
Coarse Grained Parallel On-Line Analytical
Processing (OLAP) For Data Mining

Frank Dehne1, Todd Eavis2, and Andrew Rau-Chaplin2

1 Carleton University, Ottawa, Canada,
frank@dehne.net,

WWW home page: http://www.dehne.net
2 Dalhousie University, Halifax, Canada,

eavis@cs.dal.ca, arc@cs.dal.ca,
WWW home page: http://www.cs.dal.ca/˜arc

Abstract. We study the applicability of coarse grained parallel com-
puting model (CGM) to on-line analytical processing (OLAP) for data
mining. We present a general framework for the CGM which allows for
the efficient parallelization of existing data cube construction algorithms
for OLAP. Experimental data indicate that our approach yield optimal
speedup, even when run on a simple processor cluster connected via a
standard switch.

1 Introduction

During recent years, there has been tremendous growth in the data warehous-
ing market. Despite the sophistication and maturity of conventional database
technologies, the ever-increasing size of corporate databases, coupled with the
emergence of the new global Internet “database”, suggests that new computing
models may soon be required to fully support many crucial data management
tasks. In particular, the exploitation of parallel algorithms and architectures
holds considerable promise, given their inherent capacity for both concurrent
computation and data access.

Data warehouses can be described as decision support systems in that they
allow users to assess the evolution of an organization in terms of a number of
key data attributes or dimensions. Typically, these attributes are extracted from
various operational sources (relational or otherwise), then cleaned and normal-
ized before being loaded into a relational store. By exploiting multi-dimensional
views of the underlying data warehouse, users can “drill down” or “roll up” on
hierarchies, “slice and dice” particular attributes, or perform various statisti-
cal operations such as ranking and forecasting. This approach is referred to as
Online Analytical Processing or OLAP.

2 Coarse Grained Parallel OLAP

Data cube queries represent an important class of On-Line Analytical Processing
(OLAP) queries in decision support systems. The precomputation of the different



group-bys of a data cube (i.e., the forming of aggregates for every combination
of GROUP BY attributes) is critical to improving the response time of the
queries [10]. The resulting data structures can then be used to dramatically
accelerate visualization and query tasks associated with large information sets.
Numerous solutions for generating the data cube have been proposed. One of
the main differences between the many solutions is whether they are aimed at
sparse or dense relations [3, 11, 13, 15, 17]. Solutions within a category can also
differ considerably. For example, top-down data cube computations for dense
relations based on sorting have different characteristics from those based on
hashing. To meet the need for improved performance and to effectively handle
the increase in data sizes, parallel solutions for generating the data cube are
needed. In this paper we present a general framework for the CGM model ([5]) of
parallel computation which allows for the efficient parallelization of existing data
cube construction algorithms. We present load balanced and communication
efficient partitioning strategies which generate a subcube computation for every
processor. Subcube computations are then carried out using existing sequential,
external memory data cube algorithms.

Balancing the load assigned to different processors and minimizing the com-
munication overhead are the core problems in achieving high performance on
parallel systems. At the heart of this paper are two partitioning strategies, one
for top-down and one for bottom-up data cube construction algorithms. Good
load balancing approaches generally make use of application specific character-
istics. Our partitioning strategies assign loads to processors by using metrics
known to be crucial to the performance of data cube algorithms [1, 3, 15]. The
bottom-up partitioning strategy balances the number of single attribute external
sorts made by each processor [3]. The top-down strategy partitions a weighted
tree in which weights reflect algorithm specific cost measures such as estimated
group-by sizes [1, 15].

The advantages of our load balancing methods compared to the previously
published parallel data cube construction methods [8, 9] are as follows. Our meth-
ods reduce inter-processor communication overhead by partitioning the load in
advance instead of computing each individual group-by in parallel (as proposed
in [8, 9]). In fact, after our load distribution phase, each processor can compute
its assigned subcube without any inter-processor communication. Our methods
maximize code reuse from existing sequential data cube implementations by us-
ing existing sequential data cube algorithms for the subcube computations on
each processor. This supports the transfer of optimized sequential data cube
code to the parallel setting.

The following is a high-level outline of our coarse grained parallel top-down
data cube construction method:

1. Construct a lattice for all 2d views.
2. Estimate the size of each of the views in the lattice.
3. To determine the cost of using a given view to directly compute its children,

use its estimated size to calculate (a) the cost of scanning the view and (b)
the cost of sorting it.



4. Using the bipartite matching technique presented in [14], reduce the lattice
to a spanning tree that identifies the appropriate set of prefix-ordered sort
paths.

5. Partition the tree into s × p sub-trees (s = oversampling ratio).
6. Distribute the sub-trees over the p compute nodes.
7. On each node, use the sequential Pipesort algorithm to build the set of local

views.

In the following, we provide a more detailed description of the implementa-
tion. We first describe the code base and supporting libraries.

The Code Base

In addition to MPI, we chose to employ a C++ platform in order to more
efficiently support the growth of the project. With the expansion of the code
base and the involvement of a number of independent developers, several of
whom were in geographically distinct locations, it was important to employ an
object-oriented language that allowed for data protection and class inheritance.
One notable exception to the OOP model, however, was that the more familiar
C interface to MPI functions was used.

The LEDA Libraries

A full implementation of our parallel datacube algorithms was very labour in-
tensive. We chose to employ third-party software libraries so that we could focus
our own efforts on the new research. After a review of existing packages, we
selected the LEDA libraries because of the rich collection of fundamental data
structures (including linked lists, hash tables, arrays, and graphs), the extensive
implementation of supporting algorithms, and the C++ code base [12]. Although
there is a slight learning curve associated with LEDA, the package has proven
to be both efficient and reliable.

The OOP Framework

Having incorporated the LEDA libraries into our C++ code base, we were able
to implement the lattice structure as a LEDA graph, thus allowing us to draw
upon a large number of built-in graph support methods. In this case, we have
sub-classed the graph template to permit the construction of algorithm-specific
structures for node and edge objects. As such, a robust implementation base has
been established; additional algorithms can be “plugged in” to the framework
simply by sub-classing the lattice template and (a) over-riding or adding methods
and (b) defining the new node and edge objects that should be used as template
parameters.

In the current implementation, the base lattice has been sub-classed so as
to augment the graph for the sort-based optimization. For each view/node, we
estimate its construction cost in two formats: as a linear scan of its parent and



as a complete resorting of its parent. Since these cost assessments depend upon
accurate estimates of the sizes of the views themselves, the inclusion of a view
estimator is required.

Probabilistic View Size Estimator

A number of inexpensive algorithms have been proposed for view size estima-
tion [16]. The simplest merely entails using the product of the cardinalities of
each dimension to place an upper bound on the size of each cuboid. A slightly
more sophisticated technique computes a partial datacube on a randomly se-
lected sample of the input set. The result is then “scaled up” to the appropriate
size. although both approaches can give reasonable results on small, uniformly
distributed datasets, they are not as reliable on real world data warehouses.
Consequently, the use of probabilistic estimators that rely upon a single pass of
the dataset have been suggested. As described in [16], our implementation builds
upon the counting algorithm of Flajolet and Martin [7]. Essentially, we concate-
nate the d dimension fields into bit-vectors of length L and then hash the vectors
into the range 0 . . . 2L − 1. The algorithm then uses a probabilistic technique to
count the number of distinct records (or hash values) that are likely to exist in
the input set. To improve estimation accuracy, we employ a universal hashing
function [4] to compute k hash functions, that in turn allows us to average the
estimates across k counting vectors.

The probabilistic estimator was fairly accurate, producing estimation error in
the range of 5–6 % with 256 hash functions. However, its running time on large
problems was disappointing. The main problem is that, despite an asymptotic
bound of O(n ∗ 2d), the constants hidden inside the inner computing loops are
enormous (i.e, greater than one million!). For the small problems described in
previous papers, this is not an issue. In high dimension space, it is intractable.
The running time of the estimator extends into weeks or even months. Consid-
erable effort was expended in trying to optimize the algorithm. All of the more
expensive LEDA structures (strings, arrays, lists, etc.) were replaced with effi-
cient C-style data types. Despite a factor of 30 improvement in running time,
the algorithm remained far too slow. We also experimented with the GNU-MP
(multi-precision) libraries in an attempt to capitalize on more efficient oper-
ations for arbitrary length bit strings. Unfortunately, the resulting estimation
phase was still many times slower than the construction of the views themselves.
At this point, it seems unlikely that the Flajolet and Martin estimator is viable
in high dimension space.

A simple view estimator

We needed a fast estimator that could be employed even in high dimension en-
vironments. We chose to use the technique that bounds view size as the product
of dimension cardinalities. We also improved upon the basic estimate by ex-
ploiting the fact that a child view can be no bigger than the smallest of its



potential parents. The estimated size for a node is the minimum of 1) the prod-
uct of the cardinalities of the node’s dimensions, and 2) the estimated size of
the node’s smallest parent. However, additional optimizations that incorporate
intermediate results are not possible since a parallel implementation prevents us
from sequentially passing estimates up and down the spanning tree. Section 3
discusses the results obtained using this version of the view estimator.

Computing the Edge Costs

As previously noted, the values produced by the estimator only represent the
sizes of each view, not the final edge costs that are actually placed into the
lattice. Instead, the algorithm uses the view estimate to calculate the potential
cost of scanning and sorting any given cuboid. An appropriate metric must be
experimentally developed for every architecture upon which the datacube algo-
rithm is run. For example, on our own cluster, an in-memory multi-dimensional
sort is represented as (d + 2)/3) ∗ (n log n), where d is the current level in the
lattice. At present, we are working on a module that will be used to automate
this process so that appropriate parameters can be provided without manually
testing every architecture.

Constructing the spanning tree

Once the lattice has been augmented with the appropriate costs, we apply a
weighted bipartite matching algorithm that finds an appropriate set of sort paths
within the lattice (as per [14]). Working bottom-up, matching is performed on
each pair of contiguous levels in order to identify the most efficient distribution
of sort and scan orders that can be used to join level i to level i−1. The matching
algorithm itself was provided by LEDA and required only minor modification
for inclusion in our design.

Min-Max Partitioning

As soon as the bipartite matching algorithm has been executed, we partition
the lattice into a set of k sub-trees using the min-max algorithm proposed by
Becker, Schach and Perl [2]. The original algorithm is modified slightly since it
was designed to work on a graph whose costs were assigned to the nodes, rather
than the edges. Furthermore, a false root with zero cost must be added since
the algorithm iterates until the root partition is no longer the smallest sub-tree.
The min-max algorithm performs nicely in practice and, in conjunction with the
over-sampling factor mentioned earlier, produces a well balanced collection of
sub-trees (see [6] for a more complete analysis).

Once min-max terminates, the k sub-trees are collected into p sets by iter-
atively combining the largest and smallest trees (with respect to construction
cost). Next, each sub-tree is partitioned into a set of distinct prefix-ordered
sort paths, and then packaged and distributed to the individual network nodes.



The local processor decompresses the package into its composite sort paths and
performs a pipesort on each pipeline in its assigned workload. No further com-
munication with the root node is required from this point onward.

Local Pipesorts

Pipesort consists of two phases. In the first round, the root node in the list is
sorted in a given multi-dimensional order. In phase two, we perform a linear pass
through the sorted set, aggregating the most detailed records into new records
that correspond to the granularity level of each cuboid in the sort path. As the
new records are produced, they are written directly to disk. For example, if we
sort the data in the order ABCD, we will subsequently create the ABCD, ABC,
AB, and A views as we traverse the sorted set.

Although we originally exploited LEDA’s array sorting mechanism to sort
the root node in memory, we have since re-written the sort using the C library
routines in order to to maximize performance. At present, all input sorting is per-
formed in main memory. In the future, we expect to incorporate robust external
memory sorting algorithms into the project.

3 Performance Evaluation

We now discuss the performance of our goarse grained parallel data cube im-
plementation. As parallel hardware platform, we used a cluster consisting of a
front-end machine and eight processors. The front-end machine is used to par-
tition the lattice and distribute the work among the other 8 processors. The
front-end machine is an IBM Netfinity server with two 9 GB SCSI disks, 512
MB of RAM and a 550-MHZ Pentium processor. The processors are 166 MHZ
Pentiums with 2G IDE hard drives and 32 MB of RAM, except for one processor
which is a 133 MHZ Pentium. The processors run LINUX and are connected via
a 100 Mbit Fast Ethernet switch with full wire speed on all ports. Clearly, this is
a very low end, older, hardware platform. However, for our main goal of studying
the speedup obtained by our parallel method rather than absolute times, this
platform is sufficient. In fact, the speedups measured on this low end cluster
are lower bounds for the speedup that our software would achieve on newer and
more powerful parallel machines.

Figure 1 shows the running time observed as a function of the number of pro-
cessors used. For the same data set, we measured the sequential time (sequential
pipesort [1]) and the parallel time obtained through our parallel data cube con-
struction method, using an oversampling ratio of s = 2. The data set consisted
of 1,000,000 records with dimension 7. Our test data values were uniformly dis-
tributed over 10 values in each dimension. Figure 1 shows the running times of
the algorithm as we increase the number of processors. There are three curves
shown. The runtime curve shows the time taken by the slowest processor (i.e.
the processor that received the largest workload). The second curve shows the
average time taken by the processors. The time taken by the front-end machine,



to partition the lattice and distribute the work among the compute nodes, was
insignificant. The theoretical optimum curve shown in Figure 1 is the sequential
pipesort time divided by the number of processors used.

We observe that the runtime obtained by our code and the theoretical op-
timum are essentially identical. That is, for an oversampling ratio of s = 2, an
optimal speedup of p is observed. (The anomaly in the runtime curve at p = 4
is due to the slower 133 MHZ Pentium processor.)

Interestingly, the average time curve is always below the theoretical optimum
curve, and even the runtime curve is sometimes below the theoretical optimum
curve. One would have expected that the runtime curve would always be above
the theoretical optimum curve. We believe that this superlinear speedup is caused
by another effect which benefits our parallel method: improved I/O. When se-
quential pipesort is applied to a 10 dimensional data set, the lattice is partitioned
into pipes of length up to 10. In order to process a pipe of length 10, pipesort
needs to write to 10 open files at the same time. It appears that under LINUX,
the number of open files can have a considerable impact on performance. For
100,000 records, writing them to 4 files each took 8 seconds on our system. Writ-
ing them to 6 files each took 23 seconds, not 12, and writing them to 8 files each
took 48 seconds, not 16. This benefits our parallel method, since we partition the
lattice first and then apply pipesort to each part. Therefore, the pipes generated
in the parallel method are considerably shorter.

Figure 2 shows the running time as a function of the oversampling ratio s. We
observe that, for our test case, the parallel runtime (i.e. the time taken by the
slowest processor) is best for s = 3. This is due to the following tradeoff. Clearly,
the workload balance improves as s increases. However, as the total number of
subtrees, s × p, generated in the tree partitioning algorithm increases, we need
to perform more sorts for the root nodes of these subtrees. The optimal tradeoff
point for our test case is s = 3. It is important to note that the oversampling ratio
s is a tunable parameter. The best value for s depends on a number of factors.
What our experiments show is that s = 3 is sufficient for the load balancing.
However, as the data set grows in size, the time for the sorts of the root nodes
of the subtrees increases more than linear whereas the effect on the imbalance
is linear. For substantially larger data sets, e.g. 1G rows, we expect the optimal
value for s to be s = 2.

4 Conclusion

As data warehouses continue to grow in both size and complexity, so too will the
opportunities for researchers and algorithm designers who can provide powerful,
cost-effective OLAP solutions. In this paper we have discussed the implemen-
tation of a coarse grained parallel algorithm for the construction of a multi-
dimensional data model known as the datacube. By exploiting the strengths
of existing sequential algorithms, we can pre-compute all cuboids in a load
balanced and communication efficient manner. Our experimental results have
demonstrated that the technique is viable, even when implemented in a shared



nothing cluster environment. In addition, we have suggested a number of oppor-
tunities for future work, including a parallel query model that utilizes packed
r-trees. More significantly perhaps, given the relatively paucity of research cur-
rently being performed in the area of parallel OLAP, we believe that the ideas we
have proposed represent just a fraction of the work that might lead to improved
data warehousing solutions.

11 22 33 44 55 66 77 88
00

200

400

600

800

1000

1200

1400

max_time

optimal

avg_time

Processors

t/s

Fig. 1. Running Time In Seconds As A Function Of The Number Of Processors. (Fixed
Parameters: Data Size = 1,000,000 Rows. Dimensions = 7. Experiments Per Data Point
= 5.)

References

1. S. Agarwal, R. Agarwal, P.M. Deshpande, A. Gupta, J.F. Naughton, R. Ramakr-
ishnan, and S. Srawagi. On the computation of multi-dimensional aggregates. In
Proc. 22nd VLDB Conf., pages 506–521, 1996.

2. R. Becker, S. Schach, and Y. Perl. A shifting algorithm for min-max tree parti-
tioning. Journal of the ACM, 29:58–67, 1982.

3. K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg
cubes. In Proc. of 1999 ACM SIGMOD Conference on Management of data, pages
359–370, 1999.

4. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT
Press, 1996.

5. F. Dehne. Guest editor’s introduction, special issue on “coarse grained parallel
algorithms”. Algorithmica, 24(3/4):173–176, 1999.



11 22 33 44
00

25

50

75

100

125

150

175

200

225
max_time

avg_time

sample factor

t/s

Fig. 2. Running Time In Seconds As A Function Of The Oversampling Ratio s. (Fixed
Parameters: Data Size = 1,000,000 Rows. Number Of Processors = 8. Dimensions =
7. Experiments Per Data Point = 5.)

6. F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin. Parallelizing the datacube.
International Conference on Database Theory, 2001.

7. P Flajolet and G. Martin. Probabilistic counting algorithms for database applica-
tions. Journal of Computer and System Sciences, 31(2):182–209, 1985.

8. S. Goil and A. Choudhary. High performance OLAP and data mining on parallel
computers. Journal of Data Mining and Knowledge Discovery, 1(4), 1997.

9. S. Goil and A. Choudhary. A parallel scalable infrastructure for OLAP and data
mining. In Proc. International Data Engineering and Applications Symposium
(IDEAS’99), Montreal, August 1999.

10. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-
low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. J. Data Mining and Knowledge Discovery,
1(1):29–53, April 1997.

11. V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes effi-
ciently. SIGMOD Record (ACM Special Interest Group on Management of Data),
25(2):205–216, 1996.

12. Max Planck Institute. LEDA. http://www.mpi-sb.mpg.de/LEDA/.

13. K.A. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proc. 23rd
VLDB Conference, pages 116–125, 1997.

14. S. Sarawagi, R. Agrawal, and A.Gupta. On computing the data cube. Technical
Report RJ10026, IBM Almaden Research Center, San Jose, California, 1996.

15. S. Sarawagi, R. Agrawal, and A. Gupta. On computing the data cube. Technical
Report RJ10026, IBM Almaden Research Center, San Jose, CA, 1996.



16. A. Shukla, P. Deshpande, J. Naughton, and K. Ramasamy. Storage estimation for
multidimensional aggregates in the presence of hierarchies. Proceedings of the 22nd
VLDB Conference, pages 522–531, 1996.

17. Y. Zhao, P.M. Deshpande, and J.F.Naughton. An array-based algorithm for si-
multaneous multidimensional aggregates. In Proc. ACM SIGMOD Conf., pages
159–170, 1997.


