
Computing Partial Data Cubes for Parallel Data
Warehousing Applications

Frank Dehne1, Todd Eavis2, and Andrew Rau-Chaplin3

1 School of Computer Science
Carleton University, Ottawa, Canada K1S 5B6

frank@dehne.net, www.dehne.net
2 Faculty of Computer Science

Dalhousie University, Halifax, NS, Canada B3H 1W5
eavis@cs.dal.ca

3 Faculty of Computer Science
Dalhousie University, Halifax, NS, Canada B3H 1W5

arc@cs.dal.ca, www.cs.dal.ca/̃ arc

Corresponding Author.

Abstract. In this paper, we focus on an approach to On-Line Analyt-
ical Processing (OLAP) that is based on a database operator and data
structure called the datacube. The datacube is a relational operator that
is used to construct all possible views of a given data set. Efficient al-
gorithms for computing the entire datacube — both sequentially and in
parallel — have recently been proposed. However, due to space and time
constraints, the assumption that all 2d (where d = dimensions) views
should be computed is often not valid in practice. As a result, algo-
rithms for computing partial datacubes are required. In this paper, we
describe a parallel algorithm for computing partial datacubes and pro-
vide preliminary experimental results based on an implementation in C
and MPI.

1 Introduction

As databases and data warehouses grow ever bigger there is an increasing need
to explore the use of parallelism for storage, manipulation, querying, and visu-
alization tasks. In this paper, we focus on an approach to On-Line Analytical
Processing (OLAP) that is based on a database operator and data structure
called the datacube [4]. Datacubes are sets of pre-computed views of selected
data that are formed by aggregating values across attribute combinations (a
group-by in database terminology) as illistrated in Figure 1. A generated dat-
acube on d attribute values can either be complete, that is, contain all of the
2d possible views formed by attribute combinations, or partial, that is, contain
only a subset of the 2d possible views. Although the generation of complete
and partial views is related, the latter is a significantly more difficult problem.
Despite this difficulty, in practice it is important to be able to generate such
partial datacubes because, for high dimensional data sets (i.e., between four and



Red

White

Blue

By Make & Colour

By Colour

By Make

1993

1990
1991

1992

Chevy
Ford

By Year

By Colour 
& Year

By Make &
Year

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

AA BB CC DD

All

Fig. 1. An example 3 dimensional datacube and a 4 dimensional lattice. Lefthand side:
An example three dimensional datacube concerning automobile data. Righthand side:
The lattice corresponding to a four dimensional data cube with dimensions A, B, C and
D. The lattice represents all possible attribute combinations and their relationships.
The “all” node represents the aggregation of all records.

ten), a fully materialized datacube may be several hundred times larger than the
original data set.

The datacube, which was introduced by Jim Gray et. al [4], has been ex-
tensively studied in the sequential setting [1, 2, 4–8] and has been shown to
dramatically accelerate the visualization and query tasks associated with large
information sets. To date the primary focus has been on algorithms for effi-
ciently generating complete datacubes that reduce computation by sharing sort
costs [1, 7], that minimize external memory sorting by partitioning the data into
memory-size segments [2, 6], and that represent the views themselves as multi-
dimensional arrays [4, 8]. The basis of most of these algorithms is the idea that
it is cheaper to compute views from other views rather than from starting again
with the original data set. For example, in Pipesort [7] the lattice is initially aug-
mented with both estimates for the sizes of each view and cost values giving the
cost of using a view to compute its children. Then a spanning tree of the lattice
is computed by a level-by-level application of minimum bipartite matching. The
resulting spanning tree represents an efficient “schedule” for building the actual
datacube.

Relatively little work has been done on the more difficult problem of gen-
erating partial datacubes. Given a lattice and a set of selected views that are
to be generated, the challenge is in deciding which view should be computed
from which other view, in order to minimize the total cost of computing the dat-
acube. In many cases computing intermediate views that are not in the selected
set, but from which several views in the selected set can be computed cheaply,



will reduce the overall computation time. In [7], Sarawagi et al. suggest an ap-
proach based on augmenting the lattice with additional vertices (to represent all
possible orderings of each view’s attributes) and additional edges (to represent
all relationships between views). Then a Minimum Steiner Tree approximation
algorithm is run to identify some number of “intermediate” nodes (or so-called
Steiner points) that can be added to the selected subset to “best” reduce the
overall cost. An approximation algorithm is used here because the optimal Min-
imum Steiner Tree is NP-Complete. The intermediate nodes introduced by this
method are, of course, to be drawn from the non-selected nodes in the original
lattice. By adding these additional nodes, the cost of computing the selected
nodes is actually reduced. Although theoretically neat this approach is not ef-
fective in practice. The problem is that the augmented lattice has far too many
vertices and edges to be efficiently handled. For example, in a 6 dimensional
datacube the number of vertices and edges in the augmented lattice increases
by a factor of 326 and 8684 respectively, while for a 6 dimensional datacube the
number of vertices and edges increase by a factor of 428 and 701,346 respectively.
A 9 dimensional datacube has more than 2,000,000,000 edges. Another approach
is clearly necessary.

In this paper we describe a new approach to efficiently generate partial dat-
acubes based on a parallel version of Pipesort [3] and a new greedy algorithm
to select intermediate views. We also present initial experimental results based
on an implementation of our algorithm in C and MPI. The experimental results
are encouraging in that they show an average reduction in computing a partial
datacube of 82% over computation directly from the raw data. This reduction
applies to both the sequential and parallel cases. Furthermore, the parallel ver-
sion of our algorithm appears to achieve linear speedup in experiments on an
eight node cluster.

2 Generating Partial Datacubes in Parallel

In the following we present a high-level outline of our coarse grained parallel par-
tial datacube construction method. This method is based on sequential Pipesort
[7] and a parallel version of Pipesort described in [3]. The key to going from
these methods for computing complete datacubes to a method for computing
partial datacubes is Step 2 of the following algorithm - the greedy method for
computing an efficient schedule tree for the partial datacube generation problem.

A parallel algorithm for generating partial datacubes

1. Build a Model: Construct a lattice for all 2d views and estimate the size
of each of the views in the lattice. To determine the cost of using a given
view to directly compute its children, use its estimated size to calculate (a)
the cost of scanning the view and (b) the cost of sorting it.

2. Compute a schedule tree using the model: Using the bipartite match-
ing technique presented in Pipesort [7], reduce the lattice to a spanning tree



that identifies the appropriate set of prefix-ordered sort paths. Prune the
spanning tree to remove any nodes that cannot possibly be used to compute
any of the selected nodes. Run a greedy algorithm using the pruned tree to
identify useful intermediate nodes. The tree built by the greedy algorithm
contains only selected nodes and intermediate nodes and is called the sched-
ule tree as it describes which views are best computed from which other
views.

3. Load balance and distribute the work: Partition the schedule tree into
s× p sub-trees (s = oversampling ratio). Distribute the sub-trees over the p
compute nodes. On each node use the sequential Pipesort algorithm to build
the set of local views.

Given that finding the optimal schedule tree is NP-Complete[4], we need to
find a method that takes a manageable amount of time to find a reasonable
schedule. In computing the schedule tree we propose starting from the spanning
tree that is derived from Pipesort. Clearly there are many other approaches that
could be taken. We chose this approach for our initial try at generating partial
cubes because the Pipesort tree has proven to be effective in the generation of
complete datacubes and therefore appears to be a good starting point for a sched-
ule for partial datacubes. This choice is indeed supported by our experimental
findings.

In the following sections we will describe exactly how the Pipesort tree is
pruned, as well as the greedy algorithm for selecting intermediate nodes/views.
For a description of how the model is built and the details of the load balancing
algorithm see [3].

The Pruning Algorithm Before passing the Pipesort tree to the greedy algo-
rithm, we want to ensure that is has been pruned of any unnecessary nodes. Quite
simply, we remove any node from the tree whose attributes are not a superset
of at least one selected node. The pseudo code can be written as follows:

Input: Spanning tree T and Subset S
Output: Pruned (spanning) tree T

for every node i in T - S
for all nodes j of S

if there is no node j whose attributes are a
subset of the attributes of i
delete node i from T

The operation of this simple quadratic time algorithm is illustrated in Fig-
ure 2.

The Greedy Algorithm The greedy algorithm takes as input a spanning tree
T of the lattice that has been pruned and a set S of selected nodes representing
those views to be materialized as part of the partial datacube. The algorithm



CBAD

CBA BAD ACD

BA

BCD

CBAD DBAC

A B D

all

C

CD

CBAD

CBA BAD ACD

BA ADAC

A

Fig. 2. Graph Pruning. Lefthand side: Spanning tree of the lattice as created by
Pipesort with selected nodes in bold. Righthand side: Pruned tree.

begins by assuming that its output, the schedule tree T ′, will consist only of
the selected nodes organized into a tree based on their relative positions in T .
In other words, if a selected node a is a descendant of a selected node b in
T , the same relationship is true in the initial schedule tree T ′. The algorithm
then repetitively looks for intermediate nodes that reduce the total cost of the
schedule. At each step, the node from T that most reduces the total cost of T ′

is added. This process continues until there are no nodes which provide a cost
improvement. Figure 3 shows an example of an initial schedule tree T ′ for a five
dimensional cube with attributes A, B, C,D, and E and selected views A, AB,
BC, CD, DE, and DAE, as well as a possible final schedule tree, T ′.

raw data

DAE

DECDAB BC

A

raw data

CAB

DECAB

DAEDEC

DECDAB BC

A

DECA

Fig. 3. The Schedule tree. Lefthand side: The initial schedule tree T ′ containing only
selected nodes. Righthand side: An example final schedule tree T ′ containing both
selected and intermediate nodes.



The pseudo code for the greedy algorithm is as follows:

Input: Spanning tree T and Subset S
Output: Schedule tree T

Initialize T with nodes of S
each node of S is connected to its immediate predecessor in S
edges are weighted accordingly

while global_benefit >= 0
for each node i in T - S

/* compute the benefit of including node i */
for every node j in S

if attributes of j are a prefix of i
local_benefit += current_cost of j - cost of scanning i

else if attributes are a subset of i
local_benefit += current_cost of j - cost of resorting i

local_benefit -= cost of building i
if local_benefit > global_benefit

global_benefit = local_benefit
best node = i

if global_benefit > 0
add node i to T

3 Experimental Evaluation

Our preliminary results indicate that our new greedy approach significantly re-
duces the time required to compute a partial datacube in parallel. In this section
we examine experimentally two aspects of our algorithm: 1) how well does the
greedy algorithm reduce the total cost of building the partial datacube, and 2)
what speedups are observed in practice.

We first examine the reduction in total cost. Table 1 provides the results for
arbitrarily selected partial datacubes in five, seven, and nine dimensions. Each
result represents the average over five experiments. In each row we see three
graph costs. The first is the cost of computing each view in the partial datacube
directly from the raw data set. The second cost is that obtained by our algorithm
without the addition of intermediate nodes. Finally, the third column shows the
cost obtained by our algorithm when utilizing intermediate nodes. Columns four
and five show the percentage reductions in cost our algorithm obtains. Note that
our algorithm for generating schedules for the computation of partial datacubes
reduces the cost of such computation by between 77% and 85% over a range of
test cases. It appears that the algorithm works best when the number of selected
views is not too small. This is what one might expect given that when there are
only a small number of selected views, there is little to be gained by introducing



Dim. Partial (1) Base Cost (2) Our Cost with no (3) Our Cost with 1 vs 2 1 vs 3
datacube intermediate nodes intermediate nodes

5 8/32 35,898,852 23,935,211 6,203,648 44% 83%

7 15/128 95,759,942 36,353,947 14,139,249 62% 85%

9 25/512 119,813,710 49,372,844 28,372,844 59% 77%
Table 1. Cost reductions in five, seven, and nine dimensions.

intermediate nodes. More extensive experimental results will be reported on in
the final version of this paper.

Figure 3 provides a graphical illustration of the algorithm’s benefit. The
image depicts a “before and after” scenario for a five dimensional lattice and
associated partial datacube (this was an actual test case). On the left we see a
spanning tree containing only the selected nodes (constructed during the initial-
ization process in the greedy algorithm). On the right we have the final result - a
new spanning tree with four additional nodes. In this case, the tree was reduced
in size from 32,354,450 to 5,567,920 for an 83% reduction in total cost.

The following experiments were carried out on a very modest parallel hard-
ware platform, consisting of a front-end machine plus 8 compute processors in
a cluster. These processors were 166 MHZ Pentiums with 2G IDE hard drives
and 32 MB of RAM. The processors were running LINUX and were connected
via a 100 Mbit Fast Ethernet switch with full wire speed on all ports.

Fig. 4. Running Time In Seconds As A Function Of The Number Of Processors. (Fixed
Parameters: Data Size = 1,000,000 Rows. Dimensions = 7. Experiments Per Data Point
= 5.)

Figure 4 shows the running time observed as a function of the number of
processors used. There are three curves shown. The runtime curve shows the
time taken by the slowest processor (i.e., the processor that received the largest



workload). The second curve shows the average time taken by the processors.
The time taken by the front-end machine to compute the model and schedule and
distribute the work among the compute nodes was insignificant. The theoretical
optimum curve shown in Figure 4 is the sequential Pipesort time divided by the
number of processors used. Note that, these experiments were performed with
schedule trees for complete datacubes rather than for partial datacubes but we
expect the results to hold as these trees have very similar properties.

One can observe that the runtime obtained by our code and the theoretical
optimum are essentially identical. Interestingly, the average time curve is always
below the theoretical optimum curve, and even the runtime curve is sometimes
below the theoretical optimum curve. One would have expected that the runtime
curve would always be above the theoretical optimum curve. We believe that
this superlinear speedup is caused by another effect which benefits our parallel
method: improved I/O.

4 Conclusions

As data warehouses continue to grow in both size and complexity, so too does
the need for effective parallel OLAP methods. In this paper we have discussed
the design and implementation of an algorithm for the construction of partial
datacubes. It was based on the construction of a schedule tree by a greedy al-
gorithm that identifies additional intermediate nodes/views whose computation
reduces the time to compute the partial datacube. Our preliminary results are
very encouraging and we are currently investigating other related approaches.

References

1. S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrishnan,
and S. Sarawagi. On the computation of multidimensional aggregates. Proceedings
of the 22nd International VLDB Conference, pages 506–521, 1996.

2. K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg
cubes. Proceedings of the 1999 ACM SIGMOD Conference, pages 359–370, 1999.

3. F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin. Parallelizing the datacube.
International Conference on Database Theory, 2001.

4. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-
low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. J. Data Mining and Knowledge Discovery,
1(1):29–53, April 1997.

5. V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes. Proceed-
ings of the 1996 ACM SIGMOD Conference, pages 205–216, 1996.

6. K. Ross and D. Srivastava. Fast computation of sparse data cubes. Proceedings of
the 23rd VLDB Conference, pages 116–125, 1997.

7. S. Sarawagi, R. Agrawal, and A.Gupta. On computing the data cube. Technical
Report RJ10026, IBM Almaden Research Center, San Jose, California, 1996.

8. Y. Zhao, P. Deshpande, and J. Naughton. An array-based algorithm for simultane-
ous multi-dimensional aggregates. Proceedings of the 1997 ACM SIGMOD Confer-
ence, pages 159–170, 1997.


