
Building Large ROLAP Data Cubes in Parallel ∗

Ying Chen

Dalhousie University

Halifax, Canada

ychen@cs.dal.ca

Frank Dehne

Carleton University

Ottawa, Canada

www.dehne.net

Todd Eavis

Carleton University

Ottawa, Canada

www.scs.carleton.ca/∼teavis

A. Rau-Chaplin

Dalhousie University

Halifax, Canada

www.cs.dal.ca/∼arc

(902) 494-2732, fax 492-1517

— contact author —

Abstract

The pre-computation of data cubes is critical to improving the response time of On-Line

Analytical Processing (OLAP) systems and can be instrumental in accelerating data mining

tasks in large data warehouses. However, as the size of data warehouses grows, the time it

takes to perform this pre-computation becomes a significant performance bottleneck. This pa-

per presents a fast parallel method for generating ROLAP data cubes on a shared-nothing

multiprocessor based on a novel optimized data partitioning technique. Since no shared disk is

required, this method can be applied on highly scalable processor clusters consisting of stan-

dard PCs with local disks, connected via a data switch. The approach taken, which uses a

ROLAP representation of the data cube, is well suited to large data warehouses on high dimen-

sional data, and supports the generation of both fully materialized and partially materialized

cubes. In comparison with previous approaches, our new method does significantly improve the

scalability with respect to both, the number of processors and the I/O bandwidth (number of

parallel disks).

We have implemented our new parallel shared-nothing data cube generation method and

evaluated it on a PC cluster, exploring relative speedup, scaleup, sizeup, output sizes and data

skew. For a fact table with 16 million rows and 8 attributes, our parallel data cube generation

method achieves close to optimal speedup for as many as 32 processors, generating a full data

cube in under 7 minutes. For a fact table with 256 million rows and 8 attributes, our parallel

method achieves optimal speedup for 32 processors, generating a full data cube consisting of

≈ 7 billion rows (200 Gigabytes) in under 88 minutes.

∗Research partially supported by the Natural Sciences and Engineering Research Council of Canada.

1

1 Introduction

The pre-computation of the different views (group-bys) of a data cube, i.e. the forming of aggre-

gates for every combination of GROUP-BY attributes, is critical to improving the response time

of On-Line Analytical Processing (OLAP) queries in decision support systems [13] and can be in-

strumental in accelerating data mining tasks in large data warehouses [14]. As the size of data

warehouses grows, the time it takes to perform this pre-computation becomes a significant perfor-

mance bottleneck, one which may stretch into days in the very largest cases [1]. This paper presents

a fast parallel method for generating ROLAP data cubes on a shared-nothing multiprocessor based

on a novel optimized data partitioning technique. Since no shared disk is required, this method can

be applied on highly scalable processor clusters consisting of standard PCs with local disks, con-

nected via a high bandwidth (Ethernet) switch. Parallelism based on such shared-nothing machines

is an attractive solution to improving system performance especially in the context of large data

warehouses where scaling I/O bandwidth to disk is as important as scaling computational resources.

For a given raw data set, R, with N records and d attributes (dimensions), a view is constructed

by an aggregation of R along a subset of attributes. As proposed in [13], the pre-computation of

the full data cube (the set of all 2d possible views) or a partial data cube (a subset of all 2d possible

views) supports the fast execution of subsequent OLAP queries. Many methods have been presented

for generating the data cube on sequential [3, 15, 21, 22, 26, 27] and parallel systems [4, 5, 7, 10, 11,

17, 18, 20]. For parallel data cube construction, good data partitioning is a key factor in obtaining

good performance on shared nothing multiprocessors. Some researchers partition data on one or

several dimensions [19, 12]. They assume that the product of the cardinalities of these dimensions

is much larger than the number of processors [12], in order to achieve sufficient parallelism. The

advantage of their method is that they do not need to merge views across the network. However,

in practice, this assumption is often not true. The cardinality of some dimensions may be small,

such as gender, months and intervals for a numeric attribute. Therefore, those methods are often

not scalable. One approach which avoids these problems is to partition on all dimensions and then

apply a parallel merge procedure [4]. The challenge here is that merge procedures based on fixed

data partitioning schemes often lead to excess inter-processor communications which may greatly

reduce the speedup achieved by the parallel system and limit its effective scalability.

In this paper, we describe and evaluate an optimized data partition scheme for parallel ROLAP

data cube generation. This dynamic data partitioning scheme adapts to both, the current data set and

the performance parameters of the parallel machine. Using this scheme, data cube generation tasks

involving millions of rows of input, that take days to perform on a single processor machine, can

be completed in just hours on a 32 processor cluster. We have performed an extensive performance

evaluation of our new method, exploring relative speedup, scaleup, sizeup, output sizes and data

skew. For our experiments, our new optimized data partitioning method results in approximately

2

twice the speedup achieved with fixed data partitioning. The optimized data partition scheme ex-

hibited optimal, linear, speedup for full cube generation on as many as 32 processors, as well as

excellent sizeup and scaleup behavior. For example, for a fact table with 16 million rows and 8

attributes, our parallel data cube generation method achieves close to optimal speedup for 32 pro-

cessors, generating a full data cube in under 7 minutes. For a fact table with 256 million rows and

8 attributes, our parallel method achieves optimal speedup for 32 processors, generating a full data

cube consisting of ≈ 7 billion rows (200 Gigabytes) in under 88 minutes.

In comparison with previous approaches, our new method has a significantly better scalability

with respect to the number of processors. Optimal speedup for as many as 32 processors was

not observed for previous parallel methods [19, 12, 4]. In addition, because of its shared nothing

approach, our new method does also significantly improve the scalability with respect to the I/O

bandwidth (number of parallel disks) which is of great importance for handling large data sets.

The remainder of this paper is organized as follows. In Section 2 we present an overview of the

entire algorithm and in Section 3 we discuss in detail our new optimized data partitioning method.

The performance of our method is discussed in Section 4.

2 Algorithm Overview

Consider a raw data set R with N rows and d attributes D1, . . . ,Dd. Without loss of generality, let

|D1| ≥ |D2| ≥ ... ≥ |Dd |, where |Di| is the cardinality for dimension Di, 1 ≤ i ≤ d (i.e. the number

of distinct values for dimension Di). As input, we assume a raw data set, R, with N records and d

dimensions D1, D1 ... Dd−1 distributed evenly over the p disks; see Figure 1b.

Let S be the set of all 2d view identifiers. Each view identifier consists of a subset of {D1, D2

... Dd}, ordered by the cardinalities of the selected dimensions (in decreasing order). Alternatively,

S could also be a subset of the 2d view identifiers selected by the users. We refer to this case as

partial data cube construction. The input data set R is evenly distributed over the p disks of the

p processors as shown in Figure 1b. The goal is to create a data cube DC containing the views

in S. We assume that, when the algorithm terminates, every view is distributed evenly across the

p disks; see Figure 1b. It is important to note that, for the subsequent use of the views by OLAP

queries, each view needs to be evenly distributed in order to achieve maximum I/O bandwidth for

subsequent parallel disk accesses.

The basic communication operation used by our parallel data cube algorithm is the h-relation

(method MPI ALL TO ALL v in MPI). Our method uses two basic local disk operations, applied by

each processor to its local disk: (1) linear scan and (2) external memory sort [24]. For a processor

Pj with local memory size M and a local disk with block transfer size B, a linear scan through a

file of size n stored on its disk requires O(N
B) block transfers between disk and memory while an

external memory sort of that file requires O(N
B log M

B

N
B) block transfers [24]. We will present our

3

mem

di
sk

proc

NIC

mem

di
sk

proc

NIC

mem

di
sk

proc

NIC

mem

di
sk

proc

NIC

xxx
xxx
xxx
xxx

P0 1P p-1P

network or switch

(a)

Disk for
P0 1

Disk for
P p-1

Disk for
P

...

...

...
.........

INPUT

OUTPUT

ABCD (raw data set, R)

ABC

ABD
ACD

D
...

(b)

Figure 1: (a) Shared-Nothing Multiprocessor. (b) Data Partitioning.

method for a shared-nothing multiprocessor with one local disk per processor Pj. However, it is

easy to generalize our methods for machines with multiple local disks per processor by applying

the linear scan and external memory sort methods for a single processor with multiple local disks

presented in [25].

Let Si ⊂ S be the subset of view identifiers in S that start with Di, and let DCi be the data cube

for Si. DCi is called the i-subcube and the view Di . . .Dd is referred to as Rooti; see Figure 2. In the

shared nothing environment considered in this paper, all data sets are distributed over the p disks of

the p processors as shown in Figure 1b. We refer to the part of a data set stored on processor Pj as its

j-partition. The j-partitions of R, DCi, and Rooti are denoted as Rj, DCi j, and Rooti j , respectively.

Algorithm 1 describes the global structure of our parallel data cube construction algorithm for

shared-nothing multiprocessors. The algorithm consists of d iterations i = 1 . . .d. In iteration i,

the i-subcube DCi is created in five main steps: Computing Rooti, computing the schedule tree Ti,

optimizing the partitioning of Rooti into Rooti1 ... Rootip, computing the local DCi j from each

Rooti j, and merging the DCi j to obtain the correct i-subcube DCi.

In the following, we will first present further details on Step 3 of Algorithm 1 (how the schedule

tree Ti is built) and Step 6 (how locally generated i-subcubes are merged). Step 4, the optimized

data partitioning, which is the main contribution of this paper, will be discussed in Section 3.

In Step 3, our parallel algorithm uses as a building block a standard sequential top-down data

4

ABCD

BCACAB

BCDACDABC

ALL

DCBA

AD CDBD

ABD

1-Subcube

2-Subcube

3-Subcube

4-Subcube

Root

Figure 2: Subcubes of a data cube for d = 4. Dimensions are labelled D1=“A”, D2=“B”, D3=“C”,

D4=“D”.

cube method such as Pipesort [22]. Such methods have in common that they consist of a two-phase

approach. In the first phase, a schedule tree T is constructed which is a subgraph of the lattice and

contains as nodes the identifiers of all views to be constructed. Recall that view v is a parent of a

view v′ if v can be created from v′. The schedule tree T identifies the sequence in which the views

are to be constructed in the second phase. The main difference between the various top-down data

cube methods is the schedule tree T that they build. For example, Pipesort starts with the lattice

and assigns to every view identifier an estimate of the size of the respective view [9, 23]. It then

computes the cost of the aggregate operation associated with each edge of the lattice. The schedule

tree T is then built by scanning the lattice level by level and computing for each two subsequent

levels of nodes, and the edges between them, a minimum cost bi-partite matching. We use Pipesort

to compute the schedule tree Ti in Step 3 of Algorithm 1 if all 2d views are to be computed. For

building the partial data cube, i.e. a subset of the 2d possible views, we use a modified schedule

tree construction method presented in [6].

We now discuss how locally generated i-subcubes are merged in Step 6. In Step 5 of Algo-

rithm 1, each processor Pj locally computes DCi j from its local Rooti j. For a view v of Si, let v j

be the local view created by processor Pj. We need to merge, for each view v in Si, the p different

views vj created on the p different processors Pj. Consider Algorithm 1 for i = 1 and the 1-subcube

shown in Figure 2. In Step 2 of Algorithm 1, Root0 = R is globally sorted by ABCD. In Step 5

, each processor Pj computes locally DC1 j from its data set Root0 j. Consider the views ABCDj,

ABCj, AB j, and Aj computed in Step 5. All these views are in the same sort order as the global sort

order created in Step 2 because they are a prefix of ABCD. We shall refer to these views as the prefix

views. The other views, ABDj, ACj, ACD j and ADj, are not a prefix of ABCD and are therefore in a

sort order that is different from the global sort order. We shall refer to them as the non-prefix views.

Consider a prefix view v and the problem of merging v1, . . . , vp stored on processors P1, . . . , Pp.

For example, consider the view v = AB in Figure 2 and the problem of merging AB1, . . . , ABp. The

5

Algorithm 1 Parallel–Shared–Nothing–Data–Cube
Input: R, the raw data set; N, the number of rows in R; d, the number of attributes; p, the number

of processors; S, the set of views to be generated. Every processor Pj(1 � j � p) stores on its

disk a set Rj of n/p rows of R.

Output: DC, the data cube distributed over the p processors. Each view is evenly distributed over

the p processors’ disks.

1: for i = 1 to d do

2: Compute Rooti via a parallel global sort of Rooti−1 by key Di, . . . ,Dd , where Root0 = R. As

a result, each processor Pj stores a j-partition, Rooti j, of Rooti.

3: Processor P0 generates and broadcasts the schedule tree, Ti, for computing Si from Rooti.

4: Execute Optimize–Partition(Rooti) to obtain an optimized partitioning of Rooti into Rooti j,

1 ≤ j ≤ p.

5: Every processor Pj(1� j� p) locally computes DCi j from its Rooti j using the schedule tree

Ti.

6: Execute Merge–Subcube(DCi) to obtain the correct i-subcube DCi.

7: end for

goal is to obtain a global AB sort order for AB1 ∪AB2 . . .∪ABp and then agglomerate those items

that have the same values for dimensions A and B. Since AB is a prefix of the global sort order,

ABCD, the first part is already done and the only items that, potentially, need to be agglomerated

are the last item of vj and the first item if vj+1 for each 1 ≤ j < p. For each prefix view v every

processor Pj+1 simply sends the first item of vj+1 to processor Pj which compares it with the last

item of vj. Nothing else needs to be done in order to merge all vj. Figure 3 illustrates the case of a

prefix view v as “Case 1”.

We now study the case of merging the views v1, . . . , vp stored on processors P1, . . . , Pp for a

non-prefix view v. For example, consider the view v = AC in Figure 2 and the problem of merging

AC1, . . . , ACp. Again, the goal is to obtain a global AC sort order for AC1 ∪AC2 . . .∪ACp and

then agglomerate those items that have the same values for dimensions A and C. However, AC is

not a prefix of ABCD and, therefore, the different vj can have considerable overlap with respect

to the AC order. Figure 3 illustrates the case of a non-prefix view v as “Case 2” and “Case 3”.

The rectangles represent the vj with respect to AC order. The shaded areas represent the overlap

which, in contrast to Case 1 (prefix view), can now be considerably more than just one element. For

each non-prefix view v, every processor Pj sends its first and last element to every other processor.

Each processor Pk then determines its overlap with each Pj and sends that overlap to Pj. For each

processor Pj let v′j be the view vj plus all the overlap received by processor Pj. We distinguish two

cases which are both illustrated in Figure 3. The distinguishing criterion is the imbalance between

the v′j defined as I (|v′1|, |v′2|, . . . |v′p|) = max{(rmax − ravg)/ravg,(ravg − rmin)/ravg} where rmin, rmax,

6

Case 1 Case 2 Case 3

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxx
xxx
xxx
xxx
xxx
xxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxx
xxxx
xxxx
xxxx

P
j

P
j+1

P
j+2

vj

vj+1

vj+2

vj

vj+1

vj+2

vj

vj+1

vj+2

Figure 3: Illustration of cases for Merge–Subcube(DCi).

and ravg are the minimum, maximum and average of {|v′1|, |v′2|, . . . |v′p|}, respectively. “Case 2”: IF

I (|v′0|, |v′1|, . . . |v′p−1|) ≤ γ for a non-prefix view v THEN each Pj locally sorts v′j and agglomerates

the items with same values for dimensions in v. “Case 3”: IF I (|v′1|, |v′2|, . . . |v′p|) > γ for a non-prefix

view v THEN the v j are merged by a global sort.

If the imbalance is smaller than γ (Case 2) then we proceed similar to Case 1. If the imbalance is

larger than γ (Case 3) then we need to completely re-balance via a global sort. In fact, for Case 3 we

do not wish to even route the overlap between processors. We rather re-sort immediately. Hence, in

order to determine whether Case 2 or Case 3 applies, each processor Pk first determines the size of

its overlap with each Pj and sends only the information about the size of that overlap to Pj.

3 Optimized Data Partitioning

Good data partitioning is a key factor in obtaining good performance on shared nothing multipro-

cessors. Some researchers partition data on one or several dimensions [19, 12]. They assume that

the product of the cardinalities of these dimensions is much larger than the number of processors

[12], in order to achieve sufficient parallelism. The advantage of their method is that they do not

need to merge views across the network. For examples, if we partition on A, then ABC and AC do

not need to be merged, or if we partition on A and B, then ABC and ABD do not need to be merged.

However, in practice, this assumption is often not true. The cardinality of some dimensions may be

small, such as gender, months and intervals for a numeric attribute. The number of processors in

a parallel machine may be large, especially in clusters of workstations. Therefore, those methods

are often not scalable. One approach which avoids these problems is to partition on all dimensions

7

and then apply a parallel merge procedure [4]. The challenge here is that merge procedures based

on fixed data partitioning schemes often lead to excess inter-processor communications which may

greatly reduce the speedup achieved by the parallel system and hence its effective scalability. In

this paper, we describe and evaluate an optimized dynamic data partition scheme for ROLAP data

cube generation. This dynamic data partitioning scheme adapts to both, the current data set and the

performance parameters of the parallel machine.

For a given parallel machine, we introduce four performance parameters tcompute, tread , twrite and

tnetwork defined as follows: tcompute is the average time in microseconds to fetch/compare/store a

data item in main memory; tread is the average time in microseconds to read a data item from disk;

twrite is the average time in microseconds to write a data item to disk; tnetwork is the average time in

microseconds for communicating a data item between processors. For heterogeneous parallel ma-

chines (e.g. clusters with different generations of processors), the parameters tcompute, tread and twrite

can differ between processors. In this case, we choose the parameters for the slowest processor. The

parameter tnetwork depends on both, the network hardware and the number of processors used. Based

on the above four parameters, we devise a cost model to estimate the time for communication and

computation, and determine the best data partitioning for Algorithm 1. Before starting Algorithm 1,

our software enters a test phase where it measures automatically the parameters tcompute, tread , twrite

and tnetwork for the given machine.

After the i-th iteration of Step 2 of Algorithm 1, the j-partitions of the Rooti are well balanced

over processors Pj (1 ≤ j ≤ p). However, as a result of the global sort, subsequent items with the

same sort key may end up on two different (subsequent) processors. This is especially the case

when the cardinality of some dimensions is small, such as for attributes like gender, months and

intervals for a numeric attribute. The situation is illustrated in Figure 4 for an attribute “A” with

attribute values a1,a2, . . . ,a10. When the data is sorted by “A” in Step 2, each processor receives a

range of data as indicated. Consider the range of items with value a4. Some items are on Processor

1 and some are on Processor 2. The problem is that during the merging of subcubes in Step 6

of Algorithm 1, data movement occurs because Processor 2 has to send its items with value a4 to

Processor 1. Instead, we could have made a4 the dividing line between the data between Processors

1 and 2 and moved all items with value a4 to Processor 2. We call this process “pivoting” and refer

to a4 as the pivot. If we choose a4 as a pivot, then no data will have to be transferred between

Processors 1 and 2 during the merging of subcubes in Step 6 of Algorithm 1. However, on the

negative side, choosing a4 as a pivot introduces an imbalance in data size between Processors 1

and 2, and other steps of Algorithm 1 may now have a longer computation time because of this

imbalance, since the total computation time is always determined by the slowest processor.

Our strategy is to choose pivots in such a way that we obtain the best tradeoff between lower

communication due to less data movement and longer computation due to imbalance. We build a

cost model to measure the impact of each possible pivot and choose the one with the lowest cost.

8

Processor 1 Processor 2 Processor 3

Pivot 1 Pivot 2

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

n

m

Figure 4: Data partitioning and pivots.

We iterate this process until the total cost can be no further reduced.

We now discuss our cost model for the performance of Algorithm 1 with respect to a chosen

set of pivots. Note that Steps 2 and 3 are not impacted by pivots. Our model therefore measures

only the performance of Step 4 (shifting partitions), Step 5 (computing cubes), and Step 6 (merging

cubes).

An important factor to be taken into consideration is the impact of external memory. For our

implementation of Algorithm 1, views that are small enough to fit into main memory are created

in memory for better speed, while larger views are built in external memory through disk scan and

external memory sort. In order to determine which version is used at run time, we define a maximal

number of records, nmax. If the number of records of a view is smaller than nmax, we calculate the

cost according to a formula for internal memory computation. Otherwise, we calculate the cost

according to a formula for external memory computation. For example, if nmax is 1,000,000, view

ABCD has 2,000,000 records and view ABC has 500,000 records, then we process ABC in main

memory using the internal memory cost calculation and process ABC in external memory using the

external memory cost calculation.

To calculate the cost of Steps 4-6 of Algorithm 1 for each view v, we use two basic numbers

for each processor: n, the number of records stored at the processor and m, the number of moved

records. Figure 4 illustrates n and m for Processor 2. The n and m values for Rooti are obtained

through a local linear scan. For every other view v in DCi, we estimate values nest and mest as

follows: Set n to the estimated view size calculated in Step 3 of Algorithm 1. Set m = mRooti
nRooti

n where

nRooti and mRooti are the n and m values for Rooti, respectively. Note that a record is composed of d

feature attributes and 1 measure attribute so that the size of a record is proportional to d + 1.

We are now ready to analyze Sets 4 to 6 of Algorithm 1. For each step, we will give the cost for

internal and external memory calculation and outline our rationale for the give formulas.

Step 4. Scanning: n(d/2) ∗ tcompute (internal memory), n(d + 1) ∗ tread + n(d/2) ∗ tcompute (ex-

ternal memory). Exchanging: m(d + 1) ∗ tnetwork (internal memory), m(d + 1) ∗ tnetwork (external

memory). Merging: n(d/2)∗ tcompute (internal memory), n(d + 1)∗ twrite + n(d/2)∗ tcompute (exter-

nal memory). Rationale: Step 4 in Algorithm 1 shifts partitions of root views among processor. It

9

consists of three sub-steps: scanning data, exchanging data and merging data. Each processor scans

the local data and compares each row with the pivots considerd. To compare a row with a pivot, we

compare attribute values one by one. In the best case, only one comparison is needed, and d com-

parisons in the worst case, where d is the number of attributes. The average number of comparisons

is d/2. In the external memory version, the cost for reading data from disk is n(d +1)∗ tread , where

n(d + 1) is the number of item in Rooti since each row contains d + 1 items. In both versions, the

communication cost is m(d + 1)∗ tnetwork, where m(d + 1) is the number of items moved across the

network. The cost of the last sub-step is n(d/2)∗ tcompute . For the merging, the number of compar-

isons is a function of both, n and m. However m is much smaller than n and we ignore m in order to

simplify calculations. In the external version, the cost for writing the data to disks is n(d +1)∗twrite.

Note that, this is also an approximation since data is exchanged between processors.

Step 5. Sorting: n log n∗ tcompute +n(d/2)∗ tcompute (internal memory), n(d +1)∗ tread +n logn∗
tcompute+n(d/2)∗tcompute (external memory). Scanning: n(d+1)∗tcompute (internal memory), n(d+

1)∗ twrite + n(d + 1)∗ tcompute (external memory). Rationale: Step 5 of Algorithm 1 calculates the

schedule tree used to generate the views. As described in [22], we compute pipelines one by one.

For each pipeline, the first view is sorted and the remaining views are generated by scanning. For

example, in Figure 2, the schedule tree for the 1-subcube consists of a pipeline, ABCD → BCD →
BC → B. The cost of sorting is n log n ∗ tcompute + n(d/2) ∗ tcompute [6] for the internal memory

version. The external version includes an additional cost for disk reading: n(d + 1)∗ tread . The cost

for scanning is n(d/2)∗tcompute for the internal memory version, plus n(d +1)∗twrite for the external

memory version.

Step 6. Scanning: n(d/2) ∗ tcompute (internal memory), n(d + 1) ∗ tread + n(d/2) ∗ tcompute (ex-

ternal memory). Exchanging: m(d + 1) ∗ tnetwork (internal memory), m(d + 1) ∗ tnetwork (external

memory). Merging: n(d/2)∗ tcompute (internal memory), n(d + 1)∗ twrite + n(d/2)∗ tcompute (exter-

nal memory). Rationale: Step 6 of Algorithm 1 merges i-subcubes between processors. The cost

calculation is similar to the calculation for Step 4.

Based on the above cost model, we may evaluate possible partitionings and choose an optimal

partition with minimum cost. Algorithm 2 shows our method to select a set of pivots and shift the

partitions. The function Cost() represents the cost function for a given set of pivots as discussed

above. Algorithm 2 first calculates the cost of the partitioning generated by Steps 2 and 3 of Al-

gorithm 1 without any pivots. We then select pivots, calculate the cost based on those pivots and

update the partitioning if the new cost is smaller than the old one. This process will continue until

the cost can not be reduced any further. Unfortunately, the number of possible pivot combinations is

very high. For p processors, the maximum number of possible pivots is p−1. Each pivot can either

be not selected or selected for its left adjacent processor (all data move left) or its right adjacent

processor (all data move right). Hence, the total number of possible data partitionings is 3p−1. If we

have 32 processors in a cluster, the total number of partitionings is 332−1 = 617,673,396,283,947.

10

In Algorithm 2, we choose a greedy method to reduce the cost as much as possible. In each iteration

of the repeat-until loop, we choose the pivot which generates the greatest cost reduction among all

possible remaining pivots. We update the partitioning and the cost, and search again until we can-

not reduce the cost further by adding another pivot. Algorithm 2 then re-partitions Rooti, using the

chosen set of pivots.

Algorithm 2 Optimize–Partition(Rooti)
1: Each processor Pj collects locally, for its data set Rooti j, the partitioning information (pivots

and their n, m values) required for the evaluation of the function Cost(). The partitioning

information is broadcast to all processors.

2: Each processor Pj computes cost = Cost(current partition without pivots).

3: done = FALSE.

4: repeat

5: for each processor Pj in parallel do

6: Processor Pj calculates the new cost costnew
j obtained by adding pivot j, (moving the re-

spective data to the left or right processor, whichever is lower cost).

7: end for

8: Let costnew = Min(costnew
1 , costnew

2 , ...,costnew
p−1)

9: if costnew < cost then

10: update partition by adding the chosen pivot.

11: cost = costnew

12: else

13: done = TRUE

14: end if

15: until done

16: Rooti is re-partitioned using the chosen set of pivots.

4 Performance Evaluation

We have implemented our optimized data partitioning method for shared-nothing data cube gener-

ation using C++ and the MPI communication library. This implementation evolved from the code

base for a fast sequential Pipesort [5] and the sequential partial cube method described in [6]. Most

of the required sequential graph algorithms, as well as data structures like hash tables and graph

representations, were drawn from the LEDA library [16].

Our experimental platform consists of a 32 node Beowulf style cluster with 16 nodes based on

2.0 GHz Intel Xeon processors and 16 more nodes based on 1.7 GHz Intel Xeon processors. Each

node was equipped with 1 GB RAM, two 40GB 7200 RPM IDE disk drives and an onboard Inter

11

Pro 1000 XT NIC. Each node was running Linux Redhat 7.2 with gcc 2.95.3 and MPI/LAM 6.5.6.

as part of a ROCKS cluster distribution. All nodes were interconnected via a Cisco 6509 GigE

switch.

Our implementation of Algorithm 1 initially runs a performance test to calculate the key ma-

chine specific cost parameters, tcompute, tread , twrite and tnetwork, that drive our optimized dynamic data

partitioning method. On our experimental platform these parameters were as follows: tcompute =

0.0293 microseconds, tread = 0.0072 microseconds, twrite = 0.2730 microseconds. The network

parameter, tnetwork, captures the performance characteristics of the MPI MPI ALL TO ALL v oper-

ation on a fixed amount of data relative to the number of processors involved in the communication.

On our experimental platform, tnetwork = 0.0551,0.0873,0.1592,0.2553,0.4537,0.5445 microsec-

onds for p = 2, 4, 8, 16, 24, and 32, respectively.

In the following experiments all sequential times were measured as wall clock times in seconds.

All parallel times were measured as the wall clock time between the start of the first process and

the termination of the last process. We will refer to the latter as parallel wall clock time. All times

include the time taken to read the input from files and write the output into files. Furthermore, all

wall clock times were measured with no other users on the machine.

For this series of experiments we generated a large number of synthetic data sets which var-

ied in terms of the following parameters: N - number of records, d - number of dimensions,

|D1|, |D2| . . . |Dd | - cardinality in each dimension, and α1,α2 . . .αd - skew in each dimension. Unless

otherwise stated, the following defaults were used for these parameters: dimensions d = 8, cardi-

nalities |Di| = 256, 128, 64, 32, 16, 8, 4, 2, skew α = 0 in all dimensions, and percentage of views

selected k = 100%.

Throughout these experiments, as we increased the number of processors we observed two

countervailing trends. Increasing processors, while holding total data size constant, leads to less

data per processor and therefore better relative speedup because each processor can fit more of its

data in memory, thereby reducing disk related overheads. On the other hand, using standard GigE

switches and a standard MPI implementation, increasing the number of processors reduces the speed

of communication, even when total data size communicated is held constant, and therefore tends to

reduce relative speedup. The slight super linear effects observed in some of these experiments, for

example at 16 processors in Figure 5, result when the benefits of fitting data in memory outweigh

the penalties associated with higher communication overheads.

4.1 The Effects of Optimized Data Partitioning

Figure 5 shows for full cube construction the parallel wall clock time observed for data sets of

N = 8 million records, with and without optimized data partitioning, as a function of the number

of processors used. Figure 6 shows the corresponding relative speedup. Note that optimized data

12

partitioning leads to a significant improvement in speedup. Without it, relative speedup hovers

around 50% of optimal, while linear (i.e. optimal) relative speedup is achieved with optimized data

partitioning.

Figure 7 shows for full cube construction the parallel wall clock time in seconds on a p = 32

node cluster as a function of the data size N = 16M, 32M, 48M, 64M, 128M, and 256M records. We

observe that, with optimized partitioning, when we double the input size of the cube being generated

at most twice the time is required. This holds true even for extremely large cubes where the input

consists of 256 million rows of data (9.2 Gigabytes) and the output consists of a data cube consisting

of 2d views containing a total of ≈ 7 billion rows (200 Gigabytes), despite the fact that we are not

scaling network bandwidth, in large part because of the improved data balance.

4.2 Relative Speedup

Speedup is one of key metrics for evaluation of parallel database systems [8] as it indicates the

degree to which adding processors decreases the running time. The relative speedup for p processors

is defined as Sp = t1
tp

, where t1 is the running time of the parallel program using one processor, all

communication overhead having been removed from the program, and tp is the running time using p

processors. Figure 8 shows for full cube construction the parallel wall clock time observed for data

sets of varying sizes as a function of the number of processors used, and Figure 9 the corresponding

relative speedup.

As is typically the case, relative speedup improves as we increase the size of the input and

consequential the total amount of work to be performed. With N = 8,000,000 records, optimal linear

relative speedup can be observed all the way up to 32 processors, while with only N = 1,000,000

records speedup drops off beyond 4 processors. In general, linear speedup is observed when there

is at least N/p = 250,000 records per processor.

4.3 Partial Cubes

In many applications, users do not require all of the 2d views contained in a full data cube but rather

only a selected subset. The challenge for a partial cube generation method is to efficiently construct

the set of selected views, maintaining relative efficiency even as the number of views (and therefore

total work) is decreased.

Figure 10 shows for partial cube construction the parallel wall clock time observed for a range of

different percentages of selected views as a function of the number of processors, and Figure 11 the

corresponding relative speedup. Note that near optimal speedup is achieved for a range of different

percentages of selected views up to 16 processors. Beyond that there is a reduction in speedup for

smaller set of selected views, in large part because there is simply not enough work to keep all of

the processors busy.

13

4.4 Scaleup

Scaleup is another key metric for evaluation of parallel database systems [8]. It indicates whether

a constant running time can be maintained as the workload is increased by adding a proportional

numbers of processors and disks.

Figure 12 shows for full cube construction the parallel wall clock time observed as a function

of the number of processors used when N/p = 0.125M,0.25M,0.5M,1M records per processor.

Overall, we observe good scaleup. Initially, when we double the number of processors and double

the size of the input, we observe a better than linear scaleup for all curves in Figure 12. This is

due to the fact that we are holding the cardinalities of attributes constant as we increase the data

size and therefore the relative density of the data cube is increasing which is beneficial for top-

down generation methods [22, 2]. This increase in relative density leads to more agglomeration and

therefore a smaller output data size per processor, as illustrated in Figure 13. However, this effect

is offset by the fact that the network bandwidth is not being scaled as we increase the total input

size N. As we increase the data size per processor more data has to be moved across the network as

illustrated in Figure 13. When the total input size N is equal to, or greater than, 8M records network

congestion on our switch begins to degrade the scaleup performance. However this effect can be

observed to flatten out after N reaches 16M records.

4.5 Sizeup

Sizeup is similar to scaleup but fixes the number of processors. It indicates whether a proportional

running time can be maintained as the workload is increased. The sizeup for x units of workload is

defined as Ux = tx
t1
, where t1 is the running time of one unit workload and tx is the running time of x

unit workload. An ideal Ux is x, which implies that x units of workload costs x times more time than

one unit of workload, so the curve of an ideal sizeup is a linear line. Figure 14 shows for full cube

construction the sizeup observed for data sets of between 1 and 8 million records using between 1

and 32 processors. We observe that the sizeup curves are all approximately linear. The actual slope

of the curves is determined by the ratio of the parallel overhead for fixed p when N = 1,000,000.

Figure 15 shows for cube construction the relative sizeup observed for data sets of between 1

and 256 million records on p = 32 processors. Even with these large record counts we observe good

sizeup performance.

4.6 Data Skew

Data sets with skewed distributions can pose an interesting challenge to parallel data cube gener-

ation methods. As skew increases, data reduction tends also to increase, particularly in top-down

generation methods [22, 2]. Data reduction is typically positive, as it reduces the total amount of

work to be performed. However, if data reduction is large and unevenly spread across the processors

14

it may unbalance the computation and cause the amount of data that has to be communicated to rise

sharply. To explore this issue we generated data sets using the standard ZIPF [28] distribution in

each dimension with α = 0 (no skew) to α = 2 (high skew).

Figure 16 shows for cube construction the parallel wall clock time observed as a function of the

skew for α = 0,1,2, and Figure 17 the corresponding relative speedup. We observe that, in general,

as skew is increased parallel time decreases due to data reduction and decreased local computation.

Our data partitioning optimization appears to handle gracefully the resulting data imbalance by

shifting data appropriately. However, if this data reduction is very large, as for α = 2, it reduces the

opportunities for speedup as there is simply much less work to be parallelized.

4.7 Cardinality of Dimensions

The cardinality of the dimensions in a data set can affect the performance of our algorithm. As

cardinalities increase so does the sparsity of the data set and this may adversely effect parallel time

especially given that top-down methods [22, 2] are designed primarily for dense data cubes. Curves

A, B and C of Figure 18 clearly illustrate this effect. The sparser data sets require significantly

more time, although, as can be seen in Figure 19, this has a positive effect on the relative speedup

achieved.

5 Conclusion

In this paper, we show how optimizing the data partitioning for parallel ROLAP data cube con-

struction methods on shared-nothing multiprocessors can provide a significant performance im-

provement. Our optimized data partitioning method adapts to both, the current data set and the

performance parameters of the machine. In comparison with previous approaches, our new method

has a significantly better scalability with respect to the number of processors. Optimal speedup for

as many as 32 processors was not observed for previous parallel methods [19, 12, 4]. In addition,

because of its shared nothing approach, our new method does also significantly improve the scala-

bility with respect to the I/O bandwidth (number of parallel disks) which is of great importance for

handling large data sets.

References

[1] T3 Project Technical Overview. White paper, Microsoft, EMC, and Unisys, 2001.

[2] S. Agarwal, R. Agarwal, P.M. Deshpande, A. Gupta, J.F. Naughton, R. Ramakrishnan, and

S. Srawagi. On the computation of multi-dimensional aggregates. In Proc. 22nd VLDB Conf.,

pages 506–521, 1996.

15

[3] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. In ACM

SIGMOD Conference on Management of Data, pages 359–370, 1999.

[4] Y. Chen, F.Dehne, T.Eavis, and A.Rau-Chaplin. Parallel rolap data cube construction on

shared-nothing multiprocessors. In Proc. International Parallel and Distributed Processing

Symposium (IPDPS 2003), page 70.2. IEEE Computer Society, 2003.

[5] F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin. Parallelizing the data cube. Dis-

tributed and Parallel Databases, 11(2):181–201, 2002.

[6] F. Dehne, T. Eavis, and A. Rau-Chaplin. Computing partial data cubes. In Proc. HICSS-37,

January, 2004, available online at http://www.cs.dal.ca/˜arc/publications/2-30/paper.pdf.

[7] F. Dehne, T. Eavis, and A. Rau-Chaplin. A cluster architecture for parallel data warehousing.

In Proc IEEE International Conference on Cluster Computing and the Grid (CCGrid 2001),

Brisbane, Australia, 2001.

[8] David DeWitt and Jim Gray. Parallel database systems: the future of high performance

database systems. Communications of the ACM, 35(6):85–98, 1992.

[9] P. Flajolet and G.N. Martin. Probablistic counting algorithms for database applications. Jour-

nal of Computer and System Sciences, 31(2):182–209, 1985.

[10] S. Goil and A. Choudhary. High performance OLAP and data mining on parallel computers.

Journal of Data Mining and Knowledge Discovery, 1(4):391–417, 1997.

[11] S. Goil and A. Choudhary. A parallel scalable infrastructure for OLAP and data mining. In

Proc. International Data Engineering and Applications Symposium (IDEAS’99), Montreal,

1999.

[12] S. Goil and A. N. Choudhary. High performance multidimensional analysis of large datasets.

In International Workshop on Data Warehousing and OLAP, pages 34–39, 1998.

[13] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, and M. Venkatrao. Data Cube:

A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. J. Data

Mining and Knowledge Discovery, 1(1):29–53, 1997.

[14] J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong, K. Koperski, D. Li, Y. Lu, A. Rajan, N. Ste-

fanovic, B. Xia, and O. R. Zaiane. DBMiner: A system for mining knowledge in large

relational databases. In Proc. 1996 Int’l Conf. on Data Mining and Knowledge Discovery

(KDD’96), pages 250–255, Portland, Oregon, 1996.

16

[15] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes efficiently. ACM

SIGMOD Record, 25(2):205–216, 1996.

[16] Max Planck Institute. LEDA. http://www.mpi-sb.mpg.de/LEDA/.

[17] H. Lu, X. Huang, and Z. Li. Computing data cubes using massively parallel processors. In

Proc. 7th Parallel Computing Workshop (PCW’97), Canberra, Australia, 1997.

[18] Seigo Muto and Masaru Kitsuregawa. A dynamic load balancing strategy for parallel dat-

acube computation. In ACM Second International Workshop on Data Warehousing and OLAP

(DOLAP 1999), pages 67–72, 1999.

[19] Seigo Muto and Masaru Kitsuregawa. A dynamic load balancing strategy for parallel datacube

computation. In Proceedings of the second ACM international workshop on Data warehousing

and OLAP, pages 67–72. ACM Press, 1999.

[20] R.T. Ng, A. Wagner, and Y. Yin. Iceberg-cube computation with pc clusters. In ACM SIGMOD

Conference on Management of Data, pages 25–36, 2001.

[21] K.A. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proc. 23rd VLDB

Conference, pages 116–125, 1997.

[22] S. Sarawagi, R. Agrawal, and A. Gupta. On computing the data cube. Technical report rj10026,

IBM Almaden Research Center, San Jose, CA, 1996.

[23] A. Shukla, P. Deshpende, J.F. Naughton, and K. Ramasamy. Storage estimation for mutlidi-

mensional aggregates in the presence of hierarchies. In Proc. 22nd VLDB Conference, pages

522–531, 1996.

[24] J. S. Vitter. External memory algorithms and data structures: Dealing with massive data. ACM

Computing Surveys, 33(2):209–271, 2001.

[25] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two-level memories.

Algorithmica, 12(2-3):110–147, 1994.

[26] J.X. Yu and H. Lu. Multi-cube computation. In Proc. 7th International Symposium on

Database Systems for Advanced Applications, pages 126–133, Hong Kong, 2001.

[27] Y. Zhao, P.M. Deshpande, and J.F.Naughton. An array-based algorithm for simultaneous mul-

tidimensional aggregates. In Proc. ACM SIGMOD Conf., pages 159–170, 1997.

[28] G.K. Zipf. Human Behavior and The Principle of Least Effort. Addison-Wesley, 1949.

17

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5 10 15 20 25 30 35

S
ec

on
ds

Processors

Optimized Partitioning
No Optimized Partitioning

Figure 5: Parallel wall clock time in seconds as
a function of the number of processors with and
without optimized data partitioning.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

R
el

at
iv

e
S

pe
ed

up

Processors

Optimized Partitioning
No Optimized Partitioning
Linear Speedup

Figure 6: Relative speedup corresponding to
Figure 5.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 50 100 150 200 250 300

S
ec

on
ds

Millions of Records

p=32

Figure 7: Parallel wall clock time in seconds as
a function of the data size N = 16M, 32M, 48M,
64M, 128M, and 256M records.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5 10 15 20 25 30 35

S
ec

on
ds

Processors

N=1,000,000
N=2,000,000
N=4,000,000
N=8,000,000

Figure 8: Parallel wall clock time in seconds as
a function of the number of processors for data
of size N = 1M, 2M, 4M and 8M records.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

R
el

at
iv

e
S

pe
ed

up

Processors

N=1,000,000
N=2,000,000
N=4,000,000
N=8,000,000
Linear Speedup

Figure 9: Relative speedup corresponding to
Figure 8.

18

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5 10 15 20 25 30 35

S
ec

on
ds

Processors

100% Selected
75% Selected
50% Selected
25% Selected

Figure 10: Parallel wall clock time in seconds as
a function of the number of processors for par-
tial cubes with percentage of selected views k =
100%, 75%, 50%, and 25%.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

R
el

at
iv

e
S

pe
ed

up

Processors

100% Selected
75% Selected
50% Selected
25% Selected
Linear Speedup

Figure 11: Relative speedup corresponding to
Figure 8.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35

S
ec

on
ds

Processors

0.125M per processor
0.25M per processor
0.5M per processor

1M per processor

Figure 12: Scaleup for data size of N/p = 1M,
0.5M, 0.25M and 0.125M records per processor.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35

M
eg

ab
yt

es

Processors

Input Size per Proc.
Output Size per Proc.

Size of Moved Data per Proc.

Figure 13: Output sizes per processor for input
of N/p = 1M records per processor.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8

R
el

at
iv

e
S

iz
eu

p

Millions of Records

p=1
p=2
p=4
p=8

p=16
p=24
p=32

Linear Sizeup

Figure 14: Relative sizeup for data sizes N = 1M
to 8M records on p = 1 to 32 processors.

0

50

100

150

200

250

300

0 50 100 150 200 250 300

R
el

at
iv

e
S

iz
eu

p

Millions of Records

Optimal Partitioning
No Optimal Partitioning

Linear Sizeup

Figure 15: Relative sizeup for p = 32 and input
data of size N = 16M, 32M, 48M, 64M, 128M,
and 256M records. Corresponds to Figure 7.

19

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5 10 15 20 25 30 35

S
ec

on
ds

Processors

a=0
a=1
a=2

Figure 16: Parallel wall clock time in seconds as
a function of the skew for α = 0,1,2.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

R
el

at
iv

e
S

pe
ed

up

Proessors

a=0
a=1
a=2
Linear Speedup

Figure 17: Relative speedup corresponding to
Figure 16.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35

S
ec

on
ds

Processors

(A)
(B)
(C)

Figure 18: Parallel wall clock time in seconds as
a function of the number of processors for data
sets with different cardinality mixes (A)|Di| =
256, 256, 256, 256, 256, 256, 256, 256. (B)|Di|
= 256, 128, 64, 32, 16, 8, 4, 2. (C)|Di| = 32, 32,
32, 32, 32, 32, 32, 32.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

R
el

at
iv

e
S

pe
ed

up

Proessors

(A)
(B)
(C)
Linear Speedup

Figure 19: Relative speedup corresponding to
Figure 18.

20

