
OLAP for Trajectories

Oliver Baltzer1, Frank Dehne2,
Susanne Hambrusch3, and Andrew Rau-Chaplin1

1 Dalhousie University, Halifax, Canada
obaltzer@cs.dal.ca, arc@cs.dal.ca

http://www.cs.dal.ca/~arc
2 Carleton University, Ottawa, Canada

frank@dehne.net
http://www.dehne.net

3 Purdue University, West Lafayette, IN, USA
seh@cs.purdue.edu

http://www.cs.purdue.edu/people/faculty/seh/

Abstract. In this paper, we present an OLAP framework for trajecto-
ries of moving objects. We introduce a new operator GROUP TRAJEC-
TORIES for group-by operations on trajectories and present three imple-
mentation alternatives for computing groups of trajectories for group-by
aggregation: group by overlap, group by intersection, and group by over-
lap and intersection. We also present an interactive OLAP environment
for resolution drill-down/roll-up on sets of trajectories and parameter
browsing. Using generated and real life moving data sets, we evaluate
the performance of our GROUP TRAJECTORIES operator. An imple-
mentation of our new interactive OLAP environment for trajectories can
be accessed at http://OLAP-T.cgmlab.org.

1 Introduction

Global positioning (GPS) and RFID systems are creating vast amounts of spatio-
temporal data for moving objects. Consider N moving objects on a 2D spatial
grid. Each object is identified by a unique tag number (similar to EPC in RFID).
Object movements are recorded through a set of readings ((x, y), i, t) indicating
that object (tag) i was detected at time t within the grid cell located at (x, y).
The N moving objects are represented by a relational table objects with N
records. Each record contains values tag, name, size, color, etc. describing one
object according to a star schema. Among them is a value trajectory representing
the movement of the respective object as a sequence [(x1, y1, t1), (x2, y2, t2), . . .
(xm, ym, tm)] of positions at time t = t1, t2, . . . tm. In order to efficiently analyze
large scale data sets representing moving objects, it is important to have available
the well established set of tools for OLAP analysis. In order to apply OLAP
tools towards moving object datasets, it is necessary to aggregate with respect
to trajectory as a feature dimension as well as a measure dimension.

We illustrate this with the example shown in Figure 1. Consider the trajecto-
ries shown in Figure 1a. We observe a number of individual objects that move

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 340–347, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://OLAP-T.cgmlab.org

OLAP for Trajectories 341

(a) (b) (c) (d) (e)

G
R

O
U

P
_
T

R
A

J
E

C
T

O
R

IE
S

GROUP-ID = G1
COUNT = 4

G
R

O
U

P
_
T

R
A

J
E

C
T

O
R

IE
S

GROUP-ID = G2
COUNT = 4

Fig. 1. OLAP For Trajectories Example. (a) Input data. (b) Groups with minimum
support. (c) Aggregate results reported (aggregate trajectories and counts). (d) Illus-
tration of operator GROUP TRAJECTORIES:Group by Intersection. (e) Illustration
of operator GROUP TRAJECTORIES:Group by Overlap.

on random paths plus 10 groups of objects that move together on similar paths.
Each group consists of more then five objects moving on similar paths which,
taken together, appear to the human eye as “bold” paths.

Consider the following SQL query where trajectory is both, a feature dimension
as well as a measure dimension:

SELECT AGGREGATE(trajectory) AS trajectory
COUNT(trajectory) as count

FROM objects
GROUP BY GROUP_TRAJECTORIES(trajectory,

resolution)
HAVING COUNT(*) >= 5

For this example, the aim of the GROUP BY operation with respect to fea-
ture dimension trajectory is to group similar trajectories and eliminate groups with
less than minimum support (less than 5 similar trajectories). The resulting set of
groups is shown in Figure 1b. Once the groups of trajectories have been deter-
mined, we report for each group an aggregate trajectory representing the trajecto-
ries in the group. In this example, the aggregate trajectory is the average trajectory
computed by calculating for each time ti the average of the locations (xi, yi) of the
trajectories in the group. The result is shown in Figure 1c, where each group is
represented by the aggregate trajectory and size of the group (count).

The goal of OLAP analysis for trajectories is to answer aggregate queries with
respect to the spatial movements of a set of objects represented in a relational ta-
ble objects. The main problem arising is how to aggregate with respect to feature
dimension trajectory. It is very unlikely that any two trajectories are exactly the
same. Hence, standard aggregation of records with equivalent trajectory values is
not very useful in most cases. We propose to partition the given trajectories into
disjoint groups of trajectories using a new operator which we term GROUP -
TRAJECTORIES. This operator returns for each trajectory a group identifier,
and then OLAP can proceed with standard aggregation according to the group
identifiers instead of the trajectories themselves.

342 O. Baltzer et al.

The main problem addressed in this paper is how to define and compute the
operator GROUP TRAJECTORIES such that the resulting groups allow for a
meaningful analysis of object movements via OLAP. We propose three different
versions of the operator GROUP TRAJECTORIES which compute groups of
trajectories that are appropriate for OLAP analysis of trajectories for different
circumstances and applications: Group by Overlap, Group by Intersection and
Group by Overlap and Intersection.

Section 3 will show in detail how these three different versions of our GROUP -
TRAJECTORIES operator are defined and computed. Our Group by Intersection
method aggregates subsets of trajectories that correspond to similar or synchro-
nous movements; see Figure 1d. Our Group by Overlap method aggregates subsets
of trajectories that correspond to sequences of movements with sufficient overlap
between subsequent trajectories; see in Figure 1e. The Group by Overlap and Inter-
section method aggregates subsets of trajectories that correspond to a combination
of sequences of movements and similar or synchronous movements.

In Section 4, we present an interactive OLAP environment for the analysis
of trajectories that allows resolution drill-down and roll-up as well as parameter
browsing. An experimental evaluation is outlined in Section 5. An implementa-
tion of our new interactive OLAP environment for trajectories can be accessed
at http://OLAP-T.cgmlab.org.

2 Related Work

There is a wealth of literature on spatiotemporal data analysis and aggrega-
tion. See e.g. [9] for a survey. This work studies aggregation by specific temporal
dimensions such as ”by day” or ”by year”, or by strict topological association
such as ”by location square” or ”within 10 km of” (e.g. [11]). In our case, we
wish to aggregate entire trajectories. For the detection of relationships among
trajectories in a moving object database we found in the literature five groups
of approaches: variations of frequent pattern or association rule mining (e.g.
[4,5,6,16]), clustering techniques (e.g. [8,12]), Computational Geometry tech-
niques (e.g [7]), neural network based techniques (e.g. [15]), and edit distance,
warping techniques and longest common subsequence (LCSS) extraction (e.g.
[13,14,17,18]). A comparison of our work with these approaches is omitted due
to page restrictions. It can be found in the extended version of this paper [2].

3 Computing Groups of Trajectories

In this sectionwepresent threedifferent implementations of the operatorGROUP -
TRAJECTORIES which compute groups of trajectories that are appropriate for
OLAP analysis of trajectories for different circumstances and applications: Group
by Overlap, Group by Intersection, and Group by Overlap and Intersection. We
first apply a time and space resolution mapping of our initial set T of trajectories.
This allows for the resolution drill-down and roll-up within our interactive OLAP
framework for trajectories to be discussed in Section 4. Next, we compute frequent

http://OLAP-T.cgmlab.org

OLAP for Trajectories 343

itemsets for the mapped set of trajectories and then apply a reverse mapping step.
Here, we determine for each frequent itemset f , the corresponding original group
c of trajectories and create a set C of resulting (f, c) pairs. A more detailed presen-
tation of our method is contained in the extended version of this paper [2].

The most important part of our method is the group merging phase. In this
paper, we present three different methods: (a) Group by Overlap (Sections 3.1),
(b) Group by Intersection (3.2), and (c) Group by Overlap and Intersection (3.3).

3.1 Group by Overlap

Our Group By Overlap method introduces a tunable parameter overlap ratio
threshold ORT which controls the strength of the grouping process. The inter-
active OLAP framework for trajectories discussed in Section 4 will allow for an
interactive tuning of this parameter.

Our Group By Overlap method is based on an overlap graph Γ , where each
vertex corresponds to a trajectory. For each frequent item set f and correspond-
ing set c of trajectories, we consider all pairs of trajectories ti, tj ∈ c and add
for each pair an edge (ti, tj) with label overlap ratio OS = 2·|f |

|ti|+|tj | . The overlap
ratio measures the size of the overlap relative to the sizes of the trajectories.
We then remove all edges where the overlap ratio OS is smaller than the chosen
overlap ratio threshold ORT and compute the connected components of the re-
maining graph. These components correspond to the groups of trajectories that
are reported. A more detailed presentation is contained in the extended version
of this paper [2].

The nature of the obtained groups of trajectories is determined by two factors.
(1) The overlap ratio threshold ORT determines how much two neighboring
trajectories within a group have to overlap. (2) The graph connected component
construction allows for an “adding up” of trajectories corresponding to a “relay”
type of movement. Depending on the chosen overlap ratio threshold ORT , the
“relay” parties will have to move in unison for more or less of their own individual
movements.

3.2 Group by Intersection

Our Group By Intersection method introduces a tunable parameter intersection
ratio threshold IRT which controls the strength of the grouping process. The
interactive OLAP framework for trajectories discussed in Section 4 will allow for
an interactive tuning of this parameter.

Our Group By Intersection method first creates an initial set G of groups of
trajectories, where each group c corresponds to a frequent itemset f determined
in the reverse matching in Section 3. Each group c is assigned a group strength
GS(c) which is initially set to the size of the respective frequent itemset. The
remainder of our method merges groups in G by iterating the following loop.
We compute for each pair gi, gj ∈ G a value intersection ratio AS(gi ∪ gj) =

min
(|gi∩gj |

|g1| ,
|gi∩gj |
|g2|

)
which represents the number of trajectories that occur in

344 O. Baltzer et al.

both gi and gj , relative to the sizes of gi and gj . We will consider as candidates
for merging all pairs gi, gj whose intersection ratio is larger than our input
parameter intersection ratio threshold IRT and compute for each such pair a
value merge strength MS(gi ∪ gj) = GS(gi)+GS(gj)

2 which is the average of their
group strength values. All candidate pairs are ranked by their merge strength
and we will merge the pair g∗i , g∗j with maximum merge strength, or one of the
maximal pairs if there are multiple. The group strength GS(gi∗ ∪ gj∗) of the new
merged group will be the merge strength MS(g∗i ∪ g∗j). This process is repeated
until there are no more pairs of groups with non zero merge strength, that is,
until there are no more pairs of groups with intersection ratio larger than the
intersection ratio threshold IRT . A more detailed presentation of our method is
contained in the extended version of this paper [2].

Our Group by Intersection method aggregates subsets of trajectories that
correspond to “marching band” style parallel movements. The nature of the
obtained groups of trajectories is determines by two factors. (1) The intersec-
tion ratio threshold IRT determines how many shared trajectories between two
groups are “sufficient” for them to be merged. (2) The merging process which
is similar in nature to a minimum spanning tree calculation. We merge first the
largest groups with sufficient shared trajectories and then work our way down
to the smaller groups. Unlike the Group by Overlap method which combines se-
quences of movements, the Group by Intersection method combines parallel of
movements.

3.3 Group by Intersection and Overlap

The goal of our Group by Intersection and Overlap method is to group both,
sequences of movements and parallel movements. It is a combination of our
methods in Sections 3.1 and 3.2. We create the same set G′ of groups of trajec-
tories as in Section 3.2 and the same overlap graph Γ as in Section 3.1. Then
we add to Γ a clique for each g ∈ G′ (i.e. edges between all pairs of trajectories
t1, t2 ∈ g) and compute the connected components of the modified graph Γ .
Each connected component corresponds to a group of trajectories.

The resulting groups are sequences of overlapping trajectories as in our Group
by Overlap method to which we add parallel trajectories as in our Group by In-
tersection method. The aggregation is guided by two parameters, the intersection
strength threshold IRT and the overlap ratio threshold ORT , which control the
width and length, respectively, of the generated groups.

4 Interactive OLAP for Trajectories

The algorithms for the three different versions of operator GROUP TRAJEC-
TORIES presented in Section 3 are guided by the following parameters: space
resolution, time resolution, minimum support, intersection ratio threshold and
overlap ratio threshold. This allows to analyze groups of trajectories for vari-
ous levels of resolution or connectedness, and provides another opportunity for

OLAP for Trajectories 345

50% noise 75% noise 95% noise

Group By Overlap

Group By Intersection

Input Data

Fig. 2. Test of robustness against noise. Top row: input data consisting of 10 groups
with 10 similar trajectories each and three levels of noise: 50%, 75% and 95%. Center
row: Groups computed by GROUP TRAJECTORIES: Group By Overlap (ORT = 0.5,
min support = 4). Bottom row: Groups computed by GROUP TRAJECTORIES:
Group By Intersection (IRT = 0.5, min support = 4). Groups are identified by color
(group identifier = color).

Fig. 3. School Buses Dataset and Groups reported (identified by color) using Group
by Overlap and ORT = 0.4, 0.5, 0.6, 0.7, respectively (min support = 5, min length
= 30)

OLAP analysis of trajectories. For example, for a high level analysis of GPS data
for the movement of a fleet of ships, time granularity “day” may be sufficient.
However, a drill-down to viewing the paths taken by a group of ships when

346 O. Baltzer et al.

entering a port may require a time granularity “minute”. As an example for
browsing a parameter like overlap ratio threshold, consider a set of trajectories
representing movements of people who pass on a disease virus. The aggregate,
using our Group by Overlap method, could be used to analyze the total move-
ment of the virus. In this example, our parameter overlap ratio threshold would
represent the amount of interaction between individuals required to pass on the
virus. Changing the threshold value allows to evaluate how far the virus will
spread based on different assumption about its transmission.

We have built a prototype interactive environment for the analysis of trajecto-
ries that allows resolution drill-down and roll-up as well as parameter browsing.
It can be accessed at http://OLAP-T.cgmlab.org.

5 Experimental Evaluation

Our Group by Overlap and Group by Intersection methods have a surprising
resilience against background noise. On the example shown in Figures 2, as well
as many other examples that we tested, they have no trouble reporting the
correct result for noise levels of 50%, 75% and even as high as 95%. At a noise
level of 95%, the human eye can no longer visually detect the original groups of
parallel paths but our methods have no problem reporting the correct result.

For the evaluation of our methods on real world data, we have chosen the
school buses dataset that can be freely obtained from [1]. The dataset contains
145 trajectories of buses that are moving in and around an urban area. Due to
page restrictions, we can not show the dataset here. It can be viewed by going
to http://OLAP-T.cgmlab.org and selecting the dataset “buses”.

Frequent itemsets mining without aggregation, as e.g. in [4,10,3] (plus a min-
imum length cutoff as used in our methods), would result in 76 groups being
identified. This large number of groups reported by frequent itemsets mining
based methods is often a disadvantage because it does not lead to signifficant
aggregation in an OLAP setting. Figure 3 shows the results obtained with our
Group by Overlap method for ORT values 0.4, 0.5, 0.6, and 0.7. We observe that
the parameter ORT in our Group by Overlap method allows for a much finer
control over the grouping of trajectories reported and that the Group by Overlap
method reports a considerably smaller number of groups.

A more detailed presentation of experimental results for our method is con-
tained in the extended version of this paper [2].

References

1. R-tree Portal (Last accessed, November 16, 2007), http://www.rtreeportal.org/
2. Baltzer, O., Dehne, F., Hambrusch, S., Rau-Chaplin, A.: Olap for trajectories.

Technical Report TR-08-11, School of Computer Science, Carleton University,
http://www.scs.carleton.ca

3. Cao, H., Mamoulis, N., Cheung, D.W.: Mining frequent spatio-temporal sequential
patterns. icdm, 82–89 (2005)

http://OLAP-T.cgmlab.org
http://www.rtreeportal.org/
http://www.scs.carleton.ca

OLAP for Trajectories 347

4. Gidófalvi, G., Pedersen, T.B.: Mining Long, Sharable Patterns in Trajectories of
Moving Objects. In: STDBM 2006: Proceedings of the 3rd Workshop on Spatio-
Temporal Database Management (2006)

5. Hwang, S.Y., Liu, Y.H., Chiu, J.K., Lim, E.P.: Mining mobile group patterns: A
trajectory-based approach. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005.
LNCS (LNAI), vol. 3518, pp. 713–718. Springer, Heidelberg (2005)

6. Kim, D., Kang, H., Hong, D., Yun, J., Han, K.: STMPE: An Efficient Movement
Pattern Extraction Algorithm for Spatio-temporal Data Mining. In: Gavrilova,
M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y.,
Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3981, pp. 259–269. Springer, Heidelberg
(2006)

7. Laube, P., van Kreveld, M., Imfeld, S.: Finding REMO–detecting relative mo-
tion patterns in geospatial lifelines. In: Developments in Spatial Data Handling:
Proceedings of the 11th International Symposium on Spatial Data Handling, pp.
201–214 (2004)

8. Li, Y., Han, J., Yang, J.: Clustering moving objects. In: KDD 2004: Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 617–622. ACM, New York (2004)

9. López, I.F.V., Snodgrass, R.T., Moon, B.: Spatiotemporal Aggregate Computation:
A Survey. IEEE Transactions on Knowledge and Data Engineering 17(2), 271–286
(2005)

10. Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.:
Mining, indexing, and querying historical spatiotemporal data. In: Proceedings of
the 2004 ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 236–245 (2004)

11. Marchand, P., Brisebois, A., Bédard, Y., Edwards, G.: Implementation and eval-
uation of a hypercube-based method for spatiotemporal exploration and analysis.
ISPRS Journal of Photogrammetry and Remote Sensing 59(1-2), 6–20 (2004)

12. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects.
J. Intell. Inf. Syst. 27(3), 267–289 (2006)

13. Sclaroff, S., Kollios, G., Betke, M.: Motion mining: discovering spatio-temporal
patterns in databases of human motion. In: Proceedings of the ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery (2001)

14. Shim, C.B., Chang, J.W.: A new similar trajectory retrieval scheme using k-
warping distance algorithm for moving objects. In: Dong, G., Tang, C.-j., Wang,
W. (eds.) WAIM 2003. LNCS, vol. 2762, pp. 433–444. Springer, Heidelberg (2003)

15. Sumpter, N., Bulpitt, A.: Learning spatio-temporal patterns for predicting object
behaviour (1998)

16. Verhein, F., Chawla, S.: Mining spatio-temporal patterns in object mobility data-
bases. Data Mining and Knowledge Discovery (2007)

17. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional tra-
jectories. In: Proceedings. 18th International Conference on Data Engineering,
2002, pp. 673–684 (2002)

18. Zeinalipour-Yazti, D., Lin, S., Gunopulos, D.: Distributed spatio-temporal similar-
ity search. In: CIKM 2006: Proceedings of the 15th ACM international conference
on Information and knowledge management, pp. 14–23. ACM, New York (2006)

	OLAP for Trajectories
	Introduction
	Related Work
	Computing Groups of Trajectories
	Group by Overlap
	Group by Intersection
	Group by Intersection and Overlap

	Interactive OLAP for Trajectories
	Experimental Evaluation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

