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Abstract

Fixed-parameter tractability (FPT ) techniques have recently been successful in solv-
ing NP-complete problem instances of practical importance which were too large to be
solved with previous methods. In this paper we show how to enhance this approach
through the addition of parallelism, thereby allowing even larger problem instances to
be solved in practice. More precisely, we demonstrate the potential of parallelism when
applied to the bounded tree search phase of FPT algorithms. We apply our method-
ology to the k-Vertex Cover problem which has important applications, e.g., in
multiple sequence alignments for computational biochemistry. We have implemented
our parallel FPT method and application speci�c \plug-in" code for the k-Vertex
Cover problem using C and the MPI communication library, and tested it on a net-
work of 10 Sun SPARC workstations. This is the �rst experimental examination of
parallel FPT techniques. In our experiments, we obtain excellent speedup results. Not
only do we achieve a speedup of p in most cases, many cases even exhibit a super linear
speedup. The latter result implies that our parallel methods, when simulated on a single
processor, also yield a signi�cant improvement over existing sequential methods.

1 Introduction

NP-complete problems abound in many important application areas ranging from com-
putational biology to network planning. For scientists and engineers with computational
problems, merely learning that their problems are NP -complete does not satisfy their need
to solve these problems for the instances at hand. Fixed-parameter tractability (FPT ) is
a new technique for confronting the obstacle of NP-Completeness [11, 12, 13, 14, 15, 16].
FPT algorithms have been successful in solving NP-complete problems for certain prob-
lem instances of practical importance which were not feasible with previous methods [11];
see Appendix A. For example, the Computational Biochemistry Research Group at ETH
Zurich (http://cbrg.inf.ethz.ch), under the direction of Gaston Gonnet, has successfully
used the FPT approach for Vertex Cover problems arising in multiple sequence align-
ments for computational biochemistry research [20, 25, 27]; see Appendix A. Using this
new approach, the group has been able to solve larger problem than previously possible,
thereby enabling Computational Biochemistry Research that was previously impossible. In
this paper, we further increase the size of problems that can be solved by showing how
the FPT approach can be parallelized. We have implemented our parallel FPT method
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and application speci�c \plug-in" code for the k-Vertex Cover problem using C and the
MPI communication library, and tested it on a network of 10 Sun SPARC workstations.
This is the �rst experimental examination of parallel FPT techniques. Our experiments
show linear speedup or better on a range of data sets including (a) random graphs, (b) grid
graphs which are very hard instances for the Vertex Cover problem, and (c) graphs from
Gaston Gonnet's Computational Biochemistry Research group. A very interesting property
of our parallel FPT approach is that it exhibits super linear speedup for many problem
instances. Our experiments show that our new parallel FPT approach does in fact also
lead to better sequential FPT algorithms.

For scientists and engineers who have NP-complete problems to solve, the real test
for any new method is how large a problem it can solve. The experimental analysis of
our new parallel FPT approach shows that it can solve problems of a size larger than in
any previously reported experiment. In [11], the authors consider the k-Vertex Cover

problem solvable for k � 200. In contrast, our parallel Vertex Cover code, run on
a standard SUN SPARC network with 10 processors, is able to solve instances of the k-
Vertex Cover problem with k = 400 in about 7 minutes of CPU time. This is a large
improvement since the time of the sequential FPT algorithm for the k-Vertex Cover

problem grows exponentially in k. In order to facilitate future comparisons of di�erent
codes for solving the k-Vertex Cover problem, we are compiling a benchmark data set
that will be made available in the �nal version of this paper.

We now briey review the sequential FPT approach. More details can be found in
Appendix A. In contrast to classical complexity theory [18], parameterized complexity
analysis views the input to an algorithm as consisting of two parts, (x; y), where x is the main
component and y is a �xed parameter dictated by the nature of the problem at hand. The
goal is to isolate, in the parameter y, the component of the input that causes the exponential
time. Given a problem instance, an FPT algorithm is characterized by a running time
f(k) �n�, where jxj = n, jyj = k, � and k are constants independent of n, and where f is an

arbitrary function (e.g. f(k) = 2k). The two fundamental algorithmic techniques for solving
FPT problems are kernelization and bounded tree search [12]. As a two phase approach,
kernelization and bounded tree search form the basis of many FPT algorithms. The �rst
phase, kernelization, reduces the problem, in polynomial time, to another problem instance
bounded in size by a function of k. The second phase, bounded tree search, then attempts
to solve the latter problem by exhaustive search, typically requiring time exponential in k.
Appendix A discusses this approach in detail for the k-Vertex Cover problem.

In [3, 7], �rst de�nitions were formulated for e�ciently parallelizable parameterized
problems (PNC and FPP ; see Appendix B.1). These de�nitions aim at parallelizing the
kernelization phase of the FPT algorithms and leave the bounded tree search unchanged.
An EREW-PRAM algorithm for the k-Vertex Cover problem with time complexity
4 log n+O(kk), using n2 processors, was presented in [7]. Unfortunately, the practical reality
of FPT algorithms is rather di�erent. Typical sequential FPT algorithms spend minutes
on the kernelization phase and hours or days on the bounded tree search. All previous
approaches [3, 7] parallelize the kernelization but do not parallelize the tree search. This is
obviously not the best approach for obtaining maximum speedup through parallelization.

In this paper, we demonstrate the potential of parallelism when applied to the bounded
tree search phase of FPT algorithms. We present a general methodology for parallelizing the
bounded tree search phase of FPT algorithms. We also improve on the previous de�nition
of PNC and FPP . Our experiments suggest the de�nition of a new, more practical, class
FPT p of parallelizable FPT problems which is based on the speedup obtained for the entire
FPT algorithm (Appendix B.2). We apply our methodology to the k-Vertex Cover prob-
lem which has important applications in multiple sequence alignments for computational
biochemistry. In fact, for ease of presentation, we introduce our tree search parallelization
method by describing its application to the k-Vertex Cover problem (Section 2). The
generalization to parallel tree search for other FPT algorithms is straight forward.
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Our parallel FPT method is designed for the CGM (Coarse Grained Multicomputer
[8, 9]) and BSP (Bulk-Synchronous Parallel [28]) machine models. A CGM simply consists
of p processors, P0, P1, : : :, Pp�1, connected via any communication network or shared
memory. Each processor has O(N=p) local memory where N refers to the total problem
size. Consult [8, 9, 28] for more details. Note that, the previous results [3, 7] apply to the
theoretical PRAM model only.

Our parallel methods are portable and can be run e�ciently on most commercially
available parallel machines, including Beowulf-style clusters [2] and networks of worksta-
tions. This makes our method readily available to all computational scientists and engineers
who have access to parallel hardware ranging from networks of workstations to high-end
supercomputers. To illustrate this point, we are using for our own experiments only a
very modest hardware platform. The observed performance, reported in this paper, will be
further improved on a faster machine.

2 Coarse Grained Parallel Kernelization And Bounded Tree
Search For The k-Vertex Cover Problem

Most sequential FPT algorithms consist of two phases, kernelization and bounded tree
search [12]. The main result of this paper is an e�cient parallelization of both of these
phases. In this section, we describe our general methodolgy using the example of the well
know k-Vertex Cover problem. For a long list of other FPT problems that can be solved
via kernelization and bounded tree search see [12].

TheVertex Cover problem is de�ned as follows: given a graph, G = (V;E), determine
a set VC � V containing a minimum number of vertices such that for all (x; y) 2 E, either
x 2 VC or y 2 VC . The k-Vertex Cover problem consists of �nding a Vertex Cover

of size k. The k-Vertex Cover problem is a classical FPT problem (with �xed parameter
is k) and various sequential FPT algorithms have been proposed. For further discussion
please consult Appendix A.

We present a coarse grained parallel k-Vertex Cover algorithm which parallelizes
the sequential FPT algorithm described in [1]. Note that, [1] combines Buss' kernelization
algorithm with a 3-level, depth-�rst search strategy that produces a 3-ary search tree (see
Appendix A). In the following two sections we describe our parallelization of the kerneliza-
tion and the tree search, respectively.

2.1 Parallel Kernelization

The parallelization of the kernelization phase is straight forward. For a graph G = (V;E)
and parameter k, Buss' kernelization algorithm consists of the following steps: �nd the set
S consisting of all vertices v such that deg(v) > k. Let jSj = b. If b > k then we conclude
that there can be no k-sized vertex cover in G. Otherwise, include S in the vertex cover,
remove all the elements of S from V .1 Let k0 = k � b. If the resulting graph, G0, has more
than k � k0 edges, then we can conclude no k-sized cover is possible. Otherwise, hG0; k0i is a
kernelized instance of hG; ki.

In the parallel setting, this operation reduces to O(1) parallel integer sorts where edges
are sorted by vertex id in order to indentify the vertices with deg(v) > k. This sort can
be implemented via deterministic sample sort [5]. Note that other kernelization rules can
be applied as described in [11] and [1]. These rules are also easily reduced to O(1) parallel
integer sorts.

1For the remainder, we assume that whenever a vertex v is removed from a graph, all edges adjacent to
v are removed as well.
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Algorithm 1 Parallel Kernelization
Input: hG = (V;E); ki. Output: hG0; k0i or \No".
(1.1) Simulate Buss' kernelization algorithm on G = (V;E) via O(1) parallel integer sorts,

using deterministic integer sample sort [5].
(1.2) Output either a kernelized graph hG0 = (V 0; E0); k0i, or VC (� k), or \No".
| End of Algorithm |

Lemma 1 Algorithm 1 performs kernelization in time O(kn
p
) using O(1) h-relations for

communication between processors.

2.2 Parallel Bounded Tree Search

As previously discussed, typical FPT implementations spend minutes on the kernelization
and hours on the tree search. An e�cient parallelization of the tree search is therefore of
great importance.

Let VC be a set of vertices in the current vertex cover and let hG00 = (V 00; E00); k00i be
a problem instance associated with a node x of the search tree. In [1], the following steps
are repeated until either a VC is found, or it is determined that G does not have a k-cover:
(1) Randomly select a vertex, v 2 V 00. (2) Starting from v, perform a depth-�rst search
traversing at most three edges. (3) Based on the possible paths derived from the search in
Step 2, either expand node x into three children (cases 1, 2), or process immediately (cases
3, 4):
Case 1. A simple path of length 3 consisting of a sequence of vertices v; v1; v2; v3. Associate
three children (i.e., subproblems) with node x as follows:

(a) hG000 = (V 00 � fv; v2g; E000); k000 = k00 � 2i; VC = VC
S fv; v2g

(b) hG000 = (V 00 � fv1; v2g; E000); k000 = k00 � 2i; VC = VC
S fv1; v2g

(c) hG000 = (V 00 � fv1; v3g; E000); k000 = k00 � 2i; VC = VC
S fv1; v3g

Case 2. A 3-cycle consisting of the following sequence of vertices v; v1; v2; v. Associate
three children with node x as follows:

(a) hG000 = ( V 00 � fv; v1g; E000); k000 = k00 � 2i; VC = VC
S fv; v1g

(b) hG000 = ( V 00 � fv1; v2g; E000); k000 = k00 � 2i; VC = VC
S fv1; v2g

(c) hG000 = ( V 00 � fv; v2g; E000); k000 = k00 � 2i; VC = VC
S fv; v2g

Case 3. A simple path of length 2 (i.e., pendant edge) consisting of a sequence of vertices
v; v1; v2. This can be processed immediately as follows: hG000 = ( V 00 � fv1; v2g; E000); k000 =
k00 � 1i; VC = VC

S fv1g.
Case 4. A simple path of length 1 (i.e., pendant edge) consisting of a sequence of vertices
v; v1. This can be processed immediately as follows: hG000 = ( V 00 � fv; v1g; E000); k000 =
k00 � 1i; VC = VC

S fvg:
Our basic approach for parallelizing the tree search is quite simple. We initially create

the �rst O(log p) levels of the search tree in breadth-�rst fashion until we have obtained
a search tree with p leaves. We then assign each of the p leaves to one processor and let
each processor continue searching the tree from its respective leaf. We assure that the tree
search is well-randomized: that is, when a processor proceeds downwards in the search tree,
it selects a random node among the still unexplored children. The following describes our
tree search parallelization in more detail.

Algorithm 2 Parallel Tree Search
Input: hG0; k0i. Output: VC (� k), or \No".
(2.1) Consider the search tree T obtained by starting with graph G0 and iteratively ex-

panding the combinatorial search tree in breadth-�rst fashion, until there are exactly
p leaves 1 : : : p. Every processor, Pi, 1 � i � p, computes the unique path in T from
the root to leaf i. Let (G

00
i
, k00

i
), 1 � i � p, be the subgraphs and updated parameters

associated with i.
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(2.2) Processor Pi, 1 � i � p, starts with (G00
i
, k00

i
) and expands/searches the subtree below

i in a randomized, depth-�rst fashion as follows:

Processor Pi generates the children of its current problem instance as described
in Cases 1-4 listed above. It then randomly selects and expands one of the chil-
dren, repeating this recursively until either a solution is found or the parameter is
exhausted (i.e., there is no solution). Pi then backtracks in its subtree and ran-
domly chooses another unexplored child. This process is repeated until a solution
is found (in which case it noti�es all other processors to halt) or the processor's
subtree has been completely searched.

| End of Algorithm |

While the above algorithm is fairly simple, it is non-trivial to analyze its performance.
Consider the path � in which the sequential algorithm traverses the search tree. The
sequential processing time is determined by the number lseq of nodes in � which need to
be traversed until a �rst solution is found. The parallel algorithm essentially sets p equally
spaced starting points on � and starts p search processes, one at each starting point. Let �i

be the portion of � assigned to processor Pi, and let li be the number of nodes in � which
processor Pi needs to traverse until it �nds a �rst solution. The parallel time is determined
by lpar = min1�i�p li, the minimum number of nodes that a process has to traverse until it
reaches a solution node. The possible speedup observed corresponds to the ratio between
lseq and lpar. What speedup is obtained through this parallel exploration of subtrees? After
all, only one solution needs to be found. Clearly, it is possible that the parallel algorithm
examines many nodes that the sequential algorithm would never reach. In general, what
kind of speedup can we expect?

3 Performance Analysis

3.1 Preliminary Simulation

Prior to implementation, a \balls-in-bins" model was used to predict the speedup that could
be expected for our parallel tree search algorithm. Consider p processors and a path � of
length L in which the sequential algorithms traverses the search tree. Assume, for this
experiment, that there are m solutions in the search tree which are randomly distributed
(with uniform distribution) over the search path �. For our experiment, we build an array
of p rows and n = L=p columns. The ith row corresponds to �i and the entire array
corresponds to �. We mark m random array elements as solutions and measure lseq and
lpar = min1�i�p li.
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Figure 1: Simulated Speedup Estimation Through \Balls in Bins" Experiment.
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The results are shown in Figure 1. The experiments were performed for L = 1000000, m
= 1, 10, 100, 1000, 10000, 100000 and p = 3; 9; 27; 81; 243 processors. The x-axis represents
the number p of processors and the y-axis represents the speedup sp = lseq=lpar. Each data
point shown corresponds to the average of 150 experiments. The diagonal line, sp = p
represents (optimal) linear speedup. The most striking result of the experiments is how
close all data points are to the diagonal line for m = 1, 10, 100, 1000. These are the most
realistic cases in practice because the number of actual k-Vertex Cover solutions is small
compared to the very large, exponential size, search space. Even for m = 10000, that is
where 1% of the entire search space correspond to solutions, we observe a speedup of about
p=2. Only for m = 100000, that is where 10% of the entire search space correspond to
solutions, we observe very low speedup. Note that, in this case, any sequential method
would �nd a solution in such a short time that a parallelization is not even interesting.
We ran the experiment for many other combinations of L, m, and p, and the results were
always very similar.

The close to linear speedup for low density m=L can be explained as follows [10]. The
expected number of nodes in � that need to be traversed by the sequential algorithm is
given by E(lseq) =

L

m+1
. The expected number of nodes lpar = min1�i�p li that need to be

traversed by the parallel algorithm is bounded by E(lpar) � L=p

m+1
+ p. Therefore, we obtain

for the speedup

E(sp) �
1

1
p
+ m+1

L=p

For m � L=p the second part of the denominator becomes neglectable and we get
an expected speedup E(sp) of approximately p. This is what we observed in Figure 1
for m � 1000. It is important to note that the above inequality is only a coarse lower
bound. The actual speedup can be considerably better. Furthermore, as the discussion in
[19] suggests, the uniform distribution of the m solutions over the array examined above
does not constitute a \good" scenario. On the contrary, when solutions are non-uniformly
distributed, the processor whose search path starts close to a cluster has a high probability
of �nding a solution much faster than in the uniform case. Therefore it can be expected
that the speedup observed is better in the non-uniform case than in the uniform case. For
bounded tree search for the k-Vertex Cover and other FPT algorithms, one can usually
assume that the distribution of solutions within the search tree is not uniform. In fact, this
is what we observe in our experimental results presented in the next section.

3.2 Performance Analysis Of Our Parallel Implementation

We have implemented our parallel FPT method and application speci�c \plug-in" code for
the k-Vertex Cover problem using C and the MPI communication library. The code is
about 1200 lines in length and was developed by a single programmer in about 3 months.
Our code was tested on a cluster of 10 Sun Sparc-10 workstations. Each machine had
a 440MHz Ultra Sparc II processor, 256MB of RAM, 2MB CPU cache, and 8GB hard
disk space. The machines were interconnected with 100MBps Ethernet, through a 12 port
10/100MBps hub. The operating system was Sparc Solaris 7 and we used LAM/MPI-
6.3.2 as our MPI platform. Note that, we are using a very modest hardware platform
for our experiments and our observed performance will be further improved on a faster
machine. The workstation cluster used actually forms the backbone of the graduate student
computing facilities, and our experiments were also subject to background load. The timing
was measured using the Unix system call times, which returns the accumulated CPU time
of the user-process.

Experiments were run on three di�erent sets of test data: random graphs, grid graphs,
and Gonnet's graphs. For each graph instance, 20 experiments each were run for p = 1,
3, 9, 27, 81, 243. Note that, p represents the number of virtual processors created by the
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MPI system. The number of physical processors was always equal to 10. The values for p
are all powers of 3 since the bounded search tree has degree 3. As we will soon observe,
our method achieves super linear speedup for many problem instances. In such cases, it is
bene�cial to have many more virtual processors than physical ones. In fact, super linear
speedup implies that our method is an improvement of the sequential method.

Random Graphs

We implemented a graph generator for random graphs which creates graphs of various
sizes and edge densities. The speedup obtained by our parallel k-Vertex Cover code are
shown in Figure 2. Each �gure shows the results for �ve random graphs of the same size and
number of edges, using p = 1, 3, 9, 27, 81, 243 virtual processors. The straight line labeled
\linear" represents linear speedup. Most strikingly, observe the many cases of super linear
speedup. This e�ect is caused by a non-uniform distribution of k-Vertex Cover solutions
in the search tree and consistent with the discussion in Section 3.1. We also observe, in some
cases, a decreasing speedup for p > 81 This decrease in speedup is caused by an increasing
overhead of the MPI platform to manage the larger number of virtual processors and the
fact that m is getting closer to L=p as p increases.
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Figure 2: Average speedup measured for (a) random graphs RG.32.1, : : :, RG.32.5 (jV j =
700, jEj = 1000, jV Cj = 32) and (b) random graphs RG.40.1, : : :, RG.40.5 (jV j = 700,
jEj = 1000, jV Cj = 40). Each curve represents experiments on the same random graph for
di�erent numbers of processors. Each data point represents the average of 20 experiments
on the same graph.

Grid Graphs

We implemented a graph generator for grid graphs which consist of a lattice of vertices, each
of them connected to their four adjacent neighbors. Such graphs represent particularly hard
cases for the k-Vertex Cover problem because the kernelization phase yields no reduction
in graph size whatsoever. Note that, for a grid graph the size of the minimum vertex cover
is exactly jV j=2.

The speedup obtained by our parallel k-Vertex Cover code are shown in Figure 3.
Each �gure shows the results for the grid graph of a given size, using p = 1, 3, 9, 27, 81,
243 virtual processors. The straight line labeled \linear" represents linear speedup. We
observe super linear speedup for all cases measured. The growth in speedup appears to
increase initially (up to p = 81) and then the curves become atter for larger number of
virtual processors, p. This e�ect is caused by a tradeo� between (1) the overhead incurred
in using large numbers of virtual processors as well as the fact that m is getting closer to
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L=p as p increases and (2) the bene�t provided by more virtual processors due to super
linear speedup.
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Figure 3: Average speedup measured for (a) grid graph GG.32 (jV j = 64, jEj = 112,
jV Cj = 32) and (b) grid graph GG.40 (jV j = 81, jEj = 144, jV Cj = 40). Each data point
represents the average of 100 experiments.

Gonnet's Graphs

The Computational Biochemistry Research Group at ETH Zurich (http://cbrg.inf.ethz.ch),
under the direction of Dr. Gaston Gonnet, has implemented a Vertex Cover algorithm
for computational biology research which combines the sequential FPT approach with a
heuristic method [20]. It is important to note that Gonnet's method does not guarantee a
correct result as it is a heuristic. A main feature of (sequential and parallel) FPT methods
is that they are guaranteed to report the correct result. Gonnet's graphs behave similar to
grid graphs in that the kernelization phase yields only a very small reduction in the size of
these graphs. The speedup obtained by our parallel k-Vertex Cover code are shown in
Figure 4. The four curves shows the results for graphs G.203, G.205, G.293, G.299, G.300,
and G.304 from http://cbrg.inf.ethz.ch. Each �gure shows the measured speedups for p =
1, 3, 9, 27, 81, 243 virtual processors. The straight lines labeled \linear" represents linear
speedup. Again, we observe super linear speedup for all cases measured. The speedup
appears to grow very quickly and, in some cases, reaches one or two orders of magnitude
above p.
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Figure 4: Average speedup measured for Gonnet's graphs (http://cbrg.inf.ethz.ch): (a)
G.203 (jV j = 60, jEj = 246, jV Cj = 41), (b) G.205 (jV j = 60, jEj = 246, jV Cj = 41), (c)
G.293 (jV j = 62, jEj = 256, jV Cj = 43), (d) G.299 (jV j = 65, jEj = 272, jV Cj = 43), (e)
G.300 (jV j = 65, jEj = 272, jV Cj = 45). (f) G.304 (jV j = 65, jEj = 272, jV Cj = 45). Each
data point represents the average of 20 experiments on the same graph.
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A Fixed Parameter Tractability (FPT) And The k-Vertex

Cover Problem

Fixed-parameter tractability (FPT ) has been proposed in [11, 12, 13, 14, 15, 16] as a means
of confronting the obstacle of NP-Completeness. Let � be a �nite alphabet and let L be a
parameterized problem such that L � �� � ��. Problem L is �xed-parameter tractable, or
FPT , if there exists an algorithm that decides, given an input (x; y) 2 �� � ��, whether
(x; y) 2 L, in time f(k) � n�, where jxj = n, jyj = k is a parameter, � is a constant
independent of n and k, and f is an arbitrary function. In many cases, FPT algorithms use
kernelization and bounded tree search, usually resulting in a running time of f(k) + n�. It
was shown in [11] that a problem is in FPT if and only if it is kernelizable.

Although nearly half the NP-Complete problems in [18] have been shown to be FPT
[11], not all problems admit a parametric solution. For example, the best algorithm to solve
the Dominating Set problem is exponential in n and k. For parameterized complexity,
the analog of NP-hardness is hardness for W [1]; see [14]. Dominating Set is hard for
W [1] and is therefore unlikely to be �xed-parameter tractable.

TheVertex Cover problem is de�ned as follows: given a graph, G = (V;E), determine
a set, VC � V , containing a minimum number of vertices such that for all (x; y) 2 E, either
x 2 VC or y 2 VC . The k-Vertex Cover problem consists of �nding a Vertex Cover

of size k.
The k-Vertex Cover problem has important applications in multiple sequence align-

ments for computational biochemistry [27]. In multiple alignments between gene sequences,
whenever there are conicts between sequences, a way to resolve these conicts is to ex-
clude some sequences from the sample. De�ne a conict graph which is a graph where every
sequence is a vertex and every edge is a conict between two sequences. A conict may be
de�ned when the alignment of these two sequences has a very poor score. The goal is to
remove the fewest possible sequences that will eliminate all conicts, which is equivalent to
the Vertex Cover of the conict graph.

The Vertex Cover problem is known to be NP -Complete [18], but in the context
of parameterized complexity [11, 12, 13, 14, 15] the problem is �xed-parameter tractable.
Consider the following k-Vertex Cover kernelization algorithm by Buss [4]: given a
graph G = (V;E) and a parameter k, �nd the set S consisting of all vertices v such that
deg(v) > k. Let jSj = b. If b > k then we conclude there can be no k-sized vertex cover in
G. Otherwise, include S in the vertex cover, remove all the elements of S from V (and all
their incident edges from E). Let k0 = k� b. If the resulting graph, G0, has more than k �k0
edges, then we can conclude no k-sized cover is possible. Otherwise, the graph G0, which is
called kernelized, has a vertex set V 0 bounded in size by O(k2).

The next phase, bounded tree search [12], is based on an exhaustive combinatorial
search. The search tree is a rooted tree and bounded in size by a function f(k). The
nodes of the search tree are labeled by k-solution candidate sets. Consider the following
k-Vertex Cover algorithm by Fellows [16, 17]: observe that, given a graph G = (V;E),
for each v 2 V and each vertex cover VC of G, either v 2 VC or N(v) � VC 2. Thus,
given an instance hG; ki for the k-Vertex Cover problem, the original input graph G has
a k-vertex cover if hG�v; k�1i or hG�N(v); k�jN(v)ji has a solution. Since the parameter
k reduces in each such step by at least one, we can decide in time O(2kjV j) whether G has
a vertex cover of size k.

The �rst Vertex Cover algorithm is due to Buss and has an O(kn + 2kk2k+2) time
complexity [4]. Papadimitriou and Yannakakis, while proving that k-Vertex Cover 2 P

when k is restricted to O(log n), provided an O(3kn) algorithm using maximal matchings

[24]. Downey and Fellows presented a di�erent algorithm that runs in time O(kn + 2kk2)
[14]. Balasubramanian, Fellows, and Raman suggested two di�erent FPT algorithms in

2
N(v) = the set of vertices that constitute the neighborhood of vertex v. N [v] = N(v)

S
fvg.
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their publication [1]. The running times of the algorithms are O((
p
3)

k
k2 + kn) and

O((1:324718)kk2+kn), respectively. The �rst of these two algorithms will form the basis of
the parallel algorithm described in this paper. The second algorithm has been subsequently
improved by Downey, Fellows, and Stege by using a better kernelization of the input graph
to obtain a running time of O(kn + rkk2), r � 1:3195 [11]. An algorithm by Niedermeier

and Rossmanith runs in time O(kn + rkk2), r � 1:2917, using an improved search tree
[22]. Recently, Stege combined the results of [11], [22] and, using an improved kernelization

and search tree, developed an algorithm with running time of O(kn + rkk), r � 1:2906
[26, 27]. A further improvement was made in [6], where the running time was reduced to

O(kn+ 1:271kk2).

B Parallel Parameterized Complexity Classes

B.1 Previous Proposals: PNC , FPP

The notion of parallel �xed-parameter tractability was �rst introduced in [3]. Cesati and
Di Ianni expanded on this preliminary discussion to introduce the parallel �xed-parameter
tractable complexity classes PNC and FPP [7]. They also propose the �rst FPT EREW-

PRAM algorithm for solving the k-Vertex Cover problem in time 4 log n+O(kk), using
n2 processors.

Recall that, the class NC constitutes the set of problems for which there exist an e�cient
PRAM algorithm. More formally, the class NC k, k > 1, is the class of all problems solvable
in O(logk n) time, using nO(1) processors, where n is the length of the input, and k is a
constant independent of n [21]. Let hx; ki be a problem instance, where k is the parameter,
f , g and h are arbitrary functions, and � and � are constants independent of x and k.
Bodlaender, et al. [3] de�ne the parameterized analog of NC , called PNC , as the class of

parameterized problems solvable by a parallel algorithm in time f(k)(log jxj)h(k), using at
most g(k)jxj� processors. Since the exponent of the logarithmic term is a function of k
and can grow very quickly, Cesati and Di Ianni [7] proposed an alternate de�nition of �xed-
parameter parallelizable problems. They de�ne FPP as the class of parameterized problems

solvable by a parallel algorithm in time f(k)(log jxj)�, using at most g(k)jxj� processors.

B.2 New Proposed Parallelizable FPT : FPT p

The de�nitions of FPP and PNC in [3, 7] imply that FPP � PNC � FPT which makes
them nicely consistent with NC � P . Unfortunately, the de�nitions of FPP and PNC vis-
a-vis FPT do not capture the notion of satisfactory parallelization in the same way as the
de�nition of NC vis-a-vis P . For example, the EREW-PRAM k-Vertex Cover algorithm
presented in [7] has running time 4 log n + O(kk), using n2 processors, which implies that
k-Vertex Cover 2 FPP . However, the running time of the parallel algorithm is no
improvement over the sequential algorithm. Sequential FPT algorithms for k-Vertex
Cover , when implemented, spend minutes on the kernelization phase and hours or days
on the bounded tree search. The approach in [3, 7] parallelizes the kernelization but does
not parallelize the tree search. The speedup obtained is negligible.

Another shortcoming of the FPP and PNC de�nitions in [3, 7] is that they are for the
PRAM model only. It is well known that many PRAM algorithms, when implemented on
an actual parallel machine perform very poorly. The parallel processing community has
developed much more realistic models like the BSP [28], and CGM [8, 9], which yield much
better performance in practice.

We now de�ne a new class FPT p

� of parallelizable FPT problems. Consider a parallel
machine model � (e.g., � = CGM) and a problem L 2 FPT . The problem L is in FPT p

�
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if there exists a parallel algorithm that solves L in expected time Tp for p processors such

that T1 = f(k) � n� and Tp = O(T1
p
).

The above de�nition of FPT p

� is straight-forward. It simply asks that the parallel FPT
algorithm be p times as fast as the respective sequential FPT algorithm. It thereby addresses
the shortcoming of FPP and PNC discussed above, that FPP and PNC algorithms can
have negligible parallel speedup. Our de�nition of FPT p

� also adds the dimension of the
parallel machine model which is of paramount importance in parallel computing. Note
that, FPT

p

CGM
� FPT

p

BSP
� FPT

p

PRAM
. We de�ne FPT p = FPT

p

CGM
as the class of

parallelizable FPT problems which have an expected speedup of p for all of the above
models.
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