
Multisearch Techniques for Implementing Data Structures

on a Mesh-Connected Computer

(Preliminary Version)

Mikhail J. Atallah* Frank Dehnet

Department of Computer Science School of Computer Science

Purdue University Carleton University

West Lafayette, IN 47907, USA. Ottawa, Canada KIS 5B6.

Russ Miller$ Andrew Rau-Chaplin~

Department of Computer Science School of Computer Science

State University of New York at Buffalo Carleton University

Buffalo, NY 14260, USA. Ottawa, Canada KIS 5B6.

Jyh-Jong Tsayf

National Chung Cheng University

Inst. of Comp. Sci. and Inform. Eng.

Chiayi, Taiwan 62107, ROC.

Abstract

The rnrdtiseurch problem consists of efficiently performing
O(n) search processes on a data structure modeled as a
graph G with n constant-degree nodes. Denote by r the
length of the longest search path associated with a search

process, and assume that the paths are determined “on-
line”. In this paper, we solve the multisearch problem in

*Research partially supported by the Office of Naval Re-

search uuder Contracts NOO014-84-K-0502 and NOOO14-86-

K-0689, the Air Force Office of Scientific Research under

Grant AFOSR-9O-O1O7, the National Science Foundation

under Grant DCR-S451393, and the National Library of

Medicine under Grant RO1-LM05118.
t Research partially supported by the Natural Sciences

and Engineering Research Council of Canada.

~Research partially supported by the National Science

Foundation under Grant IRI-S800514.

$Research partially supported by the Natural Sciences

and Engineering Research Council of Canada.

WResearch partially supported by the Office of Naval Re-
search under Contract NOO014-84-K-0502, the Air Force Of-

fice of the Scientific Research under Grant AFOSR-9O-O1O7,

and the National Science Foundation under Grant DCR-

8451393.

Permission to copy without fee all or part of this material is granted pro-

vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republisb,
requires a fee and/or specific permission.

@ 1991 ACM 0897914384/91/0007/0204 $1.50

O(W + rfi) time on a & x fi mesh-connected com-

puter. For most data structures, the search path traversed
when answering one search query has length r = O(log n).
For these cases, our algorithm processes O(n) snch queries

in asymptotically optimsl time, O(4. The classes of
graphs considered contain most of the important data struc-
tures that arise in practice (ranging from simple trees to
Kirkpatrick hierarchical search DAGs). Multisearch is a
useful abstraction that models many specific problems and
can be used to implement parallel data structures on a
mesh. Applications include interval trees and the related
multiple interval intersection search, as well as hierarchi-
cal representations of polyhedra and its many applications
(e.g., lines-polyhedron intersection queries, multiple tan-
gent plane determination, intersecting convex polyhedra,
and three-dimensional convex hull).

1 Introduction

Given a search structure modeled as a graph G with n

constant-degree nodes, and given O(n) search processes

on that structure, the mrdtisearch problem is that of

performing w fast as possible all of the search processes

on that structure. The searches need not be processed

in any particular order, and can simultaneously be pro-

cessed in parallel by using, for example, one processor

for each. However, the pat h that a search query will

trace in G is not known ahead of time, and must instead

be determined ‘(on-line”: only when a search query is

at (say) node v of G can it determine which node of G it

should visit next (it does so by comparing its own search

204

key to the information stored at v — the nature of this

information and of the comparison performed depend

on the specific problem being solved). The multisearch

problem is a useful abstraction that can be used to solve

many problems (more on this later). It is a challenging

problem both for EREW-PRAMS and for networks of

processors, since many searches might want to visit a

single node of G, creating a “congestion” problem (with

the added complication that we cannot even tally ahead

of time how much congestion will occur at a node, since

we do not know ahead of time the full search paths, only

the nodes of G at which they start). When the parallel

model used to solve the problem is a network of pro-

cessors, the graph G is initially stored in the network

in the natural way, with each processor containing one

node of G and that node’s adjacency list. It is impor-

tant to keep in mind that the computational network’s

topology is not the same as the search structure G, so

that a neighbour of node v in G need not be stored in a

processor adjacent to the one containing v. Each pro-

cessor also cent ains initially (at most) one oft he search

queries to be processed (in which case that search does

not necessarily start at the node of G stored in that

processor).

In the EREW-PRAM, the difficulty comes from the

“exclusive read” restriction of the model: if k processes

were to simultaneously access node v‘s information, the

k processors assigned to these k search processes are,

at least apparently, unable to simultaneously access v‘s

information. An elegant way around this problem was

given by Paul, Vishkin and Wagener [PVS83] for the

case where G is a 2-3 tree (although they assume a lin-

ear ordering on the search keys, something which we

cannot afford to do here since we also consider applica-

tions involving multidimensional search keys for which

no linear ordering can be used).

The multisearch problem is even more challenging

for networks of processors. In such models, data is not

stored in a shared memory, but is distributed over a

network and requires considerable time to be permuted

to allow different processors access to different data

items. Furthermore, similarly to the ERE W-PRAM,

each memory location can be accessed only by one

query process at a time, since a processor containing

(say) node v‘s information would be unable to simulta-

neously store more than a constant number of search

queries.

The main contribution of this paper is in solving

the multisearch problem in O(@ + r%) time on a

@ x & mesh-connected computer, where r is the

length of the longest search path associated with a

query. Note that, for most data structures, the search

path traversed when answering a query has length

r = O(lOg~). Th&t is, for these cases our algorithm

processes O(n) such queries in asymptotically optimid

time, O(W. The classes of graphs considered are

listed below. They contain most of the important cases

of G that arise in practice (ranging from simple trees to

the powerful Kirkpatrick hierarchical search DAG that

is so important in both sequential and parallel compu-

tational geometry).

As already mentioned, multisearch is a useful ab-

straction that models many specific problems (and

hence can be used to solve them). We shall later in

the paper use it to solve the problem of implement-

ing parallel data structures on a mesh-connected com-

puter. Applications include interval trees and the re-

lated multiple interval intersection search, as well as hi-

erarchical representations of polyhedra and its myriads

of applications including lines-polyhedron intersectic,n

queries, multiple tangent plane determination, three-

dimensional convex hulll, and intersecting convex polyh-

edra. Note that these problems are of considerable im-

portance in robotics and solid modeling, computational

geometry, vision, pattern recognition, etc. In additiolm,

multisearching is such a fundamental problem that it

probably has many additional applications that we have

not yet explored (perhaps in parallel databases and re-

lated areas).

The multisearch problem for hypercube muitiproces-

SOTS was studied in [D R90]. That hypercube technique

was bused on the idea of moving the search queries syn-

chronously through G, and required time proportional

to the diameter of the network to move all queries to

the next nodes in their search paths. Such an approach

is not viable on the mesh since, in order to obtain o,p-

timai mesh algorithms based on multisearch, the time

per advancement of all queries by one step needs to be

less than the diameter of the network.

The techniques we use to solve the multisearch pro’b-

lem for the mesh are very different from those used in

[DR90], and they are also very different from [PVS83].

In very broad terms, our techniques for solving the

problem are a judicious combination of the following

ideas:

. Partitioning G into pieces and processing some of

these in sequence, others in parallel.

● Making many copies of some pieces of G (the “bck-

1The 3-D convex hull problem has optimal mesh solu-

tions, recently obtained independently of ours and using

different, purely geometric approaches rather than the mul-

tisearch method we use [LPJC90, H190].

205

t leneck” ones, i.e., those with too many searches

trying to go through them), and distributing

these copies to various submeshes, each of which

then advances some of the “congested” searches.

Of course the simple-minded copying strategy of

making many copies of G itself, and using one copy

for each search, does not work; not only would this

take too much time (O(n) time, since we have n

searches) but there is not even enough space to

store all these copies of G (there is only enough

space to store 0(1) copies of G, since G has n

nodes).

● Mapping some pieces of G into suitably shaped

portions of the mesh (not necessarily rectangular

submeshes).

Of course, the above-mentioned partitionings, dupli-

cations, and mappings cannot be pre-computed, since

we do not yet know how the full search paths will

develop (in fact the problem of “tracing” the search

paths is nontrivial even if we did know them ahead

of time). The partitionings/duplications/mappings

must instead be done on-line, ss the searches advance

through G. The above description is necessarily an

over-simplification, and only a careful look at the de-

tails can reveal the exact interplay between the above

ideas, as well as the exact nature of each.

The classes of graphs G considered are hierarchi-

cal directed acyclic graphs (hierarchical DAGs for

short), a-partitionable (directed) graphs, and a-&

partitionable (undirected) graphs. For the exact defini-

tions of the latter two, we refer the reader to Section 4.

The first one (hierarchical DAGs) is easy to state in

one sentence: the vertex set can be partitioned into

levels Lo, Lh (h = O(log n)) such that every edge is

from some Li to Li+l, ILOI = 1, and lLd+ll = plLil, for

some p > 1 (i.e., lLi I = pi). (Our algorithm can also

handle the case where the last condition is replaced by

Cl Ui <]Li I < C2jJi, for some positive constants Cl and

C2.) See Figure 1.

The next section contains a more formal definition of

the multisearch problem, and of the various terms used

in the paper. Sections 3 and 4 contain the main results:

our solutions to the multisearch problem for each of the

above-merit ioned classes of graphs. Sections 5 and 6 use

multisearching to solve various problems efficiently on

the mesh.

2 Definition of the Multisearch

Problem

Let G = (V, E) be a directed or undirected graph of size

n = IV I + IEI, where the out-degree or degree, respec-

tively, of any vertex is bounded by some constant. Let

U be a universe of possible search queries on G. De-

fine the search path of a query q E U, denoted path(q),

to be a sequence of h vertices (v1, vh) of G defined

by a successor function ~ : (V U start) x U ~ V with

f(start, g)= vl, andv~+l = f(v; ,q)fori= 1,...,l–l.

The function ~ has the following properties: If G is di-

rected, then for every vertex v E V and query q E U,

(v, .f(v, q)) ~ E. If G is undirected, then for every ver-

tex v e V and query q c U, {v, f(v, q)} e E. Further-

more, f(v, q) can be computed by one processor, that

stores q and v‘s information, in 0(1) time.

We say that a query q E U visits a node v c V at time

t if and only if, at time t, the mesh is in a state where

there exists a processor which contains a description

of both the query q and the node v. (Note that this

definition implies that many queries can simultaneously

visit node v, if each such query uses a different copy of

v‘s information.) The search process for a search query

q with search path path(q) = (VI, Vh) is a process

divided into h time steps, tl < tz < ... < th,such

that at time ti, 1 ~ i < h, query q visits node vi. We

will refer to the change of state between tiand ti+l,

1 ~ i < h, as advancing query q one step in its search

path. Recall that we do not assume the search path

to be given in advance. Rather, we assume that the

search path for each query is constructed online during

the search by successive applications of the function f.

Of course, for a directed graph, a query can be ad-

vanced along an edge only in the indicated direction,

whereas for undirected graphs a query can advance

along an edge in both directions.

Given a set Q = {ql, q~ } ~ U of m search queries,

where m = O(n), then the mzdtisearch problem for Q

on G consists of executing (in parallel) all m search

processes induced by the m search queries. It is impor-

tant to note that the m search processes can overlap

arbitrarily. In particular, at any time t,any node v of

G maybe visited by an arbitrary number of queries (of

course each such query would be using a different copy

of v‘s information).

We will refer to the process of advancing, in parallel,

all (or a subset) of the m search queries by one step

in their search paths as a multistep. A sequence of

multisteps such that every search query is advanced

fl(log n) steps in its search path, will be referred to as

206

a log-phase,

3 A Mesh Solution to the Mul-

tisearch Problem for Hierar-

chical DAGs

Let G = (V, E) be a hierarchical DAG of size n and

height h, and let Lo, Lh be the levels of G. Note

that G has out-degree O(l), h = O(log n), and l.Li I = pi

for some ff >1.

Consider a set Q = {ql, qn} of n search queries.

Due to the structure of the hierarchical DAG, a search

path for a query q has length r ~ h + 1 and consists of

r vertices in consecutive levels Li, Li+r _ 1 for some

ie {o,..., h – r + 1}. We will henceforth assume,

w.1.o.g., that each query has a search path of length

h+l.

In this section we show how to solve the multisearch

problem for G on a mesh-connected computer of size

n in time O(@). The graph G and the set of search

queries Q are initially stored in the mesh in the natural

way; a precise description of the initial configuration

is given in the Appendix. In addition, we assume that

every processor storing a node v e Li also stores the

index i, referred to as level index of v in G. Note that

the level indices can be easily computed in time 0(~

by successively identifying the vertices in each level Li,

starting with level Lh, and compressing after each step

the remaining levels into a subsquare of processors.

For i ~ 1, we will use log(i) to denote the func-

tion obtained by applying the log function i times, i.e.

log(l) x = log z and log(i) z = log log(i - 1, z. For conve-

nience, we define log(o) z = $. Note that there exists

a constant c such that py > y2 for any y ~ c. For any

z > p’, we define log; z = max{il logf) z ~ c} (hence,

Iog$) z ~ (log~+l) Z)2 for O ~ i ~ log; x. For the re-

mainder of this section, all logarithms are to the base

P.

Let Bi = (U,.Ei), 0< i < log* h–1, be thesubgraph

of G induced by the vertices of G between levels h –

210g(i) h and h – 1 – 2 log(;+l) h inclusive. We will use

lBil, hi = h – 1 – 210g(i+l) h, and Ahi to refer the

size of Bi, the highest index of a level in Bi, and the

number of levels in Bi, respectively. See Figure 4 for

an illustration. Note that, lBi I = 0(/Jh-2106(’+1) ‘) =

0((log:) h)a
) and Ahi = O(log(i) h).

Let B* be the subgraph induced by the vertices be-

tween levels h – 2 log(lw” ‘– 1, h and h inclusive. Note

that B* consists of 0(1) levels.

The general strategy for solving the multisearcb

problem on G is to solve the multisearch problem for

130 first, then for B1, etc., eventually for BIOg* h-1, and

finally for B*. Here, the multisearch problem for B,~

[/?”] consists of all queries visiting those vertices on

their search path that lie in Bi [B*], assuming that for

each query the first of those vertices is known.

Since B* has 0(1) levels, the multisearch problem for

B* can be easily solved in time O(W. What remains

to be shown is how to solve the multisearch problem

for Be,..., Bl~g= ~-l (together) in time 0(@7).

Consider the partitioning of the entire mesh-

connected computer into log(*) h x log(z) h submeshes

F)(~ processors. Such a partitioning willof &
be called a Bi -partitioning, and each submesh will be

called a Bi -subrnesh. Note that each Bi-submesh can

store a copy of the subgraph B~. Each B~+ l-submesh,

A, contains several B~-submeshes. The top-left of those

Bi-submeshes will be referred to as the top-lejl Bi -

submesh of A.

Let B; be the subgraph of G induced by the vertices

of G between levels hi – Ahi and hi – 1 – 2 log Ah,~

included, and let B? be the subgra.ph induced by’ the

vertices between levels hi – 2 log Ahi and hi included.

See Figure 5 for an illustration. Note that IB$ I =:

0(Ph:-210gAht) = o(~). on each Bi-submesh in

parallel, we will solve the multisearch problem for Bi

for those queries stored in that submesh. We next de-

scribe our solution for one Bi-submesh. The solution

consists of two phases: in Phase 1, every query vis-

its the vertices on its search path that lie in B;; in

Phase 2 the queries will visit the vertices on their search

path that lie in B;. For Phase 1, the Bi-submesh i~~

d
partitioned into Ahi x Ahi submeshes of size ~h; ,

called B#-submeshes. Note that each B/-submesh can

store a copy of B;. In time O(m), we can iden-

tify B} from Bi and duplicate B} such that each B}-

submesh contains a copy of B/. Each B}-submesh then

(independently and in parallel) solves the multisearch

problem for B! for those queries stored in that sub-

mesh. This can be easily done in 0(~) time since

P

lB/ I =0(A?) and B; consists of O(Ahi) levels. For

Phase 2, t e ~earch process is advanced level by level.

Since B; consists of O(log Ahi) levels, Phase 2 can be

executed in 0(~log A hi) time.

Lemma 1 Consider a Bi-paditioning of the mesh-

connected computer, O < i < log* h – 1, and as-

sume that every Bi-submesh stores a copy of Bi, then

the multisearch problem for B~ can be solved in time

O(~log Ah~) = O(~log(i+l) h).

Obviously, if every B~-submesh stores a copy of Bi

207

then we need O(Jog* n) memory per processor. Our

strategy will be to distribute thesubgraphs Bi over the

mesh in such a way that, when the multisearch problem

for 1$ needs to be solved, then all the required copies

of Bi can be created in time 0(/((). From this,

we obtain a O(@) time solution to the multisearch

problem for G.

To simplify the presentation, we sssume log(i) h is

divisible by log(i+l) h for O ~ i ~ log* h – 1. Our al-

gorithm can be easily modified to handle the general

case. Let Blog. h -submesh denote the entire mesh.

Algorithm 1: An algorithm for solving the multi-

search problem for a hierarchical DAG G.

1. A register label(p) is allocated at every processor

p, and the following is executed for i = log” h –

1 0:,. ...
(a) In each Bi+l-submesh, A, every proces-

sor p in the top-left Bi-submesh of A sets

label(p) := i.

Note: The label of a processor may be overwrit-

ten by smaller indices in later iterations. In the

next step, in each Bj+l-submesh, the processors

with label = i will be used to store a copy of

Bi. Since, for ~ ~ i – 1, each Bj +l-submesh con-

tains one Bj-submesh in its top-left corner whose

processors’ labels are set to j, the labels of at

‘ost (log:) h)z (*
10 “+’) h)2 processors are changed

from t to j. Hence, the number of processors

in each Bi-submesh with label = i is at least

2. Fori=log”h– 1,..., O, on each Bi+l-submesh the

following is executed independently and in paral-

lel:

(a)

(b)

Note

The subgraph Bi is identified and its data

is distributed evenly among the processors

with label = i. For details, see proof of The-

orem 2 in the AvDendix.. .

(-*Y copies of the

umon of Be, ..., Bi _ 1 are created and one

copy is moved to each Bj-submesh.

that, after this step, each B(i+ll-submesh

3

. . .
stores a copy of Bi using the processors with

label = i.

Fori=O ,.. ., log* h– 1, on each Bi+l-submesh the

following is executed independently and in paral-

lel:

(a) Bi is duplicated such that each Bi-submesh

stores a COpy of Bi.

(b) For each Bi-submesh, the multisearch prob-

lem for Bi with respect to those queries

stored in that submesh is solved as indicated

by Lemma 1.

4. Finally, the multisearch problem for B* is solved.

Theorem 2 Let G be a hierarchical DAG of size n

and let Q = {ql,qm} be a set ofm = O(n) search

queries, then the multisearch problem for Q on G can

be solved on a mesh of size n (with O(1) memoy per

processor) in time 0(~, (For proof see Appendix.)

4 A Mesh Solution to the Mul-

tisearch Problem For Parti-

tionable Graphs

In this section, we present mesh solutions to the multi-

search problems for cwpartitionable graphs and cx-~-

partitionable graphs. After defining these classes of

graphs, we will first introduce a tool referred to as

constrained multisearch which will be utilized in Sec-

tions 4.5 and 4.6.

4.1 Definition of 6-Splitters

Let G = (V, E) be a (directed or undirected) graph

with vertex set V, edge set E, and size n = IV I + IEI.

Let S C E. Then (V, E – S) is a graph with vertex set

V and edge set E – S that consists of a set of connected

components, denoted {Gl, Gk }, for some k ~ n.

We define S to be an b-splitter of G, O < 6 < 1,

if and only if lGil = Ifil + lEil = O(n&), for all 1 ~

i ~ k. Given a &splitter S, we will refer to G(S) =

{G,,..., Gk } as a b-splitting of G.

A vertex v E V is defined to be at the border of a &

splitter S if and only if v is a vertex of an edge e E S. A

&splitting G(S) = {Gl, Gk} is called normalized, if

k = 0(nl-6).

4.2 Definition of a-Partitionable (Di-

rected) Graphs

Let G = (V, E) be a directed graph, where the out-

degree of any vertex is bounded by some constant. Let

distG(vl, V2) denote the length of the shortest directed

path in G connecting two vertices V1 and V2. We define

G to be cr-partitionable if and only if G haa an cwsplitter

S, O < a < 1, such that G(S) can be partitioned into.,
two sets of graphs, {111,. . . ,Ilkl} and {Tl, .

such that for every edge (VI, V2) 6 S (directed

to V2), VI G Ifi and V2 E Tj, for some i,j.

,., Tk, },

from VI

208

Note that, for example, every balanced k-ary search

tree with all edges either direct towards the leaves or

direct towards the root (i.e., all search queries can only

move in one direction, either from the root towards

the leaves, or from the leaves towards the root) is cr-

partitionable; see Figure 2.

4.3 Definition of cr-&Partitionable

(Undirected) Graphs

Let G = (V, E) be an undirected graph of size n = IV 1+

IEI, where the degree of any vertex is bounded by some

constant. For two vertices VI, V2 e V, let distG(vl, rlz)

denote the length of the shortest (undirected) path in

G connecting VI and V2.

Let S1 and S2 be an a-splitter and a ~-splitter, re-

spectively, of G (O < a, ~ < 1). We define that, SI and

S2 have distance k if and only if k = min{dist~(vl, V2) :

VI is at the border of S1 and V2 is at the border of S2}.

G is called ~- f?-partitionable if and only if G has an

a-splitter S1 and a /3-splitter S2, O < a, ~ < 1, such

that S1 and S2 have distance fl(log n).

Note that, e.g. , every undirected balanced k-ary

search tree (i.e., search queries can move within the

tree in arbitrary direction, e.g. inorder traversal) is a-

,f3-partitionable; see Figure 3.

4.4 Constrained Multisearch

Let G = (V, E) be a directed or undirected graph.

Consider a set W = {Gl ,G~} of k edge and ver-

tex disjoint subgraphs of G such that lGi I = O(nb) and

k = O(nl-~) for some O <6< 1. Note that we do not

assume that the union of the subgraphs in ~ contains

all vertices of G.

Consider any stage of the multisearch for Q on G,

and let v(q) E path(q) denote the node currently visited

by query q E Q.

The constrained multisearch problem with respect to

III consists of advancing, for every Gi E V, every search

query q with v(q) c Gi by x steps in its search path,

such that either ~ = log2 n or the next node to be

visited by q is not in Gi. Note that different queries

may be advanced by a different number of steps.

In the remainder of this section, we present a pro-

cedure Constrained-Multis earch(~, 6) which solves the

constrained multisearch problem, on a mesh of size n

with 0(1) memory per processor, in time O(@)

For every Gi = (H,E~) E @ define I’&(G~) =

[~1.

Procedure Constrained-Multisearch (Q, 6): im-

plementation of constrained multisearch with respect

tow.

Initial configuration: A stage of the multisearch for Q

on G, where every q E Q currently visits some node

v(q) c path(q). Furthermore, every processor storing a

vertex v E V, also stores an index indicating to which

G; ~ IJ? the vertex v belongs, if any.

1.

2.

3.

4.

5.

6.

7.

All queries q ~ Q such that v(q) is in some sub-

graph Gi c V are marke~ all others queries are

unmarked. (Queries whose search paths have al-

ready terminated are also unmarked.)

For every Gi ~ V.I, the value of I’j (Gi) is com-

puted.

lf ~Gi~w r~(Gi) = O then EXIT.
For each Gi E W, I’& (Gi) copies of Gi are created.

Each copy is placed in a @ x @ subsquare of

the mesh-connected computer (d-submesh).

Every marked query q E Q with v(q) ~ Gi is

moved to one of the &submeshes storing a copy

of Gi, such that each &submesh contains at most

0(n6) queries.

Within each b-subrnesh storing a subgraph Gi E

W, the following is executed logz n times:

(a)

(b)

(c)

For every marked query q e Q, the next node

in its search path is determined (by applying

the successor function ~).

Every marked query for which the next node

in its search path is not in Gi, is unmarked.

(A query whose search path terminates is

also unmarked.)

Every marked query visits the next node in

its search path.

Discard the copies of the subgraphs G~ c U! cre-

ated in Step 4.

Lemma 3 The constrained multisearch problem with

respect to @ can be solved, on a mesh of size n with

O(1) memory per processor, in time O(& (For proof

see Appendix,)

4.5 A Mesh Solution to the Multi-

search Problem for cwPartitionable

Directed Graphs

Let G = (V, E) be a directed and a-partionable graph,

Consider a set Q = {ql,qm} of m = O(n) search

queries, and let r denote the length of the longest search

path associated with a query q ● Q. In this section, we

present an algorithm to solve the multiserach probleml

for Q on G in time O(A + r%). Our strategy is

209

to give an algorithm which executes one log-phase of

the multisearch in time (@). The entire multisearch

algorithm consists of iterating the log-phzwe algorithm

+1) times.0([log n
Let G(S) = {lfl,,..,likl, T1,..., Tk, } be an a-

splitting of G such that for every edge (Vi, V2) c S

(directed from VI to V2), VI E Ifi and Vz e ~, for some

i,j. Recall that this implies O<a <l, [lfi[=O(no),

and \Ti[= O(na).

We assume that the a-splitter S is known a pri-

ori. That is, every processor stores in addition to

a vertex u E V also an index indicating to which

graph in G(S) the vertex v belongs. Note that, for

most data structures (e.g., balanced k-ary trees; see

Figure 2), the determination of the indices is trivial.

We can also assume, without loss of generality, that

G(S) is normalized. That is, we can assume that

k = kl + kz = O(nl-a); see Section 4.1. Otherwise,

we group the subgraphs Ifi and Tj, respectively, such

that each resulting subgraph has size @(na). This op-

eration is easily performed, on a mesh of size n, in time

0(~. Furthermore, the algorithm described in this

section does not require that every subgraph in G(S)

consists of only one connected component of the graph

(V,E-S).
Algorithm 2: Implementation of one log-phase of

multisearch on an a-partionable graph.

1.

2.

3.

4.

If this is the first log-phase, then-every query q G Q

visits the first node in its search path; otherwise,

every q E Q visits the next node in its search path.

Constrained-Multisearch

({HI ,.. ., Hk,, Tl, Tk, },cx), cx).

Every q E Q visits the next node in its search path.

Constrained-Multisearch

({HI ,.. ., H~l, Tl, T~z},a)}, a).

Lemma 4 One log-phase of multisearch on an cY-

partionable (directed) graph of size n can be performed

on a mesh of size n with O(1) memory per processor,1

in time 0(/7i). (For proof see Appendix.)

Therefore, by iterating Algorithm 2 0([&l)

times, the multisearch problem can be solved for a-

partitionable graphs.

Theorem 5 Let G be an a-partionable (directed)

gmph of size n and let Q = {ql,qm} be a set of

m = O(n) search queries. The multisearch problem for

Q on G can be solved on a mesh of size n (with O(1)

memory per processor) in time 0(/E+ r%), where T

is the /ength of the longest search path associated with

a query.

4.6 A Mesh Solution

to the Multisearch Problem for a-

@Partitionable Undirected Graphs

Let G = (V, E) be a directed and cwpartionable graph.

Consider a set Q = {ql,qm} of m = O(n) search

queries, and let r denote the length of the longest search

path associated with a query q E Q. In this section,

we present an algorithm to solve the multisearch prob-

lem in O(fi+ rfi) time. As in Section 4.5, we will

again give an algorithm to execute one log-phase of the

multisearch problem in time (~. The multisearch

algorithm consists of iterating the log-phase algorithm

0([* 1) times.

Let S1 and S2 be an a-splitter and a ,&splitter, re-

spectively, of G such that S1 and S2 have distance

fl(log n). We assume that S1 and S2 are known a priori.

That is, every processor stores in addition to a vertex

v c V also two indices indicating to which graphs in

G(S1) and G(S2) the vertex v belongs. Note that, for

most data structures (e.g., balanced k-ary trees; see

Figure 3), the determination of the indices is trivial.

With the same argument as in Section 4.5, we also

assume that G(S1) and G(S2) are normalized. Let

G(S1)= {W:,..., W/l} and G(S2) = {W~, W~. }.

Recall that O < a < 1, 0 < /3 < 1, Iw}I = O(na),

lW#l = O(nfl), /cl = O(nl-a), and k2 = O(nl-~).

Algorithm 3: Implementation of one log-phase of

multisearch on an a-/?-partionable graph.

1. If this is the first log-phase, then every query q E Q

visits the first node in its search path; otherwise,

every q E Q visits the next node in its search path.

2. Constrained-Multisearch ({ W;, t%’~, }, a).

3. Every q & Q visits the next node in its search path.

4. Constrained-Multisearch ({IV;, Wj, }, @.

Lemma 6 One log-phase of multisearch on an cY-,8-

partionable (undirected) graph of size n can be per-

formed , on a mesh of size n with 0(1) memory per

processor, in time O(@. (For proof see Appendix.)

Therefore, by iterating Algorithm30([~~Ognl) times,

the multisearch problem can be solved for cw/?-

partionable graphs.

Theorem 7 Let G be an a- f?-partitionable (undi-

rected) graph of size n and let Q = {ql,qm} be a set

of m = O(n) search queries. The multisearch problem

for-Q on G can be solved on a mesh of size n (with O(1)

memory per processor) in time 0(/7+ r~)j where r

is the length of the longest search path associated with

a query. (For proof see Appendix.)

210

5 Applying Multisearch for Hi-

erarchical DAGs: Subdivi-

sion Hierarchies, Hierarchi-

cal Representations of Poly-

hedra, and Applications

In [D K87], O(log n log* n) time deterministic and

O(log n) time randomized PRAM algorithms are pre-

sented for constructing well known data structures: the

subdivision hierarchy for a planar graph (with n nodes)

[Kir83] and the hierarchical representation for a cou-

vex polyhedron (with n vertices). Both are hierarchical

DAGs of size O(n) with triangles and triangular faces,

respectively, associated with their vertices. As stated

in [DK87], once these hierarchies are given, Problems

1-3 listed in Theorem 8 can be solved on the PRAM in

time O(log n).

For the mesh-connected computer, it has been shown

in [DSS88] that the subdivision hierarchy for a planar

graph (with n nodes) as well as the hierarchical repre-

sentation for a convex polyhedron (with n vertices) can

be constructed in time O(@ using O(n) processors

with 0(1) memory each. Using Theorem 2, we obtain

Theorem 8 The following problems can be solved in

time O(@) on a mesh of si,re n with O(1) memory per

processor:

1,

/!?,

3.

4.

6

Multiple line-polyhedron queries (Given a 3-d con-

vex polyhedron P of size n, and n lines in 3-space,

determine for each line 1 whether it intersects P

and, if not, determine the two planes through 1

tangent to P).

3-d convex polyhedron separation (Given two con-

vex 3-d polyhedra P and Q of size n each, deter-

mine whether there exists a plane which separates

P and Q).

Merging 3-d convex hulls.

Determining the convex hull of n points in 3-

sp.a ce~.

Applying Mult isearch for

Partitionable Graphs: Inter-

val Trees and Multiple Inter-

val Intersect ion Search

Obviously, multisearch for a-partitionable directed

graphs can be utilized to obtain optimal parallel mesh

implementations for all those data structures based on

balanced k-ary search tree (possibly with augmenta-

tion), where all queries are moving in the same direc-

tion (either from the root to the leaves, or from the

leaves to the root).

Multisearch for a-/3-partitionable undirected graphs

can be applied, e.g., to obtain parallel mesh imple-

mentations for data structures based on balanced k-

nary search trees (possibly with augmentation) where

queries are moving along tree edges in arbitrary direc-

tions. Such queries can, e.g., traverse parts of the sub-

tree in inorder.

In the full paper, we explore the following application

of our mesh solution to multisearch for a-@-partition-

able undirected graphs. Consider a set S of n intervals.

The interval intersection problem consists of reporting

the k intervals in S that intersect a query interval q.

The multiple interval intersection problem consists of

answering, in parallel, m interval intersection queries

on S.

References

[AH86]

[DK87]

[DSS88]

[DR90]

[Ede83a]

[H190]

[Kir83]

[LpJC90]

[PVS83]

M. J. Atallah and S. Hambrusch. Solving
tree problems on a mesh-connected processor

array. Information and Control, 69: 168–186,
1986.

N. Dadoun and D. G. Kirkpatrick. Paral-

lel construction of subdivision hierarchies. In
Proceedings of the Third A nrwal Symposium
on Computational Geometry, pages 205–214,
1987.

F. Dehne, J.-R. Sack, and I. Stojmenovic. A
note on determining the 3-dimensional convex

hull of a set of points on a mesh of processors.
In Scandinavian Workshop on Algorithm The-
ory, pages 154–162, 1988.

F. Dehne and A. Rau-Chaplin. Implementing

data structures on a hypercube multiproces-
sor and applications in parallel computational

geometry. Journal of Parallel and Distributed
Computing, 8(4):367-375, 1990.

H. Edelsbrunner. A new approach to rect-
angle Intersections - Part I. International
Journal of Computer Mathematics, 13:209-
219, 1983.

J. A, Holey and O. H. Ibarra. Triangulation
in a Plane and 3-D convex hull on Mesh-
Connected Arrays and Hypercubes. Tech.

Rep., Univ. of Minnesota, Dept. of Computer
Science, 1990.

D. G. Kirkpatrick. Optimal search in planar

subdivisions. SIAM Journal of Computing,
12(1):28-35, 1983.

D. T. Lee, F. P. Preparata, C.S. Jeong and
A. L. Chow. SIMD Parallel Convex Hull Al-
gorithms, manuscript.

W. Paul, U. Vishkin and H. Wagener. Parallel
dictionaries on 2-3 trees. in Proceedings 10th

International Colloquium on Automata, Lan-
guages, and Programming (ICALP), LNCS

154, Springer-Vergerlag, Berlin, 1983, pp.
597-609.

211

7 Appendix

Details of the Initial Configuration of the Mesh

(Before Multisearch):

Let G = (V, E) be a directed or undirected graph of

size n = Iv I + IEI, where the out-degree or degree,

respectively, of any vertex is bounded by some constant.

Furthermore, let Q = {ql,q~} be a set ofrn = O(n)

search queries. G and Q will be represented on the

mesh as follows: Every processor stores

● one arbitrary vertex v c V,

● the addresses of all processors storing a vertex w c

V such that (v, w) E E, and

● one arbitrary query q c Q.

Note that, the assignments of vertices and queries to

processors is not fixed and may change during the

course of the algorithms. Every processor p is assumed

to have an additional register visit(p). At any stage

of the multisearch algorithms to be presented, a query

q c Q will be said to visit a node v E V if the processor

p storing the query q also stores, in its register visit(p),

a copy of v.

Proof of Theorem 2:

We first study the correctness of Algorithm 1, and then

give some implemental ion details and prove the claimed

time complexity and space requirement. In Steps 1 and

2, each Bi, for O < i < log* h – 1, is duplicated such

that each Bi+ ~-submesh contains a copy of Bi. In Step

3, the multisearch problem for Bi, i = O, 1,. ... log* h –

1, is solved (in that order). In every loop iteration,

within each Bi+l-submesh the graph Bi is copied into

every Bi-submesh, such that Lemma 1 can be applied

to solve the multisearch problem for Bi. Finally, in Step

4, the multisearch problem for B* is solved. Thus, the

multisearch problem for G is solved.

Next, we analyze the time and space complexity of

Algorithm 1 and show that it requires only 0(1) space

per processor. This is obvious for Steps 1, 3 and 4; a

potential problem lies in the duplication scheme in Step

2. For Step 2(b) we observe that ~~~~ lBj I = O(lBi 1)

and, hence, it requires only 0(1) storage per processor.

For Step 2(a), we need to show that in each Bi-submesh

there are at least @(lBi 1) processors with label = i,

Note that for j ~ i – 1, each Bj +l-submesh contains

one Bj-submesh in its top-left corner whose processors’

labels are set to j (see Step 1). That is, in Step 1,

the labels of at most (log;) ~)a (W)2 processors
are changed from i to j. Hence, t le number of pro-

cessors in each Bi-submesh with label = i is at least

f]..fi~ bp(l - Xj=;(1~)2) = e((,ogfl, ,,),). Since

lBil = O((log:)~),), these processors can store B; with

0(1) storage per processor provided that the B~’s data

can be evenly distributed among them. The following

is a detailed 0(~~-) time implementation of Step

2(a).

1.

2.

3.

4.

!5.

Every Bt is compressed into top-left B~-submesh

of each Bit I-submesh.

Each Bi-submesh is partitioned into four sub-

squares of equal size.

For each subsquare, the number of processors with

label = i is determined.

The data for Bi is distributed among these sub-

squares according to the ratio of number of pro-

cessors with label = i.

in Steps 2-4 are repeated recursively, in parallel, on

each of the four subsquares, until the subsquares

are of size O(l).

Summarizing, we obtain that Algorithm 1 requires 0(1)

storage per processor.

Next, we prove the claimed ~(fi time complex-

ity of Algorithm 1. Since ~~o ~-1 ~ = O(@)

and 0(X21 ‘-1 /~) = O(@), the time com-
plexity of Steps 1 and 2 is O(@. Since B* con-

tains 0(1) levels, the O(@) time complexity of

Step 4 is obvious. Since each Bi+l-submesh con-

tains a copy of Bi, the total time complexity for

Step 3a (over all iterations) is O(~~~’ - 1 <~) =

o(/ii). From Lemma 1 it follows that, for each

i=o ,..., log* h – 1 the time time complexity of Step

3b is 0(~log A hi). Thus, the total time for all

iterations of Step 3b is O(~yjj ‘– 1 @log Ahi) =
o(~~; ‘-1 fi~) = o(fi. Hence, the time

complexity of Algorithm 1 is O(@). ❑

Proof of Lemma 3:

We first study the correctness of Constrained-

Multisearch(V, 6), and then give some implementation

details and prove the claimed time complexity. Obvi-

ously, every query q either visits the next at most Iogzn

nodes in its search path until the next node in its search

path is not in the same subgraph G~ e W that contains

v(q), or it will not advance any step in its search path

(in case v(q) is not in any Gi E V). The crucial step

for proving the correctness of the procedure is to show

that (1) the total size of the copies of subgraphs Gi cre-

ated in Step 4 is O(n), and (2) in Step 5, the sizes and

total number of subgraphs to be moved match the sises

and total number of &submeshes available. Item (1)

follows from the fact that ~~iev r&(Gi) = 0(nl-5) ,

and Item (2) follows from the definition of I’& (Gi) and

,L1/!

the fact that each &submesh is of size O(n~). We will

now prove the claimed time complexity. Steps 1, 2, 3,

and 5 can be easily implemented in time O(@) by ap-

plying a constant number of standard mesh operations.

For Step 4, the mesh is subdivided into a grid of

~x~submeshes of size n’. The total number

of copies created of subgraphs G~ is &i ~~ rj (Gi) =

O(nl -6). Hence, each such submesh needs to simulate

only a constant number of” virtual” ii-submeshes, with

each of the “virtual” &submeshes storing one copy of a

subgraph Gi. Creating the required copies of subgraphs

and moving them to the “virtual” ti-submeshes can be

implemented by a constant number of standard mesh

operations. We finally discuss the time complexity of

Steps 5. Note that, each execution of the loop body is

executed independently and in parallel on each O(n$)

size &submesh created in Step 4. Hence, each loop it-

eration can be implemented in time O(a), using a

standard random access read/write operation on each

&submesh. Since O <6< 1, the total time complexity

of Step 5 is O(log n@) = O(@). ❑

Proof of Lemma 4:

We first study the correctness of Algorithm 2. The

basic idea behind the algorithm is that if, in Step 2, a

query reaches a vertex at the border of the a-splitter S,

the next and all further vertices to be visited are in the

same subgraph Ti. These vertices will then be visited

in Steps 3 and 4. That is, for every query q C Q, one

of three possible cases applies:

1.

2.

3.

For

All nodes visited by q within the log-phase are in

one subgraph Hi.

All nodes visited by q within the log-phase are in

one subgraph Ti.

Within the log-phase, query q visits first only

nodes within one subgraph Hi, and once it

“leaves” Hi it will only visit nodes in one subgraph

Tj .

those queries to which either Case 1 or Case 2

applies, all nodes to be visited within the log-phase

are visited during Steps 1 and 2; see Lemma 3.

Let q be a query to which Case 3 applies, and let

(2)1,... ,Vz, wz+l,vv) be the sequence of nodes to

be visited within the log-phase, where VI, VC are in

some subgraph Hi and VZ+l, ~v) are in some sub-

graph Tj. It follows from Lemma 3 that VI, UC are

visited during Steps 1 and 2, and that Wc+l, Vy are

visited during Steps 3 and 4.

From Lemma 3 it also follows that Algorithm 2 has

time complexity O(W and requires a mesh of size n

Lo

Figure 1. A Hierarchical DAG with p = 2.

with 0(1) memory per processor. D

Proof of Lemma 6:

We first study the correctness of Algorithm 3. The ba-

sic idea behind the algorithm is that if, in Step 2, a

query reaches a vertex at the border of the a-splitter

S1, we will then, in Steps 3 and 4, switch to using the

subgraphs defined by the @-splitter S2. From the def-

inition of a-~-partitionable graphs it follows that such

a query can then advance fl(log n) more steps in its

search path without visiting a node at the border of

S2; by this time, the log-phase is completed. That is,

for every query g E Q, one of the following cases ap-

plies:

1.

2.

3.

All nodes visited by q within the log-phase are in

one subgraph W;.

All nodes visited by q within the log-phase are in

one subgraph W:.

Within the log-phase, query q first visits some

nodes in one subgraph W: of G(S1). Once it

“leaves” W:, it is sufficient (for the completion

of a log-phase) to consider only the subgraph W;

of G(S2) visited at that point in time, and let the

query continue on its search path until it reaches

a vertex at the border of S2.

From this, the correctness of Algorithm 3, as well as

the claimed time complexity, follow immediately from

Lemma 3. ❑

213

Figure 2. A Directed Balanced Binary Tree And Its

a-Splitter (a = +).

Figure 4. Illustration of the Definition of Subgraphs

Bi

. Illustration of the Definition of Subgraphs B:

Figure 3. An Undirected Balanced Binary Tree With

Its a-Splitter S1 (CZ= ~) And @Splitter & (~ = ~) J

Such That S1 And S2 Have Distance $ = ~(log n).

214

