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Abstract

In this paper we propose a grid-based OLAP applica-
tion which distributes query computation across an enter-
prise grid. Our application follows a two-tiered process
for answering queries based on sharing cached OLAP data
between the users at the local grid site, and using grid
scheduling approaches to execute the remaining parts of a
query amongst a distributed set of OLAP servers. A new
technique for extraction and aggregation of shared cached
OLAP data is proposed, along with an efficient, aggregate-
aware cache controller. An experimental evaluation of the
proposed query processing and cooperative caching meth-
ods shows a significant reduction in query times compared
to previously proposed methods.

1. Introduction

The operation of modern distributed organizations, be
they commercial, scientific, or health related, generate mas-
sive quantities of data. Decision makers increasingly con-
struct large scale data warehouses and utilize On-Line An-
alytical Processing (OLAP) tools to glean from this rich
data resource nuggets of information which can be used to
better run their enterprises. A typical approach to OLAP
based data warehouses is to construct a single centralized
data repository by copying all of the raw data from the sites
where it is generated to a central location, where it is inte-
grated, and then to route all queries to that central location.
As the amount of data and number of sites and users grow,
this approach suffers from significant scalability problems.

More recently, distributed enterprises are adopting grid
computing as a means of tackling computing problems re-
quiring large amounts of computational power or reliable
access to large amounts of data. There has been growing in-
terest [7, 8, 15, 18, 19] in distributed data warehouses in the
context of grid based computing resources.

In this paper we build on the grid OLAP model presented
in [15] and propose new cooperative caching algorithms for
grid based data warehouses. Our approach is to forgo the
construction of a centralized data warehouse in favour of
maintaining distributed data sources across a grid. In this
context, queries must be routed to the appropriate data re-
sources. Note that, unlike transaction processing queries,
OLAP queries tend to involve large amounts of data aggre-
gation and typically return large results. Fortunately, these
results can often be used to help compute the answers to
future queries as users roll-up their analysis.

Our approach is to take advantage of the hierarchal struc-
ture of a typical enterprise grid, blending new and so-
phisticated caching techniques and data grid scheduling to
efficiently execute queries in a distributed fashion. Our
aggregate-aware cache control algorithms take advantage of
the hierarchal grid organization and the collection of local
user’s caches in order to reduce the amount of data retrieved
from remote sites (see Figure 1).

This paper is the first to propose a cooperative caching
strategy to speed up OLAP queries in the grid. While coop-
erative caching schemes exist (e.g. for Web Services [17]
and P2P systems [11]), ours is the first that provides the
ability to combine and aggregate cached data for future re-
lated OLAP queries. We believe that cooperative caching
for OLAP amongst the users at a grid site is beneficial due
to the likelihood that those users are interested in analyz-
ing similar perspectives. We propose an efficient localized
cache admittance scheme which uses a decay and refresh
mechanism for controlling admission to and eviction from
the cache, and a fast, aggregate-aware goodness metric for
incoming OLAP view fragments.

We have prototyped the key components of our grid-
based OLAP system in order to evaluate the effectiveness of
the cache extraction and admission algorithms in compari-
son with recent OLAP caching proposals in the literature.
Our experiments show that a significant reduction in query
cost is achieved by sharing and aggregating locally cached
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Figure 1. An example OLAP enabled grid with
the entities at each site and the connections
between sites shown.

data amongst users, and that our cache extraction method
significantly outperforms previously proposed alternatives.

2. Background and Related Work

A typical data warehouse stores its information accord-
ing to a star schema having a fact table with d feature
attributes (dimensions), and some number of measure at-
tributes. In addition to the fact table, there are dimension ta-
bles which give further details about the dimensions. These
details often define a hierarchy on the values of a dimension.

A common type of query in OLAP data warehousing is
the range-aggregate query, performed using the SELECT
and GROUP BY clauses in the Standard Query Language
(SQL). Typically the user selects a subset of the feature at-
tributes from either the fact or dimension tables or both, and
at least one measure attribute from the fact table with some
aggregate function applied to it. The selected dimensions
are used for grouping the results, and aggregation of the
measure attribute(s) is applied over all records having iden-
tical values for the selected dimensions.

For example, a user of a bicycle store data ware-
house may be interested to see how much each customer
spent on each purchase. Such information can be ob-
tained by an OLAP query selecting CUSTOMER, TIME,
and SUM(AMT), grouping the results by CUSTOMER and
TIME, represented with the following SQL expression:

SELECT CUSTOMER, TIME, SUM(AMT)
FROM SALES
GROUP BY CUSTOMER, TIME
Aggregate queries in OLAP are categorized by the di-

mensions they choose in the GROUP BY clause, and the ag-

gregated table resulting from such queries are called views.
In the case that a query contains selection ranges on one
or more of the dimensions, its results represent a view frag-
ment. If a data warehouse has d dimensions, and the number
of elements in dimension i’s hierarchy is Hi (where non-
hierarchal dimensions D have the size 2 hierarchy D !
“all”), then the total number of views is

Qdi=1(Hi) .
Harinarayan et. al. introduced the data cube lattice in

[10], expressing the relationship between views as a par-
tial order. Each view is a node, and there is a path from
a view v to a view w in the lattice if queries on w can be
answered also using v. This occurs when w groups on a
subset of v’s dimensions, each at the same or lower levels
of their respective hierarchies. More precisely, a view v can
be represented as a tuple of d values (v1; v2 : : : ; vd), where
vi is the level of dimension i’s hierarchy that v groups on.
The partial order amongst views as defined by the lattice is
v � w iff vi �i wi, where �i is the partial order defined
by dimension i’s hierarchy. The complete data cube lattice
for the bicycle store data warehouse is shown in Figure 2.
A fragment of a view v (resulting from a query on v) can
be aggregated to produce fragments on descendants of v so
long as it contains the entire range of values for those di-
mensions which are aggregated out.

(b) Dimension Hierarchies
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Figure 2. A data cube lattice and correspond-
ing dimension hierarchies for a retail store
data warehouse.

There has been recent related work on grid based OLAP
applications [2, 18, 19], OLAP aware caching [13], and dis-
tributed caching in P2P and Web Services settings [11, 17].
In [2], a grid application for performing data mining and
OLAP tasks on heterogeneous health care data sources is
described. The focus here is primarily on the application
and data integration issues, rather than the efficiency of the
OLAP processing. In [18, 19] the focus is on the challeng-
ing problem of building an OLAP datacube in a grid envi-
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ronment. Although query processing is briefly addressed,
the proposed approach is quite simplistic. It does not make
use of cached results which, we believe is the key to effi-
ciency in the grid OLAP setting, because of the high net-
work latency and relatively low bandwidth between widely
geographically dispersed grid entities.

OLAP data is unique from a caching perspective in that
the results of some queries (fragments) can be used to com-
pute some or all of the results of queries on different views
of the lattice. Kotidis and Roussopoulos [13] take advantage
of this by designing a cache which can further aggregate
cached fragments for producing a query result. However,
their approach is all or none, in that either the entire query
result is obtained by aggregating a single cached fragment,
or not at all. They do not consider aggregating and combin-
ing multiple cached fragments to answer a query, and they
do not consider fragmenting a query and answering part of it
from cache and part from the backend. In [6], this is relaxed
by partitioning each view into discrete chunks, and caching
and querying on a chunk based level. However, this requires
special indexes and functionality at the back end.

Distributed caching approaches have been examined in
P2P and Web Services settings [11, 17]. In [11], process-
ing of OLAP queries in peer-to-peer networks is consid-
ered. They use the chunk based caching scheme of [6],
and peers propagate requests for chunks amongst each other
and data warehouses. In [17] from CCGrid’06, in-memory
caching of web objects in large scale data centers is consid-
ered. Each node maintains an index of the other’s caches,
which they use to cooperatively answer requests.

3. The OLAP Enabled Grid

3.1. Entities

Our application, the OLAP Enabled Grid, is designed
based on the observation that the structure of an enterprise
grid is typically hierarchal: there are a number of sites in
the organization, each having a number of computational
entities. Each site is a location where the enterprise has op-
erations, and it is the case that transmission within a site
is much faster than transmission between sites (e.g. LAN
vs. WAN transmission). The entities at a site are attached
computers (sequential or parallel) which are able to partici-
pate in the OLAP process, for example a user or a database
server. An illustration showing the various entities present
in an example enterprise is given in Figure 1.

As can be seen in the figure, each entity has a role ac-
cording to the functionality it offers in the OLAP Enabled
Grid. There are a total of four different roles:

1. Database Server - A machine which manages an oper-
ational database in the enterprise. The data maintained

by different Database Servers is independent and fol-
lows a common warehouse schema.

2. Computational/Storage Resource - A machine which
offers storage space and processing power to the grid.

3. Site Broker - Responsible for the organization and co-
ordination of resources within that site.

4. User Agent - The workstation of a user who is inter-
ested in performing OLAP operations on the data man-
aged by the Database Servers. Each User Agent has an
amount of cache space on disk for storing the results
of previously answered queries.

3.2. System Architecture

An overview of the logical components of the proposed
system from the perspective of a user is shown in Figure 3.
The corresponding layers of the Open Grid Services Archi-
tecture presented in [9] are shown as well. In this section
we give a brief introduction to the role of each component
in the system. The details of query processing are described
in the sections which follow.
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Figure 3. Components of the proposed grid-
based OLAP solution, and the correspond-
ing Open Grid Services Architecture layers
as presented in [9].

The user interacts with a Front End which displays query
results and translates requests into OLAP queries which are
answered by the Query Service. The Query Service uses
the Distributed Cache Index Service: a global index im-
plemented on the Site Broker of all cached fragments on
the local site. Having such an index allows as much of the
query as possible to be answered by local data. We could
have also followed the approach of [17] and put a cache
index on each User Agent. However, given the possibil-
ity of a large number of User Agents and a high degree of
query fragmentation, this would likely result in a very large
number of messages between User Agents to keep the cache
indexes up to date. We could have forgone an index as in
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the P2P system of [11], but this does not guarantee that the
maximum amount of local data will be used.

The Query Service uses the Data Source Service to ob-
tain both cached fragments as well as query results from
the backend, which in turn uses a Collective Cache Service
for the cached fragments and various Grid OLAP Services
for obtaining the parts of the query which are not cached.
There is one Grid OLAP Service corresponding to the data
of each Database Server in the grid. However, due to the
presence of other computational and storage resources on a
site, there may be multiple underlying OLAP servers which
can answer an OLAP query on that data. In our implementa-
tion, the OLAP Servers store the data in a normalized mul-
tidimensional format using R-Trees as indices as described
in [3–5]. For a particular Database Server, the Site Broker at
its site implements the corresponding Grid OLAP Service,
whose job is to choose which of the OLAP Servers will an-
swer a given query. Which Grid OLAP Services a partic-
ular sub-query goes to depends on the selection ranges of
that sub-query. The data is partitioned across Grid OLAP
Services horizontally by dimension values, and a sub-query
is sent to each Grid OLAP Service whose range of values
intersect with that of the sub-query.

As in the Collective Cache Service, the Data Source Ser-
vice immediately forwards results of sub-queries back to the
Query Service as soon as they are received. This is to allow
the Cache Admission Controller (described in Section 5) to
make caching decisions on each fragment while the Query
Service is waiting for the remaining fragments, rather than
trying to do them all at once. When all of the results of the
sub-queries have been obtained by the Query Service, the
overall query result is constructed and returned to the Front
End for display to the user.

4. Query Processing Algorithms

This section describes the basic steps taken in order to
execute a user’s OLAP query on the grid. Referring to Fig-
ure 3, this involves the description of the Query Service,
Distributed Cache Index Service, Collective Cache Service,
Data Source Service and Grid OLAP Service. Based on our
sharing of local caches, a two-tiered process for answering
queries is proposed. The first tier uses the caches on the lo-
cal site in a collaborative manner to answer as much of the
query as possible, and the second tier requests the missing
fragments from the OLAP servers.

The first tier involves using the Distributed Cache Index
Service on the local Site Broker to find all of the locally
cached fragments which can be used to answer parts of the
query. The Query Service uses knowledge of these frag-
ments to determine a set of sub-queries requesting the re-
maining fragments. This information is called a fragmenta-
tion plan. A fragmentation plan is constructed as follows:

given a query q on a view v, it first finds all cached frag-
ments on v which intersect with the selection range of that
query. It then calculates a set of sub-queries representing
the parts of q which do not intersect with the retrieved frag-
ments, and checks for cached fragments on each of v’s par-
ents in the data cube lattice which can be aggregated to an-
swer parts of these sub-queries. The search then proceeds
recursively from their parents. A full description of our
query processing and cache extraction algorithms is in [14].

Once constructed, the fragmentation plan is sent back to
the Query Service on the User Agent, which asks the Data
Source Service to retrieve the data outlined in the fragmen-
tation plan. The Data Source Service sends the cache re-
quests from the fragmentation plan to the Collective Cache
Service, and is able to identify which Grid OLAP Services
to contact for each sub-query.

In the second tier, a Grid OLAP Service of a Site Broker
receives a query. It polls each OLAP Server, requesting
estimates of how quickly they can answer the given query.
Once the OLAP Servers have responded, the query is sent
to the OLAP Server with the smallest estimated response
time. The results are sent back to the Data Source Service
of the User Agent which requested them. As in [20,21], the
query is scheduled on the OLAP Server which estimates it
can answer it and return the results to the user the quickest.

5. Cooperative Caching Algorithms

In this section the operation of the Cache Admission
Controller implemented on each User Agent is described.
Given the potentially large amount of work that goes into
computing fragments to answer a query, the key to an ef-
ficient grid based OLAP system is an effective caching
scheme. The challenge in our case is how to assign a value
representing the “goodness” of caching a particular frag-
ment, since fragments which can be computed locally are
presumably not as valuable as fragments computed on re-
mote sites. The caching process is for the User Agent to
compute the goodness of each fragment and make a lo-
cal caching decision upon receiveing it, notifying the Dis-
tributed Cache Index Service on the Site Broker of changes
to its cache contents. The disadvantage to this is that there
will be many small fragments in the cache, possibly increas-
ing the complexity of the Distributed Cache Index Service
and the number of subqueries it returns. However, the ad-
vantage is that since there may be vast differences in the cost
of obtaining the various subfragments and in their benefit to
queries on the local site, better use of the cache space can
be made by only caching the most valuable subfragments
thereby also reducing the overlap of fragments in the cache.

When cached data is aggregated, accurate caching in
OLAP is a difficult problem. There are many ways in
which the goodness value of a fragment can be assigned,
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ranging in the tradeoff they provide between accuracy and
speed. For example, fast and rough measures of computing
goodness of a fragment could be the cost to retrieve it [6].
A slower and more exact measure is the Benefit Per Unit
Space (BPUS) goodness used in [12,16], whose complexity
is quadratic in the number of views in the data cube lattice.
There is also the added disadvantage in our scenario that it
requires the User Agent to have knowledge about all of the
fragments cached by other User Agents on its site.

Our goal was to devise a goodness measure in combina-
tion with a caching strategy which is efficient yet still takes
into account the benefit of further aggregating a cached
fragment. The proposed caching strategy maintains a pri-
ority queue of fragments in increasing order of goodness.
Each time the cache is accessed, the goodness of all items
in the cache is decreased (either by subtracting or dividing
by a fixed amount), except for the one which is accessed,
which has its goodness reset back to the original value and
is repositioned in the priority queue. A fragment f is ad-
mitted to the cache if space can be made for it by evicting a
set of fragments whose total goodness is less than that of f .
Cache admission is described in Algorithm 1.

Algorithm 1 Cache Admission
Input: Fragment f with goodness g(f) and storage size

s(f). Priority queue Q of cached fragments of total
size s(Q). Maximum cache size Smax.

Output: Set of fragments F which have been evicted from
the cache.

1: F  ;
2: g(F ) 0
3: s(F ) 0
4: while Smax � s(Q) + s(F ) < s(f) do
5: F  F [ ffming
6: fmin  Q:dequeue()
7: g(F ) g(F ) + g(fmin)
8: s(F ) s(F ) + s(fmin)
9: end while

10: if g(f) < g(F ) then
11: F  ffg
12: else
13: Q:enqueue(f)
14: end if

The purpose of this strategy, particularly with the decay-
ing/refreshing of goodness values over time is that it adapts
to the changing query demands of the users (e.g., view v
is queried less, while view w begins to be queried more)
but also accounts for the later caching of descendants of a
fragment. For example if a fragment f is frequently aggre-
gated in cache for the purpose of computing fragments on
descendant views, its goodness will frequently be refreshed
to the original value and f will have a low chance of being

evicted from cache. However if some fragments which are
descendants of f become cached and used instead, then f
will be accessed less often, its goodness decaying until it is
eventually evicted.

The goodness of a fragment should reflect the savings
in query cost it provides at all levels of aggregation. This
depends on both the quantity of savings and the relative fre-
quency with which it is expected to occur. The quantity
of savings in query cost that f provides is the relative dif-
ference between the cost it took to get f and the cost of
answering future queries on f . Hence we define

savings(f) = cost(f)� query cost(f) (1)

Since the User Agent which requested f is the one making
the caching decision, it can accurately compute cost(f) by
recording the time taken to retrieve it. A User Agent will
likely store the records in f on a contiguous space on disk
without any specialized index, so query cost(f) is mod-
eled as the time it takes to scan f from disk (the size of f in
bytes divided by the disk bandwidth of the user storing it).

The benefit of aggregating f to other views needs to be
taken into account. For example a small fragment of one
of the lower level views provides a large savings in query
cost, but to only a very small proportion of all possible
queries. By contrast, a large fragment of one of the higher
level views provides a smaller savings in query cost, but
can be used to compute a much larger proportion of the
possible queries. We call the proportion of the data cube
lattice that a fragment f covers in the feature dimension
space at all levels of aggregation the volume of f . For
example if a fragment f covers half of the multidimen-
sional area of a view v, but cannot be aggregated to pro-
duce fragments on any of v’s descendants, then f ’s vol-
ume is 1=(2 � num views). To describe how the volume
of a fragment is computed, first consider the simple case
of a data cube lattice with no dimension hierarchies. We
use the same notation for fragments as in [13], which is
the same for that of a view (Section 2), except associated
with each dimension is an interval Ii specifying the range
of values that the fragment contains for dimension i. A
fragment f = ((I1; h1); (I2; h2); : : : (Id; hd)) can be ag-
gregated into a fragment on a view v = (a1; a2; : : : ad) if,
for each i such that hi = Di and ai = all, we have Ii =
(min(Di);max(Di)). Hence, if we let GD(f) be the set
of all i such that hi = Di and Ii = (min(Di);max(Di))
(GD = “Global Dimensions”), then f can be aggregated into
fragments on a total of 2jGD(f)j views. On each of these
views, the fraction of multidimensional space that f covers
is given by the product of the proportion of each dimen-
sion’s range selected by f , i.e.

Y
i:hi 6=all

max(Ii)�min(Ii)
max(Di)�min(Di)
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Hence, for the case with no dimension hierarchies, we have

volume(f) = 2jGD(f)j
2d

Y
i:hi 6=all

max(Ii)�min(Ii)
max(Di)�min(Di)

(2)
of the total space of the data cube covered by a fragment f
at all levels of aggregation.

When there are dimension hierarchies the volume calcu-
lation is slightly less straightforward, since it is not neces-
sary to have Ii = (min(Di);max(Di)) to aggregate along
a hierarchal dimension Di. For example, all products do
not need to be selected to produce the aggregate for a par-
ticular subset of categories. Furthermore, the actual pro-
portion of a dimension’s range which is selected by a frag-
ment is slightly different at each level of the dimension’s
hierarchy. The complete volume calculation for the case
with dimension hierarchies requires enumerating all of the
views to which f can be aggregated, and examining the cor-
responding selection range on these levels. This increases
the complexity of the volume calculation from linear in the
no dimension hierarchies case, to exponential when there
are hierarchies.

We approximate the true volume for the case of dimen-
sion hierarchies by using the selection range on a hierar-
chal dimension to approximate the corresponding selection
range on all levels of the hierarchy. Hence, as in the non-
hierarchal case, we multiply the number of possible aggre-
gates of f by the product over all non global dimensions
of the fraction of the range selected of that dimension, ap-
proximating the proportion of each of the views covered.
To enumerate the number of possible views which the frag-
ment can be further aggregated on, we count the number
of levels l(hi) below the selected level hi of a dimension
Di, including hi itself. For non-hierarchal dimensions Di,
where either hi = Di or hi = all, we have l(Di) = 2. The
number of possible aggregates of f is then

Y
i2GD(f)

l(hi)
Y

i=2GD(f)
(l(hi)� 1)

and the total volume of f is then

volume(f) =

Q
i2GD(f)

l(hi)Q
i=2GD(f)

l(hi)�1
num views �

Q
i:hi 6=all

max(Ii)�min(Ii)max(Di)�min(Di)
(3)

The final goodness measure is

goodness(f) = volume(f)� savings(f)
size(f) (4)

Which gives a measure of the savings in query cost a frag-
ment provides, weighted by the volume representing the
probability with which these savings are expected to be ap-
plied, scaled to the storage space of the fragment.

6. Experimental Results

In this section we describe a prototype of key compo-
nents of the OLAP Enabled Grid and a careful evaluation of
their performance with respect to caching. In the remain-
der, we refer to our cache extraction strategy as Fragment
Aggregation and Recombination (FAR), since it both ag-
gregates cached fragments as well as attempts to recombine
multiple cached fragments for answering a query. FAR is
compared in the context of the grid to the caching approach
of Kotidis and Roussopoulos [13], which we will refer to as
Fragment Aggregation (FA). Their approach, like ours, will
search up the lattice looking for fragments which can be
aggregated to produce a query result, however it differs in
that a query must be answered by exactly one such cached
fragment and will not be broken further into sub-queries.
Whereas Kotidis et al. suggest this does not pay, our results
show that it can indeed be of substantial benefit to the users
on a grid site under realistic circumstances.

We have fully implemented the Query Service, Dis-
tributed Cache Index Service, Cache Admission Controller,
Collective Cache Service, and Data Source Service. The
Cache Services, Grid OLAP Services (both local and re-
mote) and OLAP Servers are simulated. The result is a
working implementation of Tier 1 query processing and
caching on a single site, with the other sites and data being
simulated by single OLAP Server entities. Our implementa-
tion is a parallel program written in the Python scripting lan-
guage, with communication between the entities (Site Bro-
ker, Users and OLAP Servers) being achieved with MPI.

6.1. Experimental Setup

For all our tests, the lattice used has 5 feature dimen-
sions and a single measure dimension sales. One of the di-
mensions has a 5-level non-linear time hierarchy, while the
other two dimensions have 2 and 3 level linear hierarchies
respectively. The total number of rows in the fact table is 10
million, resulting in a lattice with 288 views totaling 35 GB
in storage size.

We use two different types of query distributions in the
experiments. The uniform distribution spreads queries uni-
formly amongst views and their selection ranges amongst
dimension values. This is a difficult query load for caching
as there is no relationship between queries whatsoever. The
hot region distribution used in [11] represents a more realis-
tic scenario where a subset of the aggregates are of particu-
larly high interest to the users. In the hot region distribution
a large percentage of the queries are distributed amongst a
small set of views (the “hot region”). We also distribute the
selection ranges according to a hot region.

Each User Agent is configured with a specified cache
size, a disk bandwidth, a query stream, and optionally a list
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of fragments initially filling its cache. Each OLAP Server
is configured with a disk bandwidth, a network bandwidth
to the local site, a fragment of the fact table which specifies
the partition of the overall data maintained by that OLAP
Server, and a list of materialized views at that OLAP Server.

Most of our tests use the Detailed Cost Savings Ratio
(DCSR) measure [13]

DCSR =

Pq(timenocache(q)� timecache(q))Pq timenocache(q)
which measures the reduction in overall query time
achieved by the cache as a percentage of query time with-
out a cache. In order to achieve this we also implemented a
version of the system with no caching components.

6.2. DCSR vs Cache Size

The first set of tests aims to determine the cache search
strategies’ ability to make effective use of increasing cache
space. The parameters for this experiment were as follows:
Number of dimensions = 5 with 3 hierarchical, Lattice size
= 35GB with 288 views, Duration of runs = 2 Hours, Num-
ber of User Agents = 10, Queries per User Agent = 10,
Query distribution = Hot regions, User disk bandwidth = 20
MB/s, Average query result size = 3.34 MB, Cache size per
User Agent = 50 to 500 MB, Number of OLAP Servers = 5,
OLAP Server disk bandwidth = 80 MB/s, OLAP Server ma-
terialized views = 14 randomly chosen, OLAP Server net-
work bandwidth = 1 local (900 kb/s), 4 remote (100 kb/s).

The DCSR of both FAR and FA as cache size per User
Agent is increased, averaged over 5 independent runs, is
shown in Figure 4. Each cache was initially warmed with
random fragments drawn from the query distribution. The
FAR strategy allows a significant query time reduction of
50% to 60% for caches between 50 and 250 MB in size. For
larger cache sizes the benefits of the FAR approach begin to
wane due to the increased cost of the recursive lattice cache
search and number of separate requests which must be made
for each query, although it is still more beneficial than the
FA approach up to a cache size of 350 MB per user.

6.3. Cache Warming

The previous tests were performed with the cache pre-
loaded with a set of fragments drawn from the same distri-
bution as the queries themselves. It is also important to ex-
amine the behaviour of a system starting with a cold cache,
and how this changes over time as the cache warms up.

For the cache warming experiment, the same parameters
are used as in the previous, except the cache sizes are fixed
at 100 MB for each user, and the run lasts 8 hours during
which time each user issues 40 queries. 10 independent
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Figure 4. Cost savings of FAR and FA as
cache size per user is increased.

runs are performed and the cost savings for each query is
measured in the sequence.

The results are shown in Figure 5. For the FAR strategy,
there is a general trend towards a higher cost savings for the
later queries in the sequence, suggesting that they benefit
from the cached results from earlier queries. The results
are quite noisy for the reason that each point on the plot
is computed from the results of a set of 100 queries, all of
which are different from that of each other point on the plot.
In contrast, the previous tests only varied the cache sizes
while the queries remained the same. We observed a large
sample variance between the times of individual queries,
resulting in highly variable cost savings. The linear best fit
function shown on the plot does yield the conclusion that for
the FAR strategy there is a savings and that it does increase
as the cache is filled, but we also observe that the quantity
of savings appears to depend as much on the specifics of the
query than on the fullness of the cache.
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Figure 5. The DCSR of the FAR and FA cache
search over a sequence of 40 queries.
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6.4. Uniform Queries

The same set of tests as in Section 6.2 have been per-
formed, this time using queries from the uniform random
distribution. This is a much less favourable situation for
caching due to the lack of relationship amongst the queries.
The results, not shown here due to space limitations, are
that a substantial cost savings can still be achieved by the
FAR strategy. It also scales much better with increas-
ing cache sizes in this case as compared to the hot re-
gion query distribution. For FAR, we see a DCSR which
steadily increases from roughly 27.6% to 51.5% for 50MB
and 500MB caches respectively, where as for FA this sav-
ings ranges from 22.6% to 24.6%. Further analysis shows
that the improvement to FAR for larger cache sizes is due
to the substantially smaller cache search time, illustrated in
Figure 6.
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7. Conclusions and Future Work

We have presented a cooperative caching scheme for the
OLAP Enabled Grid in which the user caches distributed
amongst the grid sites cooperate to increase the efficiency
of OLAP query processing. Given that our prototype im-
plementation performs well, the natural next step is to ex-
plore the implementation of the OLAP Enabled grid using
a standard grid toolkit such as Globus, using the WS-DAI
standard for grid database access as set by the Global Grid
Forum [1].
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