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Abstract. In this paper, we present an OLAP framework for trajecto-
ries of moving objects. We introduce a new operator GROUP TRAJEC-
TORIES for group-by operations on trajectories and present three imple-
mentation alternatives for computing groups of trajectories for group-by
aggregation: group by overlap, group by intersection, and group by over-
lap and intersection. We also present an interactive OLAP environment
for resolution drill-down/roll-up on sets of trajectories and parameter
browsing. Using generated and real life moving data sets, we evaluate
the performance of our GROUP TRAJECTORIES operator. An imple-
mentation of our new interactive OLAP environment for trajectories can
be accessed at http://OLAP-T.cgmlab.org.

1 Introduction

Global positioning (GPS) and RFID systems are creating vast amounts of spatio-
temporal data for moving objects. Consider N moving objects on a 2D spatial
grid. Each object is identified by a unique tag number (similar to EPC in RFID).
Object movements are recorded through a set of readings ((x, y), i, t) indicating
that object (tag) i was detected at time t within the grid cell located at (x, y).
The N moving objects are represented by a relational table objects with N
records. Each record contains values tag, name, size, color, etc. describing one
object according to a star schema. Among them is a value trajectory representing
the movement of the respective object as a sequence [(x1, y1, t1), (x2, y2, t2), . . .
(xm, ym, tm)] of positions at time t = t1, t2, . . . tm. In order to efficiently analyze
large scale data sets representing moving objects, it is important to have available
the well established set of tools for OLAP analysis. In order to apply OLAP
tools towards moving object datasets, it is necessary to aggregate with respect
to trajectory as a feature dimension as well as a measure dimension.

We illustrate this with the example shown in Figure 1. Consider the trajecto-
ries shown in Figure 1a. We observe a number of individual objects that move
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Fig. 1. OLAP For Trajectories Example. (a) Input data. (b) Groups with minimum
support. (c) Aggregate results reported (aggregate trajectories and counts). (d) Illus-
tration of operator GROUP TRAJECTORIES:Group by Intersection. (e) Illustration
of operator GROUP TRAJECTORIES:Group by Overlap.

on random paths plus 10 groups of objects that move together on similar paths.
Each group consists of more then five objects moving on similar paths which,
taken together, appear to the human eye as “bold” paths.

Consider the following SQL query where trajectory is both, a feature dimension
as well as a measure dimension:

SELECT AGGREGATE(trajectory) AS trajectory
COUNT(trajectory) as count

FROM objects
GROUP BY GROUP_TRAJECTORIES(trajectory,

resolution)
HAVING COUNT(*) >= 5

For this example, the aim of the GROUP BY operation with respect to fea-
ture dimension trajectory is to group similar trajectories and eliminate groups with
less than minimum support (less than 5 similar trajectories). The resulting set of
groups is shown in Figure 1b. Once the groups of trajectories have been deter-
mined, we report for each group an aggregate trajectory representing the trajecto-
ries in the group. In this example, the aggregate trajectory is the average trajectory
computed by calculating for each time ti the average of the locations (xi, yi) of the
trajectories in the group. The result is shown in Figure 1c, where each group is
represented by the aggregate trajectory and size of the group (count).

The goal of OLAP analysis for trajectories is to answer aggregate queries with
respect to the spatial movements of a set of objects represented in a relational ta-
ble objects. The main problem arising is how to aggregate with respect to feature
dimension trajectory. It is very unlikely that any two trajectories are exactly the
same. Hence, standard aggregation of records with equivalent trajectory values is
not very useful in most cases. We propose to partition the given trajectories into
disjoint groups of trajectories using a new operator which we term GROUP -
TRAJECTORIES. This operator returns for each trajectory a group identifier,
and then OLAP can proceed with standard aggregation according to the group
identifiers instead of the trajectories themselves.
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The main problem addressed in this paper is how to define and compute the
operator GROUP TRAJECTORIES such that the resulting groups allow for a
meaningful analysis of object movements via OLAP. We propose three different
versions of the operator GROUP TRAJECTORIES which compute groups of
trajectories that are appropriate for OLAP analysis of trajectories for different
circumstances and applications: Group by Overlap, Group by Intersection and
Group by Overlap and Intersection.

Section 3 will show in detail how these three different versions of our GROUP -
TRAJECTORIES operator are defined and computed. Our Group by Intersection
method aggregates subsets of trajectories that correspond to similar or synchro-
nous movements; see Figure 1d. Our Group by Overlap method aggregates subsets
of trajectories that correspond to sequences of movements with sufficient overlap
between subsequent trajectories; see in Figure 1e. The Group by Overlap and Inter-
section method aggregates subsets of trajectories that correspond to a combination
of sequences of movements and similar or synchronous movements.

In Section 4, we present an interactive OLAP environment for the analysis
of trajectories that allows resolution drill-down and roll-up as well as parameter
browsing. An experimental evaluation is outlined in Section 5. An implementa-
tion of our new interactive OLAP environment for trajectories can be accessed
at http://OLAP-T.cgmlab.org.

2 Related Work

There is a wealth of literature on spatiotemporal data analysis and aggrega-
tion. See e.g. [9] for a survey. This work studies aggregation by specific temporal
dimensions such as ”by day” or ”by year”, or by strict topological association
such as ”by location square” or ”within 10 km of” (e.g. [11]). In our case, we
wish to aggregate entire trajectories. For the detection of relationships among
trajectories in a moving object database we found in the literature five groups
of approaches: variations of frequent pattern or association rule mining (e.g.
[4,5,6,16]), clustering techniques (e.g. [8,12]), Computational Geometry tech-
niques (e.g [7]), neural network based techniques (e.g. [15]), and edit distance,
warping techniques and longest common subsequence (LCSS) extraction (e.g.
[13,14,17,18]). A comparison of our work with these approaches is omitted due
to page restrictions. It can be found in the extended version of this paper [2].

3 Computing Groups of Trajectories

In this sectionwepresent threedifferent implementations of the operatorGROUP -
TRAJECTORIES which compute groups of trajectories that are appropriate for
OLAP analysis of trajectories for different circumstances and applications: Group
by Overlap, Group by Intersection, and Group by Overlap and Intersection. We
first apply a time and space resolution mapping of our initial set T of trajectories.
This allows for the resolution drill-down and roll-up within our interactive OLAP
framework for trajectories to be discussed in Section 4. Next, we compute frequent
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itemsets for the mapped set of trajectories and then apply a reverse mapping step.
Here, we determine for each frequent itemset f , the corresponding original group
c of trajectories and create a set C of resulting (f, c) pairs. A more detailed presen-
tation of our method is contained in the extended version of this paper [2].

The most important part of our method is the group merging phase. In this
paper, we present three different methods: (a) Group by Overlap (Sections 3.1),
(b) Group by Intersection (3.2), and (c) Group by Overlap and Intersection (3.3).

3.1 Group by Overlap

Our Group By Overlap method introduces a tunable parameter overlap ratio
threshold ORT which controls the strength of the grouping process. The inter-
active OLAP framework for trajectories discussed in Section 4 will allow for an
interactive tuning of this parameter.

Our Group By Overlap method is based on an overlap graph Γ , where each
vertex corresponds to a trajectory. For each frequent item set f and correspond-
ing set c of trajectories, we consider all pairs of trajectories ti, tj ∈ c and add
for each pair an edge (ti, tj) with label overlap ratio OS = 2·|f |

|ti|+|tj | . The overlap
ratio measures the size of the overlap relative to the sizes of the trajectories.
We then remove all edges where the overlap ratio OS is smaller than the chosen
overlap ratio threshold ORT and compute the connected components of the re-
maining graph. These components correspond to the groups of trajectories that
are reported. A more detailed presentation is contained in the extended version
of this paper [2].

The nature of the obtained groups of trajectories is determined by two factors.
(1) The overlap ratio threshold ORT determines how much two neighboring
trajectories within a group have to overlap. (2) The graph connected component
construction allows for an “adding up” of trajectories corresponding to a “relay”
type of movement. Depending on the chosen overlap ratio threshold ORT , the
“relay” parties will have to move in unison for more or less of their own individual
movements.

3.2 Group by Intersection

Our Group By Intersection method introduces a tunable parameter intersection
ratio threshold IRT which controls the strength of the grouping process. The
interactive OLAP framework for trajectories discussed in Section 4 will allow for
an interactive tuning of this parameter.

Our Group By Intersection method first creates an initial set G of groups of
trajectories, where each group c corresponds to a frequent itemset f determined
in the reverse matching in Section 3. Each group c is assigned a group strength
GS(c) which is initially set to the size of the respective frequent itemset. The
remainder of our method merges groups in G by iterating the following loop.
We compute for each pair gi, gj ∈ G a value intersection ratio AS(gi ∪ gj) =

min
( |gi∩gj |

|g1| ,
|gi∩gj |
|g2|

)
which represents the number of trajectories that occur in
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both gi and gj , relative to the sizes of gi and gj . We will consider as candidates
for merging all pairs gi, gj whose intersection ratio is larger than our input
parameter intersection ratio threshold IRT and compute for each such pair a
value merge strength MS(gi ∪ gj) = GS(gi)+GS(gj)

2 which is the average of their
group strength values. All candidate pairs are ranked by their merge strength
and we will merge the pair g∗i , g∗j with maximum merge strength, or one of the
maximal pairs if there are multiple. The group strength GS(gi∗ ∪ gj∗) of the new
merged group will be the merge strength MS(g∗i ∪ g∗j ). This process is repeated
until there are no more pairs of groups with non zero merge strength, that is,
until there are no more pairs of groups with intersection ratio larger than the
intersection ratio threshold IRT . A more detailed presentation of our method is
contained in the extended version of this paper [2].

Our Group by Intersection method aggregates subsets of trajectories that
correspond to “marching band” style parallel movements. The nature of the
obtained groups of trajectories is determines by two factors. (1) The intersec-
tion ratio threshold IRT determines how many shared trajectories between two
groups are “sufficient” for them to be merged. (2) The merging process which
is similar in nature to a minimum spanning tree calculation. We merge first the
largest groups with sufficient shared trajectories and then work our way down
to the smaller groups. Unlike the Group by Overlap method which combines se-
quences of movements, the Group by Intersection method combines parallel of
movements.

3.3 Group by Intersection and Overlap

The goal of our Group by Intersection and Overlap method is to group both,
sequences of movements and parallel movements. It is a combination of our
methods in Sections 3.1 and 3.2. We create the same set G′ of groups of trajec-
tories as in Section 3.2 and the same overlap graph Γ as in Section 3.1. Then
we add to Γ a clique for each g ∈ G′ (i.e. edges between all pairs of trajectories
t1, t2 ∈ g) and compute the connected components of the modified graph Γ .
Each connected component corresponds to a group of trajectories.

The resulting groups are sequences of overlapping trajectories as in our Group
by Overlap method to which we add parallel trajectories as in our Group by In-
tersection method. The aggregation is guided by two parameters, the intersection
strength threshold IRT and the overlap ratio threshold ORT , which control the
width and length, respectively, of the generated groups.

4 Interactive OLAP for Trajectories

The algorithms for the three different versions of operator GROUP TRAJEC-
TORIES presented in Section 3 are guided by the following parameters: space
resolution, time resolution, minimum support, intersection ratio threshold and
overlap ratio threshold. This allows to analyze groups of trajectories for vari-
ous levels of resolution or connectedness, and provides another opportunity for
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50% noise 75% noise 95% noise

Group By Overlap

Group By Intersection

Input Data

Fig. 2. Test of robustness against noise. Top row: input data consisting of 10 groups
with 10 similar trajectories each and three levels of noise: 50%, 75% and 95%. Center
row: Groups computed by GROUP TRAJECTORIES: Group By Overlap (ORT = 0.5,
min support = 4). Bottom row: Groups computed by GROUP TRAJECTORIES:
Group By Intersection (IRT = 0.5, min support = 4). Groups are identified by color
(group identifier = color).

Fig. 3. School Buses Dataset and Groups reported (identified by color) using Group
by Overlap and ORT = 0.4, 0.5, 0.6, 0.7, respectively (min support = 5, min length
= 30)

OLAP analysis of trajectories. For example, for a high level analysis of GPS data
for the movement of a fleet of ships, time granularity “day” may be sufficient.
However, a drill-down to viewing the paths taken by a group of ships when
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entering a port may require a time granularity “minute”. As an example for
browsing a parameter like overlap ratio threshold, consider a set of trajectories
representing movements of people who pass on a disease virus. The aggregate,
using our Group by Overlap method, could be used to analyze the total move-
ment of the virus. In this example, our parameter overlap ratio threshold would
represent the amount of interaction between individuals required to pass on the
virus. Changing the threshold value allows to evaluate how far the virus will
spread based on different assumption about its transmission.

We have built a prototype interactive environment for the analysis of trajecto-
ries that allows resolution drill-down and roll-up as well as parameter browsing.
It can be accessed at http://OLAP-T.cgmlab.org.

5 Experimental Evaluation

Our Group by Overlap and Group by Intersection methods have a surprising
resilience against background noise. On the example shown in Figures 2, as well
as many other examples that we tested, they have no trouble reporting the
correct result for noise levels of 50%, 75% and even as high as 95%. At a noise
level of 95%, the human eye can no longer visually detect the original groups of
parallel paths but our methods have no problem reporting the correct result.

For the evaluation of our methods on real world data, we have chosen the
school buses dataset that can be freely obtained from [1]. The dataset contains
145 trajectories of buses that are moving in and around an urban area. Due to
page restrictions, we can not show the dataset here. It can be viewed by going
to http://OLAP-T.cgmlab.org and selecting the dataset “buses”.

Frequent itemsets mining without aggregation, as e.g. in [4,10,3] (plus a min-
imum length cutoff as used in our methods), would result in 76 groups being
identified. This large number of groups reported by frequent itemsets mining
based methods is often a disadvantage because it does not lead to signifficant
aggregation in an OLAP setting. Figure 3 shows the results obtained with our
Group by Overlap method for ORT values 0.4, 0.5, 0.6, and 0.7. We observe that
the parameter ORT in our Group by Overlap method allows for a much finer
control over the grouping of trajectories reported and that the Group by Overlap
method reports a considerably smaller number of groups.

A more detailed presentation of experimental results for our method is con-
tained in the extended version of this paper [2].
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