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Abstract

In this paper we study the potential perfor-
mance improvements for catastrophe modelling
systems that can be achieved through paral-
lelization on a Cell Processor. We studied
and parallelized a critical section of catastro-
phe modelling, the so called “inner loop”, and
implemented it on a Cell Processor running on
a regular Playstation 3 platform. The Cell Pro-
cessor is known to be a challenging environ-
ment for software development. In particular,
the small internal storage available at each SPE
of the Cell Processor is a considerable challenge
for catastrophe modelling because the catastro-
phe modelling algorithm requires frequent ac-
cesses to large lookup tables. Our parallel so-
lution is a combination of multiple techniques:
streaming data to the SPEs and parallelizing
inner loop computations, building caches on
the SPEs to store parts of the large catastrophe
modelling lookup tables, vectorizing the com-
putation on the SPEs, and double-buffering the
file I/O. On a (Playstation 3) Cell Processor
with six active SPEs and 4-way vectorization
on each SPE (implying a maximum theoretical
24x speedup), we were able to measure a sus-
tained 16x speedup for our parallel catastrophe
modelling code over a wide range of data sizes
for real life Japanese earthquake data.
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1 Introduction

Over the past three decades, catastrophe mod-
elling technology has become a vital tool for
quantifying, managing, and transferring risk
in the insurance industry. The first catastro-
phe models for the insurance markets were in-
troduced in the late 1980s, focusing on event-
specific probabilistic modelling to quantify risk
for individual locations and for portfolios of ag-
gregated risks. Today, catastrophe risk mod-
els are the standard for quantifying catastro-
phe risk in many regions and perils all over the
world. They are key elements of risk manage-
ment, as they enable insurers to examine accu-
mulations of risk, measure and identify worst-
case losses, assess relative risk across different
geographic areas, and measure the probability
of loss for property and lives. [4, 8, 5]

Natural catastrophe models are used to esti-
mate monetary risk based on vulnerabilities of
specific properties and their residents to per-
ils including hurricanes, earthquakes, severe
thunderstorms and winter storms. Catastrophe
models compute consequences for single events
and also compute a probabilistic loss distribu-
tion based on frequency estimates derived from
historical data. The initial use of these mod-
els was for the insurance industry and financial
markets to quantify risk to portfolios and to
manage such risk. Companies in diverse in-
dustries, as well as government organizations,
now use the models to estimate total national



Figure 1: Catastrophe Risk Modelling Proce-
dure.

risks. An outline of a catastrophe risk model
for natural hazards is shown in Figure 1. The
procedure starts with thorough accumulation,
study and modelling of historical natural haz-
ards in a region. The process then randomly
draws characteristics from a statistical study on
event characteristics and generates simulated
artificial events within the region with the same
probabilistic characteristics. For each of the
stochastically simulated events, local hazard in-
tensity is calculated at the site of a given asset.
Through statistical and engineering examina-
tion of building responses at times of catastro-
phes, a vulnerability model is developed. Us-
ing the local hazard intensity and vulnerabil-
ity model, the extent of physical and monetary
damage is calculated for each and every asset
in a risk portfolio. The monetary damage is
pushed through a financial model, leading to
the calculation of the financial losses.

Speed matters in catastrophe modelling sys-
tems because it defines how much work can be
produced in a given time budget. Speed im-
proves quality in that a fast catastrophe mod-
elling engine allows the designers of region-peril
models more cycles in a given window of time
to generate higher resolution results. More pre-
cisely, catastrophe modelling systems benefit
from increased modelling speed in the follow-
ing ways [2]. Improved speed allows running

the catastrophe simulation at a more detailed
level to better take advantage of available ex-
posure data. Improved speed allows incorpo-
rating better physical modelling and the latest
science to improve model accuracy. It allows to
increase model confidence by running multiple
scenarios in the same amount of time. Faster
turnaround of analysis due to improved run-
ning times can also have substantial business
advantages when multiple reinsurance compa-
nies are competing for a contract and time is
essential which is often the case. All of these
are potential benefits for the users of catastro-
phe models, but speed also has a role to play in
model development because it can significantly
shorten the calibration phase during model de-
velopment, which typically lasts anywhere from
6 to 12 months.

In this paper, we report on the results of a re-
search project that studied the question of how
much a catastrophe modelling system’s perfor-
mance can benefit from being parallelized and
executed on a Cell Processor. To our knowl-
edge, this is the first such study. We studied
and parallelized a critical section of catastro-
phe modelling, the so called “inner loop”, and
implemented it on a Cell Processor running on
a regular Playstation 3 platform. The large ag-
gregate computational power of the Cell Pro-
cessor is our main motivation for studying its
use to improve the performance of catastro-
phe modelling. However, the Cell Processor
is known to be a challenging environment for
software development. In particular, the small
internal storage available at each SPE of the
Cell Processor is a considerable challenge for
catastrophe modelling because the catastrophe
modelling algorithm requires frequent accesses
to large lookup tables. Our parallel implemen-
tation of the inner loop is a combination of mul-
tiple techniques: streaming data to the SPEs,
building caches on the SPEs to store parts of
the large catastrophe modelling lookup tables
for faster table lookup, vectorizing the compu-
tation on the SPEs, and double-buffering the
file I/O. On a Playstation 3 Cell Processor
with six active SPEs and 4-way vectorization
on each SPE (implying a maximum theoretical
24x speedup), we were able to measure a sus-
tained 16x speedup for our parallel code over a
wide range of data sizes for real life Japanese



earthquake data.
The remainder of this paper is organized as

follows. In the following Section 2 we discuss
some features of the Cell Processor that are
important for this project. Section 3 outlines
our parallel catastrophe modelling method for
the Cell Processor as well as some implemen-
tation details. Section 4 presents experimental
results showing the performance of our parallel
software and Section 5 concludes the paper.

2 The Cell Processor

The Cell Processor (also called “Cell BE” for
“Cell Broadband Engine Architecture”) is a
microprocessor architecture jointly developed
by Sony Computer Entertainment, Toshiba,
and IBM. The Cell Processor emphasizes ef-
ficiency/watt, prioritizes bandwidth over la-
tency, and favors peak computational through-
put over simplicity of program code. The vastly
superior computation speed of the Cell Proces-
sor (220 GFlops as compared to e.g. 48 GFlops
for a 3.0 GHz Intel Core2 Duo) is the main mo-
tivation for studying its use to improve the per-
formance of catastrophe modelling. The Cell
Processor is however widely regarded as a chal-
lenging environment for software development.
IBM provides a Linux-based Cell development
platform but software adoption remains a key
issue on whether Cell ultimately delivers on its
performance potential. The Cell BE consists
of four components (see Figure 2): the exter-
nal I/O interface, the main processor called the
Power Processing Element (PPE) (a two-way
simultaneous multithreaded Power compliant
core), eight fully-functional co-processors re-
ferred to as Synergistic Processing Elements,
or SPEs, and a high-bandwidth circular data
bus connecting the PPE, input/output and the
SPEs, referred to as the Element Interconnect
Bus or EIB. The SPEs do not support multi-
threading but can perform load, store, shuffle,
channel or branch operation in parallel with
a computation. They have a reduced SIMD-
RISC instruction set, a 128-entry 128 bit uni-
fied register file for all data types, and 4 way
SIMD vector capability. SPEs can complete
up to two instructions per cycle but have no
branch prediction logic in hardware. Instead,

Figure 2: Cell Processor Diagram. (Note: Only
six SPEs were available on our Playstation 3
platform).

they require software controlled branch predic-
tion through branch hint instructions. Each
SPE’s memory consists of a 256KB local store
with 6 cycle load latency. The application soft-
ware must manage data in and out for the lo-
cal store. Memory access is controlled by the
memory flow controller (MFC). An SPE can
use the DMA controller to move data to its own
or other SPEs local store and between its local
store and main memory as well as I/O inter-
faces. The Memory Flow Controller (MFC) on
each SPE is local to the SPE and connects it to
the EIB. The MFC runs at the same frequency
as the EIB and can begin to transfer the data
set of the next task at the same time as the
present one is still running (double buffering).
For our project, we used a Playstation 3 plat-
form with Yellow Dog Linux 6.1 installed plus
the RapidMind software development toolkit
[1]. Note that in the Playstation 3, one SPE
is disabled to increase manufacturing yield and
another is reserved by the native OS, leaving
six SPEs available for Linux applications.

3 Parallel CAT Modelling
on a Cell Processor

The input to the catastrophe (CAT) modelling
software is a catalogue of events (such as earth-
quakes) and a set of locations (such as commer-
cial and residential structures). The informa-
tion provided for each event includes the geo-
graphic coordinates of its bounding box along
with a grid of PGV (peak ground velocity) val-



Figure 3: Event-Location Matrix.

ues, essentially representing the magnitude of
the event in the area covered by each grid cell.
The locations are represented by point coor-
dinates and have associated values, insurance
policy information and structural properties.
The algorithm processes this data on an event-
by-event basis, by first performing a GIS query
to determine the affected locations then com-
puting the expected loss at each location by
the current event. The losses are then aggre-
gated for each event and reported as an event-
location matrix (Figure 3).

Estimating earthquake damage is an ex-
tremely complex task that requires a large
amount of scientific computing, most of which
is performed offline and stored in lookup ta-
bles. These tables are used to build probabil-
ity distributions from the input data, account-
ing for some of the uncertainty due to round-
ing and sampling. The distributions transform
a single value into a weighted series of values
which must be processed independently and
then summed, resulting in a high volume of
data that must be processed. Algorithm 1 pro-
vides a high level overview of this procedure for
a single event-location (EL) computation.

Algorithm 1 “Inner Loop” for a single event lo-
cation computation.

(1) Look up the distribution of peak ground ve-
locity (PGV) values for the event at this lo-
cation.

(2) FOR each point i in the PGV distribution
DO

(3) Look up corresponding distribution of
location vulnerability values.

(4) FOR each point j in the vulnerability
distribution DO

(5) Compute expected loss for (i, j)
and weight according to j.

(6) Add to total loss for i.

(7) END FOR

(8) Weight the total loss for i according to
i’s value in the in the PGV distribution
and add it to the total loss.

(9) END FOR

(10) return total loss.

— End of Algorithm —

3.1 Streaming Data to the Cell
SPEs

We used the RapidMind API [1] to first port
the existing sequential code to the Cell pro-
cessor’s PPE and then to make a series of op-
timizations in order to take full advantage of
the SPEs. The first optimization was to write
an SPE version of the code described in Algo-
rithm 1 that computes the expected loss from a
single Event-Location (EL). Since the program
is executed in SPMD mode, the chief challenge
was to limit control flow that would reduce per-
formance. This was accomplished by aggressive
loop unrolling and refactoring the code to ob-
viate nested if/else statements.

We then re-designed the PPE and SPE code
to stream the ELs from the PPE to the SPEs
16 ELs (approx 2KB) at a time, using double-
buffering. This number of ELs was chosen be-
cause it gave the best performance on our data,
in that the time it took to process 16 ELs
closely matched the time to pass them from
the PPE to SPE using a DMA transfer. The
expected loss values were streamed back to the
PPE in a similar manner. By carefully choos-
ing the double buffer size to overlap commu-
nication with processing, we were able to hide
most of the communication overhead.

3.2 Caching

A principal concern at the outset of this project
was the size of the SPE local store on the PS3,
which is 256k. Since the loss computations
make heavy use of precomputed (offline) look-
up tables through random access, and these ta-
bles are too large to fit in the local store, per-
formance may be lost when SPEs must wait to
obtain the data from main memory. The look-
up tables used for ground-up loss computation
and their sizes are listed in Table 1. Note that,
the local store of each SPE must store both,
code and data, and only a small portion of the



Table Name
Dimensions
Table Size
Ground Motion
PGV x Dist. Index x Event Type
25.9 KB
Ground Motion Dist.
PGV x Index Point x Event Type
25.9 KB
Vulnerability
Coverage Index x PGV
154.7 KB
Vulnerability Dist.
MDR Index x Dist. Index x
Coverage Type (4)
170.0 KB
Total Size: 376.5 KB

Table 1: Precomputed look-up tables required
for computation of ground-up loss. Full finan-
cial model requires several additional tables.
PGV = Peak Ground Velocity. MDR = Mean
Damage Ratio.

256k is available for the look-up tables. Since
the locations are spatially sorted, it is reason-
able to expect that the expected access patterns
into the tables will not be completely random.
Indeed, we observed that the ground veloci-
ties, coverage types and event types tend to be
similar between points that are geographically
close. We therefore use a caching mechanism
that keeps a small local cache of the recently ac-
cessed table entries on each SPE. As shown in
Section 4, this strategy proved to be extremely
effective in reducing the overhead for accessing
the look-up tables.

3.3 Vectorization on the Cell
SPEs

The above version of the Cell Processor code
only stores one value per register on the SPE.
However, the Cell Processor’s SPE has 128 bit
vector registers. The full power of the Cell
can only be harnessed if the code is adapted
to use each register as a 4-value vector. There-
fore, we changed each operation on the SPE

to operate on 4-tuples instead of values. The
control flow involved in computing ground-up
loss is loop-based and the majority of the code
could be efficiently vectorized. Vectorizing the
computation of offsets in the various look-up
tables was slightly more challenging since ta-
ble lookups are usually not accessing adjacent
values. Another challenge, from a software
engineering standpoint, was to transform the
data that was passed from the PPE to the
SPEs as objects into four-value vectors. We
chose to re-impliment the necessary interfaces
as classes whose data members are all defined
as offsets into an array of 4-tuples (either in-
tegers or floats). In this manner, we were able
to keep the SPE code object oriented by using
the same class interfaces as the PPE code, but
could lay the data out on the PPE such that
the data from four objects could be properly
striped across vectors. While this took some
development time, the overhead in terms of
computation was minimal and we expect that
this approach is useful in general when porting
object oriented code to the Cell Processor.

3.4 Double-Buffering for File I/O

For the Cell Processor, high volumes of data
must be constantly supplied to take advantage
of the processing power of the SPEs. Therefore,
we were concerned that the SPEs were possi-
bly wasting cycles while waiting for the next
batch of event locations to be read from the
disk. To address this, another layer of double-
buffering was added to the code, this time to
prefetch the next batch of event locations from
the disk as the current batch is being processed.
In fact, since the PPE is dual-threaded, read-
ing and processing data sent to and from the
hard disk can be done completely in parallel,
together with a process that is responsible for
marshaling and dispatching the SPEs.

4 Experimental Evaluation

To test our Cell Processor implementation, a
data set of 500 earthquakes (events) with mag-
nitudes greater than 7 on and around the is-
land of Japan was generated (Figure 4). Seven
batches of randomly generated exposures (lo-
cations in this region) ranging in size from 100



Figure 4: The earthquakes and exposures
used as input in this study were generated
within two bounding boxes around the island
of Japan.

to 10,000 were created. For the largest input,
500 events by 10,000 locations, roughly 1.6 mil-
lion out of a possible 5 million event-locations
were processed because not every building was
affected by every earthquake. These 1.6 million
event-locations were used as input data to eval-
uate the performance of our implementation.

The program was benchmarked on this data
set after each optimization stage described in
the previous section. We measured the to-
tal wall clock time of the “inner loop” (event-
location computations) for the sequential code
running on the PPE and the parallel code using
the six SPEs after each optimization described
in the previous section.

The results for processing the entire dataset
are given in Table 2. The “PPE Sequential”
row shows the sequential time on the PPE.
The “PPE & 6 SPEs” row shows the paral-
lel time and speedup for the parallel code ver-
sion implementing the streaming of data to the
SPEs (Section 3.1) and caching (Section 3.2)
approaches. The speedup obtained for the
event-location computations is 5.04, 84% of the
theoretical maximum of 6 (number of available
SPEs). This is a very positive result which
shows that relatively little performance is lost
to table look-ups and communication overhead,

due to the effectiveness of the local caching
and double buffering respectively. The “PPE
& 6 SPEs + Vectorized” row in Table 2 shows
the parallel time and speedup when vectoriza-
tion (Section 3.3) is added. The speedup over
the “PPE & 6 SPE” version for the EL com-
putation time is approx. 3.3 or 82.5% of the
theoretical maximum of 4. It shows that our
vectorization effort was very successful. The
“PPE & 6 SPEs + Vectorized + I/O double
buffer” row in Table 2 shows the parallel time
and speedup when I/O double buffering (Sec-
tion 3.4) is added. Unfortunately, it did not
yield any measurable decrease in running time
due to the difficulty of finding an optimal buffer
size. While the disk I/O time remains con-
stant, the computation time of the inner-loop
is highly data dependent and hard to predict.
As a consequence, any buffer size chosen will be
either too large or too small for a large portion
of the event-location computations, potentially
introducing as much idle time for the PPE as
saving time for the SPEs through latency hid-
ing. We tried many buffer sizes without much
success and ended up using a size of 512 event-
locations (59392 bytes) which offered the best
average performance for our data.

Figure 5 shows the same wall clock times
as Table 2 but for different data sizes (num-
ber of event-locations). We observe that the
running times for all versions of our code grow
linearly with respect to the input size. Figure 6
shows the same speedup values as Table 2 but
again for different data sizes (number of event-
locations). We observe that a speedup of 16 is
achieved from approx. 400,000 event-locations
onwards, and then remains very steady at that
value, growing slowly to approx. 16.5.

5 Conclusions

In this paper we studied and parallelized a crit-
ical section of catastrophe modelling, the so
called “inner loop”, and implemented it on a
Cell Processor running on a regular Playstation
3 platform. The Cell Processor is known to be
a challenging environment for software devel-
opment. Our parallel solution is a combina-
tion of multiple techniques: streaming data to
the SPEs, building caches on the SPEs to store



PPE Sequential
Wall Clock Time: 1282.56 s
PPE & 6 SPEs
Wall Clock Time: 254.59 s
Speedup: 5.04
PPE & 6 SPEs + Vectorized
Wall Clock Time: 77.74 s
Speedup: 16.50
PPE & 6 SPEs + Vectorized
+ I/O Double Buffer
Wall Clock Time: 77.74 s
Speedup: 16.50

Table 2: Speedup achieved for computing all
1.6M event locations from the Japanese earth
quake data set on a PlayStation 3 (with six
active SPEs).
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Figure 5: Wall clock time (seconds) for com-
puting event-locations from the Japanese earth
quake data set on a PlayStation 3 as a function
of the number of event-locations.
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Figure 6: Speedup achieved for computing
event-locations from the Japanese earth quake
data set on a PlayStation 3 as a function of the
number of event-locations.

parts of the catastrophe modelling lookup ta-
bles, vectorizing the computation on the SPEs,
and double-buffering the file I/O. While vec-
torization and caching had a significant posi-
tive impact on performance, double-buffering
of the file I/O did not yield much improve-
ment. On a (Playstation 3) Cell Processor
with six active SPEs and 4-way vectorization
on each SPE, our parallel system provided for
real life Japanese earthquake data a sustained
16x speedup, 66% of the maximum theoreti-
cally possible 24x speedup.
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