lr+ = loxd

In the preprocessing stage the input data, Y ET , ELT and
L, is loaded into memory.

The aggregate analysis stage is composed of four steps
which are all executed for each Layer and each trial in the
YET. In the first step (lines 3-5), for each event of a trial its
corresponding event loss in the set of ELTs associated with
the Layer is determined.

In the second step (lines 6 and 7), a set of financial terms is
applied to each event loss pair extracted from an ELT. In other
words, contractual financial terms to the benefit of the layer
are applied in this step. For this the losses for a specific event’s
net of financial terms I are accumulated across all ELTs into
a single event loss (lines 8 and 9).

In the third step (lines 10-13), the event loss for each event
occurrence in the trial, combined across all ELTs associated
with the layer, is subject to occurrence terms (TOccR, and

TOccL). Occurrence terms are part of the layer terms (refer
Figure I) and applicable to individual event occurrences inde-
pendent of any other occurrences in the trial. The occurrence
terms capture the specific contractual properties of Cat XL
and Per-Occurrence XL treaties as they apply to individual
event occurrences only. The event losses net of occurrence
terms are then accumulated into a single aggregate loss for
the given trial.

In the fourth and final step (lines 14-19), the aggregate
terms are applied to the trial’s aggregate loss for a layer.
Unlike occurrence terms, aggregate terms are applied to the
cumulative sum of occurrence losses within a trial and thus
the result depends on the sequence of prior events in the trial.
This behaviour captures the properties of common Stop-Loss
or Aggregate XL contracts. The aggregate loss net of the
aggregate terms is referred to as the trial loss or the year loss
and stored in a Year Loss Table (YLT) as the result of the
aggregate analysis.

C. Output

The algorithm will provide an aggregate loss value for each
trial denoted as lr (line 19). Then filters (financial functions)
are applied on the aggregate loss values.

III. EXPERIMENTAL EVALUATION

The aims of the ARE are to handle large data, organise
input data in efficient data structures, and define the granularity
at which parallelism can be applied on the aggregate risk
analysis problem to achieve a significant speedup. This section
confirms through experimental evaluation of a number of
implementations of the aggregate risk analysis algorithm as to
how the aims of ARE are achieved. The hardware platforms
used in the experimental evaluation are firstly considered.

A. Platform

Two hardware platforms were used in the experimental
evaluation of the aggregate risk algorithm.

1) Platform 1 - A Multi-core CPU: The multi-core CPU
employed in this evaluation was a 3.40 GHz quad-core Intel(R)
Core (TM) i7-2600 processor with 16.0 GB of RAM. The
processor had 256 KB L2 cache per core, 8MB L3 cache and
maximum memory bandwidth of 21 GB/sec. Both sequential
and parallel versions of the aggregate risk analysis algorithm
were implemented on this platform. The sequential version
was implemented in C++, while the parallel version was im-
plemented in C++ and OpenMP. Both versions were compiled
using the GNU Compiler Collection g++ 4.4 using the “-O3”
and “-m64” flags.

2) Platform 2 - A Many-Core GPU: A NVIDIA Tesla
C2075 GPU, consisting of 448 processor cores (organised
as 14 streaming multi-processors each with 32 symmetric
multi-processors) and a global memory of 5.375 GB was
employed in the GPU implementations of the aggregate risk
analysis algorithm. CUDA is employed for a basic GPU
implementation of the aggregate risk analysis algorithm and
an optimised implementation.



TABLE I: Layer Terms applicable to Aggregate Risk Analysis

Notation Terms Description
TOccR Occurrence Retention Retention or deductible of the insured for an individual occurrence loss
TOccL Occurrence Limit Limit or coverage the insurer will pay for occurrence losses in excess of the retention
TAggR Aggregate Retention Retention or deductible of the insured for an annual cumulative loss
TAggL Aggregate Limit Limit or coverage the insurer will pay for annual cumulative losses in excess of the aggregate retention

B. Implementation

Four variations of the Aggregate Risk Analysis algorithm
are presented in this section. They are (i) a sequential imple-
mentation, (ii) a parallel implementation using OpenMP for
multi-cores CPUs, (iii) a basic GPU implementation and (iv)
an optimised/“chunked” GPU implementation. In all imple-
mentations a single thread is employed per trial, Tid. The
key design decision from a performance perspective is the
selection of a data structure for representing Event Loss Tables
(ELTs). ELTs are essentially dictionaries consisting of key-
value pairs and the fundamental requirement is to support fast
random key lookup. The ELTs corresponding to a layer were
implemented as direct access tables. A direct access table is a
highly sparse representation of a ELT, one that provides very
fast lookup performance at the cost of high memory usage. For
example, consider an event catalog of 2 million events and a
ELT consisting of 20K events for which non-zero losses were
obtained. To represent the ELT using a direct access table, an
array of 2 million loss are generated in memory of which 20K
are non-zero loss values and the remaining 1.98 million events
are zero. So if a layer has 15 ELTs, then 15× 2 million = 30
million event-loss pairs are generated in memory.

A direct access table was employed in all implementations
over any alternate compact representation for the following
reasons. A search operation is required to find an event-
loss pair in a compact representation. If sequential search is
adopted, then O(n) memory accesses are required to find
an event-loss pair. Even if sorting is performed in a pre-
processing phase to facilitate a binary search, then O(log(n))
memory accesses are required to find an event-loss pair. If a
constant-time space-efficient hashing scheme, such as cuckoo
hashing [30] is adopted then only a constant number of mem-
ory accesses may be required but this comes at considerable
implementation and run-time performance complexity. This
overhead is particularly high on GPUs with their complex
memory hierarchies consisting of both global and shared
memories. Compact representations therefore place a very
high cost on the time taken for accessing an event-loss pair.
Essentially the aggregate analysis process is memory access
bound. For example, to perform aggregate analysis on a YET
of 1 million trials (each trial comprising 1000 events) and for a
layer covering 15 ELTs, there are 1000× 1 million ×15 = 15
billion events, which requiring random access to 15 billion
loss values. Direct access tables, although wasteful of memory
space, allow for the fewest memory accesses as each lookup in
an ELT requires only one memory access per search operation.

1) Basic Implementations: The data structures used for the
basic implementations are:

(i) A vector consisting of all Ei,k that contains approx-
imately 800M-1500M integer values requiring 3.2GB-
6GB memory.

(ii) A vector of 1M integer values indicating trial boundaries
to support the above vector requiring 4MB memory.

(iii) A structure consisting of all Eli that contains approx-
imately 100M-300M integer and double pairs requiring
1.2GB-3.6GB.

(iv) A vector to support the above vector by providing ELT
boundaries containing approximately 10K integer values
requiring 40KB.

(v) A number of smaller vectors for representing I and T .
In the basic implementation on the multi-core CPU platform

the entire data required for the algorithm is processed in
memory.

The GPU implementation of the basic algorithm uses the
GPU’s global memory to store all of the required data struc-
tures. Global memory on the GPU is large and reasonably
efficient (if you carefully manage the memory access patterns)
but considerably slower than much smaller shared and constant
memories available on each streaming multi-processor.

2) Optimised/Chunked Implementation: The optimised ver-
sion of the GPU algorithm endeavours to utilise shared and
constant memory as much as possible. The key concept
employed in the optimised algorithm is chunking. In this
context, chunking means to process a block of events of fixed
size (referred to as chunk size) for the efficient use of shared
memory.

In the optimised GPU implementation, all of the three major
steps (lines 3-19 in the basic algorithm, i.e., events in a trial
and both financial and layer terms computations) of the basic
algorithm are chunked. In addition, the financial terms, I,
and the layer terms, T , are stored in the streaming multi-
processor’s constant memory. In the basic implementation, lxd

and loxd
are represented in the global memory and therefore,

in each step while applying the financial and layer terms
the global memory has to be accessed and updated adding
considerable overhead. This overhead is minimised in the
optimised implementation.

C. Results

The results obtained from the basic and the optimised imple-
mentations are described in this section. The basic implemen-
tation results are presented for both multi-core CPU and many-
core GPU platforms, while the optimised implementation is
applicable only to the GPU.



(a) No. of Events in a Trial vs time
taken for executing

(b) No. of Trials vs time taken for
executing

(c) Average number of ELTs per Layer
vs time taken for executing

(d) Number of Layers vs time taken for
executing

Fig. 2: Performance of the basic aggregate analysis algorithm on a CPU using a single core

(a) No. of cores vs execution time (b) Total No. of threads vs execution time

Fig. 3: Graphs plotted for the parallel version of the basic aggregate analysis algorithm on a multi-core CPU

1) Results for Aggregate Analysis on CPUs: The size of
an aggregate analysis problem is determined by four key
parameters of the input, namely:

(i) Number of Events in a Trial, |Et|av , which affects
computations in line nos. 4-19 of the basic algorithm.

(ii) Number of Trials, |T |, which affects the loop in line no.
2 of the basic algorithm.

(iii) Average number of ELTs per Layer, |ELT |av , which
affects line no. 3 of the basic algorithm.

(iv) Number of Layers, |L|, which affects the loop in line no.
1 of the basic algorithm

Figure 2 shows the impact on running time of executing the
sequential version of the basic aggregate analysis algorithm on
a CPU using a single core when the number of the number
of events in a trial, number of trials, average number of ELTs
per layer and number of layers is increased. The range chosen
for each of the input parameters represents the range expected
to be observed in practice and is based on discussions with
industrial practitioners.

In Figure 2a the number of ELTs per Layer is varied from 3
to 15. The number of Layers are 1, the number of Trials are set
to 1 million and each Trial comprises 1000 events. In Figure
2b the number of Trials is varied from 200,000 to 1,000,000
with each trial comprising 1000 events and the experiment
is considered for one Layer and 15 ELTs. In Figure 2c the
number of Layers is varied from 1 to 5 and the experiment

is considered for 15 ELTs per Layer, 1 million trials and
each Trial comprises 1000 events. In Figure 2d the number
of Events in a Trial is varied from 800 to 1200 and the
experiments is performed for 1 Layer, 15 ELTs per Layer and
100,000 trials.

Asymptotic analysis of the aggregate analysis algorithm
suggests that performance should scale linearly in these pa-
rameters and this is indeed what is observed. In all the
remaining performance experiments the focus is on a large
fixed size input that is representative of the kind of problem
size observed in practice.

Figure 3 illustrates the performance of the basic aggregate
analysis engine on a multi-core CPU. In Figure 3a, a single
thread is run on each core and the number of cores is varied
from 1 to 8. Each thread performs aggregate analysis for
a single trial and threading is implemented by introducing
OpenMP directives into the C++ source. Limited speedup is
observed. For two cores we achieve a speedup of 1.5x, for four
cores the speedup is 2.2x, and for 8 cores it is only 2.6x. As
we increase the number of cores we do not equally increase
the bandwidth to memory which is the limiting factor. The
algorithm spends most of its time performing random access
reads into the ELT data structures. Since these accesses exhibit
no locality of reference they are not aided by the processors
cache hierarchy. A number of approaches were attempted,
including the chunking method described later for GPUs, but



Fig. 4: Graphs plotted for number of threads vs the time taken
for executing the parallel version of the Basic Algorithm on
many-core GPU

were not successful in achieving a high speedup on our multi-
core CPU. However a moderate reduction in absolute time by
running many threads on each core was achieved.

Figure 3b illustrates the performance of the basic aggregate
analysis engine when all 8 cores are used and each core is
allocated many threads. As the number of threads are increased
an improvement in the performance is noted. With 256 threads
per core (i.e. 2048 in total) the overall runtime drops from
135 seconds to 125 seconds. Beyond this point we observe
diminishing returns as illustrated in Figure 3b.

2) Results for the basic aggregate analysis algorithm on
GPU: In the GPU implementations, CUDA provides an ab-
straction over the streaming multi-processors, referred to as a
CUDA block. When implementing the basic aggregate analysis
algorithm on a GPU we need to select the number of threads
executed per CUDA block. For example, consider 1 million
threads are used to represent the simulation of 1 million trials
on the GPU, and 256 threads are executed on a streaming
multi-processor. There will be 1,000,000

256 ≈ 3906 blocks in
total which will have to be executed on 14 streaming multi-
processors. Each streaming multi-processor will therefore have
to execute 3906

14 ≈ 279 blocks. Since the threads on the
same streaming multi-processor share fixed size allocations
of shared and constant memory there is a real trade-off to be
made. If we have a smaller number of threads, each thread
can have a larger amount of shared and constant memory, but
with a small number of threads we have less opportunity to
hide the latency of accessing the global memory.

Figure 4 shows the time taken for executing the parallel
version of the basic implementation on the GPU when the
number of threads per CUDA block are varied between 128
and 640. At least 128 treads per block are required to effi-
ciently use the available hardware. An improved performance
is observed with 256 threads per block but beyond that point
the performance improvements diminish greatly.

3) Results for the optimised aggregate analysis algorithm
on GPU: The optimised or chunked version of the GPU

algorithm aims to utilise shared and constant memory as much
as possible by processing “chunks”, blocks of events of fixed
size (referred to as chunk size), to improve the utilisation of
the faster shared memories that exist on each streaming multi-
processor.

Figure 5a illustrates the performance of the optimised ag-
gregate analysis algorithm as the chunk size is increased. With
a chunk size of 4 the optimised algorithm has a significantly
reduced runtime from 38.47 seconds down to 22.72 seconds,
representing a 1.7x improvement. Interestingly, increasing the
chunk size does not improve the performance. The curve is
observed to be flat up to a chunk size of 12 and beyond that
the performance deteriorates rapidly as the shared memory
overflow is handled by the slow global memory.

Figure 5b illustrates the performance of the optimised
aggregate analysis algorithm as the number of threads is
increased. The number of threads range in multiples of 32
due to the WARP size, which corresponds to the number of
symmetric multi-processors in CUDA. With a chunk size of 4
the maximum number of threads that can be supported is 192.
As the number of threads are increased, there is a small gradual
improvement in performance, but the overall improvement is
not significant.

IV. DISCUSSION AND CONCLUSION

The performance results for the various algorithms de-
scribed in this paper are summarised in Figure 6. Each bar
in Figure 6a represents the total time taken for executing each
algorithm with 1 million trial, each trial consisting of 1000
events. In each case, the algorithm specific tuning parameters
(such as the number of threads) were set to the best value
identified during experimentation. The performance on the
Intel i7 multi-core hardware is disappointing both in terms
of absolute performance and speedup. It is not clear how to
improve performance or speedup as the bottleneck is memory-
bandwidth.

Figure 6b breaks down the total percentage of time taken
for the main phases of the algorithm, namely, (a) time for
fetching events from the memory, (b) time for look-up of
ELTs in the direct access table, (c) time for financial term
calculations and (d) time for layer term calculations. 78%
of the time is taken for accessing the ELT data structures
in memory. These accesses have been optimised by imple-
menting the data structure as a direct access table. Given
this bottleneck there does not appear to be much room for
significant algorithmic performance improvements. If selecting
alternative hardware is feasible, use of multi-core processors
with a higher memory bandwidth may improve speedup. The
current financial calculations can be implemented using basic
arithmetic operations. However, if the system is extended to
represent losses as a distribution (rather than a simple mean)
then the algorithm would likely benefit from use of a numerical
library for convolution.

The performance of the GPU implementations is quite
promising as they are significantly faster than on their multi-
core counterparts. The basic GPU method is 3.2x faster,



(a) Size of chunk vs time taken for executing (b) No. of threads per block vs time taken for executing

Fig. 5: Performance of the optimised aggregate analysis algorithm on GPU

(a) Total time taken for executing the algorithm (b) Percentage of time taken for fetching Events from memory, time for look-
up of ELTs in the direct access table, time for financial term calculations and
time for layer term calculations

Fig. 6: Summary of results of the Basic and Optimised Implementations

while the optimised version is 5.4x faster. In absolute terms
the optimised GPU algorithm can perform a 1 million trial
aggregate simulation on a typical contract in just over 20
seconds. This is sufficiently fast to support a real-time pric-
ing scenario in which an underwriter can evaluate different
contractual terms and pricing while discussing a deal with a
client over the phone. In many applications 50K trials may
be sufficient in which case sub one second response time can
be achieved. Aggregate analysis using 50K trials on complete
portfolios consisting of 5000 contracts can be completed in
around 24 hours which may be sufficiently fast to support
weekly portfolio updates performed to account for changes
such as currency fluctuations. If a complete portfolio analysis
is required on a 1M trial basis then a multi-GPU hardware
platform would likely be required.

To conclude, the research reported in this paper investigates

parallel methods for aggregate risk analysis which utilises
large input data, organise input data in efficient data struc-
tures, and define the granularity at which parallelism can be
applied on the aggregate risk analysis problem to achieve
a significant speedup. To this end, a parallel aggregate risk
analysis algorithm and an engine based on the algorithm is
proposed. The engine is implemented on both multi-core CPU
and GPU platforms on which experimental studies are pursued.
The results obtained on the GPU confirm the feasibility of
performing fast aggregate analysis using large data in real-
time on relatively low cost hardware compared to the costly
large-scale clusters that are currently being employed.
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