
1

Parallel Processing of Pointer Based
Quadtrees on Hypercube Multiprocessors

Frank Dehne *

School of Computer Science
Carleton University

Ottawa, Canada K1S 5B6
(613) 788-4353

dehne@carleton.ca

Afonso G. Ferreira †

Laboratoire de l'Informatique du
Parallelisme

Ecole Norm. Sup. de Lyon
69364 Lyon, Cedex 07, France

Andrew Rau-Chaplin ‡

School of Computer Science
Carleton University

Ottawa, Canada K1S 5B6
(613) 788-4345
arc@carleton.ca

Abstract

This paper studies the parallel construction and manipulation of pointer based quadtrees on
the hypercube multiprocessor.

While parallel algorithms for the manipulation of a variant of linear quadtrees have been
previously studied in the literature, no parallel pointer based quadtree construction algorithms
have been presented. In this paper, we solve the problem of efficiently constructing pointer
based quadtrees on the hypercube, from images represented by either binary matrices or
boundary codes. In addition we show how these algorithms can be efficiently implemented on
the PRAM providing new construction algorithms for both pointer based and linear quadtrees.

Furthermore, previous papers considered exclusively the parallel processing of a variant of
linear quadtrees, namely linear quadtrees with path encoding. In this paper, we demonstrate
that, in the parallel setting, pointer based quadtrees are an attractive alternative to linear
quadtrees with path encodings. We present new efficient and practical parallel algorithms for
standard quadtree operations, (such as finding the neighbors of all leaves in a quadtree, and
computing the union/intersection of two quadtrees) for the hypercube.

Key words: parallel algorithms, image processing, quadtree, hypercube, PRAM.

1 Introduction

A quadtree is a well known hierarchical data structure for representing a binary image of

size M × M (M = 2r for some positive integer r) . The root of the quadtree represents the

entire image and has a value "black", "white", or "gray" depending on whether the entire

* Research partially supported by the Natural Sciences and Engineering Research Council of Canada.
† Currently on leave from the University of Sao Paulo (Brazil), project BID/USP. Research partially

supported by CAPES/COFECUB (Grant 503/86-9).
‡ Research partially supported by the Bell-Northern Research Graduate Award Program.

F D
F. Dehne, A. Ferreira, and A. Rau-Chaplin, "Parallel processing of pointer based quadtrees," in Proc. International Conference on Parallel Processing, St. Charles, Ill, 1991, pp. 255-262.

2

image is black, white, or composed of both types of pixels, respectively. If the root is

gray, it has four children which are roots of quadtrees recursively representing the four

quadrants of the image; otherwise it has no children. For the remainder, we do not

differentiate between a node of a quadtree and the portion of the image represented by that

node.

There are two widely used representations of quadtrees. A pointer based quadtree uses

the standard tree representation while a linear quadtree uses a linear list representation. The

linear quadtree can be represented by either a preorder traversal of the nodes of a quadtree

or the sorted sequence (with respect to the preorder of the tree) of the quadtree's leaves.

Some linear quadtree representations of the second type require that with each leaf a code

sequence representing the path from the root to that leaf is stored (linear quadtree with path

encoding), while others store for each leaf only its size and location (linear quadtree without

path encoding). For an overview and bibliography on quadtrees and applications we refer

to the work of Samet ([17]).

Quadtrees are a very useful and widely used data structure for image processing, and

quadtree algorithms for a large number of image processing tasks have been developed

([17]). Since image processing is typically data intensive, the application of parallelism to

such a fundamental data structure is of both theoretical and practical interest. Recently,

researchers have therefore also started to consider quadtree algorithms for parallel models

of computation [2, 7, 9, 11, 12]. While some papers ([11,12]) consider parallel

architectures designed (or reconfigured) particularly for quadtree manipulation, other

([9,2]) consider the general purpose architectures mesh-connected computer and PRAM,

respectively. Hung and Rosenfeld ([9]) study mesh-connected computer algorithms for

constructing and manipulating linear quadtrees without path encoding and obtained

construction and manipulation algorithms with time complexities of O(M) and O(n),

respectively.

Another commonly available parallel archictecture, and the focus of this paper, is the

fine-grained hypercube multiprocessor (hypercubes with a large number - more than

10,000 - of small processors). The CM2 from Thinking Machines Co. is an example of

an existing fine grained system.

Table 1 lists the parameters that will be used for the remainder of this paper. PRAM

algorithms for manipulating linear quadtrees with path encoding are studied by Bhaskar,

Rosenfeld and Wu ([2]); the obtained results are listed in Table 3 (rightmost column).

3

M no. of pixels in the original image
b length of the boundary code
N size of the explicit quadtree
N' size of the linear quadtree with path

encoding
n size of the linear quad tree without path encoding
h height of the quadtree

t time complexity
s total memory space
p no. of processors

Table 1. Overview of Parameters.

problem pointer based quadtree linear quadtree
hypercube PRAM hypercube PRAM

convert image to
quad tree
(s = p = M)

t = O(log2 M) t = O(log M) t = O(log M) t = O(log M)

convert boundary
code to quad tree
(s = p = b)

t = O(h log b) t = O(h log b) t = O(log b (h+
log2logb))

t = O(h log b)

Table 2. New Parallel Quadtree Construction Methods.

problem hypercube
(pointer based)

PRAM
(linear quadtrees)

determine neighbors of all
leaf nodes /
compute perimeter

s = p = N
t = O(h log N)

s = p = N’
t = O(h log N')

s= p = O(4h)≥ O(N)
t = O(h+logN') [2]

rotate by i*90o s = p = N
t = O(h + log N)

compute union /
intersect.

s = p = N
t = O(h log N)

s = p = N’
t = O(h log N') [2]

compute complem.† s = p = N
t = O(log N)
[t = O(1)]

s = p = N’
t = O(h)
[2]

comp. area
/ centroid

s = p = N
t = O(log N)

s = p = N'
t = O(log N') [2]

Table 3. Parallel Quadtree Manipulation Methods (New Results Highlighted).

† This operation is trivial for pointer based quadtrees, and listed for completeness only. The hypercube

time complexity assumes O(1) time instruction broadcast (as, e.g., on the Connection Machine).

4

problem pointer based quadtree linear quadtree
hypercube PRAM hypercube PRAM

convert image to
quad tree
(s = p = M)

t = O(log2 M) t = O(log M) t = O(log2 M) t = O(log M)

convert boundary
code to quad tree
(s = p = b)

t = O(log b (h+
log2logb))

t = O(h log b) t = O(log b (h+
log2logb))

t = O(h log b)

Table 2. New Parallel Quadtree Construction Methods.

problem pointer based quadtree linear quadtree
hypercube PRAM hypercube PRAM

determine
neighbors of all
leaf nodes /
compute perimeter

s = p = N
t = O(h log N)

s = p = N
t = O(h)

s = p = N’
t = O(h log2N'
log2logN')
s= p = O(4h)≥
O(N)
t = O(h log N'
log2log N' +
log2N' log2log N')
§

s = p = N’
t = O(h log N')

s= p = O(4h)≥
O(N)
t = O(h+logN') [2]

comp. area
/ centroid

s = p = N
t = O(log N)

s = N,
p = N/log N,
t = O(log N)

s = p = N’
t = O(log N')

s = p = N'
t = O(log N') [2]

rotate by i*90o s = p = N
t = O(h+ log N
log2l ogN)

s = p = N
t = O(h+log N)

compute union /
intersect.

s = p = N
t = O(log N (h
+ log2l ogN))

s = p = N
t = O(h+log N)

s = p = N’
t = O(h log2 N'

log2log N') §

s = p = N’
t = O(h log N') [2]

compute

complem.†
s = p = N
t = O(log N)
[t = O(1)]

s = p = N
t = O(1)

s = p = N’
t = O(h log N'

log2log N') §

s = p = N’
t = O(h)
[2]

Table 3. Parallel Quadtree Manipulation Methods (New Results Highlighted).

The time and space complexities listed in Table 3 for manipulating linear quadtrees with

path encoding on a hypercube are obtained from [2] by using standard PRAM simulation

on a hypercube, as described by Nassimi and Sahni ([13]), together with Cypher and

Plaxton's deterministic hypercube sorting algorithm ([4]).

§ Follows from [2] by standard PRAM simulation on a hypercube as described in [12], together with [4].
† This operation is trivial for pointer based quadtrees, and listed for completeness only. The hypercube

time complexity assumes O(1) time instruction broadcast (as, e.g., on the Connection Machine).

5

In this paper, we study two problem areas which remained unsolved in the previous

literature.

In the above mentioned papers there existed, for the hypercube and PRAM, parallel

quadtree manipulation algorithms, but no parallel quadtree construction algorithms (neither

for pointer based nor for linear quadtrees) were given. Such construction algorithms,

which are obviously necessary to use quadtrees on a real parallel machine, are presented in

this paper. We describe algorithms for converting images represented either by a binary

array or a boundary code into pointer based as well as linear quadtrees. Table 2 summarizes

the obtained results.

Furthermore, all previous papers studied only the parallel processing of linear quadtrees

with path encoding. The reason might be that a linear quadtree, being just a set of leaf

nodes, seems to be easier to handle in the parallel setting, compared to maintaining and

manipulating a pointer structure necessary for a pointer based quadtree. We show however

that pointer based quadtrees are an efficient alternative. In fact, the parallel manipulation

algorithms for pointer based quadtrees presented in this paper improve, in terms of

time/space product, on the previously presented methods. In addition, they exhibit better

time complexities with same number of processors, in all but degenerate cases. Table 3

summarizes the obtained results. Note that, the algorithms in [2] apply to linear quadtrees

with path encoding. In the expected case, the height, h, of the quadtree is O(log N) ([1, 8,

10]). Hence, N=O(N'); i.e., the linear and pointer based quadtrees have, asymptotically,

the same space requirement. In this case, we obtain improvements in the time complexity

for several problems, such as computing the neighbors of all leaf nodes and the perimeter

of an image [hypercube: O(h log N) vs. O(h log2N log2log N), PRAM: O(h) vs. O(h log

N)] or computing the union/intersection of two quadtrees [hypercube: O(log N (h+log2log

N) vs. O(h log2N log2log N), PRAM: O(h+log N) vs. O(h log N)]. In the worst case,

h=O(N), the linear quadtree with path encoding needs to store one path requiring O(h) bits,

while the pointer based quadtree needs O(h) pointers of O(log h) bits each; that is, N=O(N'

log h). In this case, we obtain a time space trade-off between the above time complexity

improvements and increased storage for pointer based quadtree algorithms. Note that, for

the hypercube, the space increases by a factor smaller than the time complexity

improvement, and for the PRAM both factors are equivalent.

The remainder of this paper is organized as follows. In Section 2, we discuss some

preliminaries concerning the models of parallel computation and the dynamic multi-way

search paradigm. In Section 3, we present efficient hypercube and PRAM algorithms for

6

constructing a (pointer based or linear) quadtree from a binary image or from an image

represented by its boundary code. In Section 4, we introduce efficient parallel hypercube

and PRAM algorithms for manipulating pointer based quadtrees.

2 Preliminaries

Before presenting our quadtree algorithms, we introduce some notations and previous

results which will be used in the remainder. We start by defining the parallel models of

computation we will address henceforth.

2.1 Hypercube Multiprocessor and PRAM

A hypercube multiprocessor is a set P1, ..., Pp of p processors connected in a hypercube

fashion; i.e., Pi and Pj are connected by a communication link if and only if the binary

representations of i and j differ in exactly one bit. In a hypercube, there is no shared

memory. The entire storage capability consists of constant size local memories, one

attached to each processor (s=O(p)).

A CREW PRAM consists of a set P1, ..., Pp of p processors, with constant size local

memories, connected to a shared memory of size s. An arbitrary number of processors can

read concurrently from the same shared memory location, but concurrent write accesses are

not possible.

2.2 Storing Pointer Based Quadtrees on a Hypercube Multiprocessor

While storing a pointer based quadtree on a PRAM is simple, because of its shared memory

which can be used in the same way as for a standard sequential machine, we require a

scheme for distributing a quadtree over the local memories of a hypercube. Consider the

level order numbering of the nodes of a quadtree as indicated in Figure 1. For the

remainder we will assume that each node with level order number i, together with the

attached data and pointers to its children, is stored at processor Pi.

7

1

2 53 4

6 7 8 9 10 11 12 13

14 15 16 17

Figure 1. Level Order Numbering of the Nodes of a Quadtree

2.3 Multi-Way Search on a Tree

Let T = (V, E) be a tree of size k, height h, and out-degree O(1), and let U be a universe of

possible search queries on T. A search path for a query q ∈ U is a sequence path(q)=(v1,

..., vh) of h vertices of T defined by a successor function f: (V ∪ { start}) × U ⇒ V; i.e., a

function with the property that f(start,q) ∈ V and for every vertex v∈V, (v, f(v,q)) ∈ E or

(f(v,q), v) ∈ E. A search process for a query q with search path (v1, ..., vh) is a process

divided into h time steps t1<t2<...<th such that at time ti, 1≤i≤h, there exists a processor

which contains (in its local memory) a description of both the query q and the node vi .

Note that, we do not assume that the search path is given in advance. We assume that it is

constructed ‘online’ during the search by successive applications of the function f. Given a

set Q = { q1,...,qm} ⊆ U of m queries, m=O(k), then the multi-way search problem

consists of executing (in parallel) all m search processes induced by the m queries.*

The best way to visualize this process is to depict each search process as a pebble,

representing the respective query and moving through the tree T. A pebble may only move

along edges of T, but it it can traverse them in both directions. The multi-way search

problem consists of m such pebbles moving simultaneously through the tree. Note that,

each node of the tree may be ‘visited’, at any time, by an arbitrary number of pebbles.

On a PRAM (of size max{k,m}) multi-way search can be easily implemented in time

O(h). Each query (pebble) is simply represented by one processor, navigating it through

the tree. The PRAM’s concurrent read capability ensures that queries visiting the same node

do not interfere.

* In subsequent sections, queries will also be referred to as messages.

8

For hypercube multiprocessors, it was shown in [6] that the multi-way search problem

can be solved in time O(h log (max{k,m})) on a hypercube of size max{k,m}. The

algorithm presented there applies to a class of graphs called ordered h-level graphs (see [6]

for a precise definition) which includes the class of all trees with constant degree. The

global structure of this algorithm (applied to the special case of search trees) is as follows:

Initially, the tree is stored as indicated in Section 2.2. The m search queries are stored in

arbitrary order (with each processor storing at most one query). The m search processes for

the m queries q1,...,qm are executed simultaneously in h phases, each requiring time O(log

(max{k,m})). Each phase moves all queries one step ahead in their search paths. In each

phase, the queries are permuted such that they are sorted with respect to the level order

number of the respective node they want to visit next. Furthermore, a copy of the search

tree is created and its nodes are permuted such that, at the end of each phase, each

processor containing a query qi also stores a copy of the node the query wants to visit next.

See [6] for a full description of the algorithm.

Consider the problem of changing the tree T or the set Q of queries during the execution

of a multi-way search. That is, during the search (more precisely, at the end of each phase

of the algorithm outlined above) leaves may be added to T, subtrees may be deleted from T,

and queries may duplicate or delete themselves. This problem is referred to as the dynamic

multi-way search problem. In [5] it has been shown that this problem can be solved, for the

hypercube, such that the time complexity of each phase is still O(log (max{k,m})). That is,

the time complexity of the entire multi-way search procedure for the dynamic case is still

O(h log (max{k,m})). For the PRAM, the dynamic version also requires time O(h log

(max{k,m})). The problem here is that the assignment of processors to new queries and

the assignment of storage space of deleted nodes to newly created ones may require a

partial sum operation for each phase of the algorithm, which slows down the static solution

by a factor of O(log (max{k,m})).

3 Constructing Quadtrees from Images and Boundary Codes

3.1 Quadtree from Binary Image

Consider a M × M binary image stored on a hypercube (with M processors) in row-major

numbering (see Figure 2a). That is, processor Pi stores the pixel with row-major number i.

9

1 2 3 4

5 6 7 8

9 10 11 12

14 15 16

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 1613

(a) (b)

Figure 2. (a) Row-Major Numbering (b) Shuffled Row-Major Numbering.

The following is an outline of a hypercube algorithm for computing a pointer based

quadtree from such a binary image representation. (The implementation details will be

presented afterwards.)

(1) For each pixel (in parallel) its shuffled row-major number (as indicated in Figure

2b) is computed.

(2) All pixels are sorted by shuffled row-major number.

(3) A complete 4-ary tree, with the sorted sequence of pixels as leaves, is built.

(4) From each leaf a message is sent along the path to the root of the tree. The

messages move synchronously upwards from level to level. At each level, the

following is executed:

 If all four messages reaching a node x come from black {white} children,

then x is set to black {white} and its children are marked "to be deleted". If

the messages reaching x are from children with different color, x is set to

gray.

(5) All nodes marked "to be deleted" are deleted, the remaining nodes are compressed

to form a consecutive sequence, and all pointers are updated.

Theorem 1 The pointer based quadtree representation of a M × M binary image can be

computed in time O(log2M) on a M processor hypercube, i.e. s=p=M.

Proof: From the definition of quadtrees it follows that the tree generated by the above

algorithm is the correct quadtree. What remains to be shown is that the above steps can be

implemented within the claimed time complexity bounds. Step 1 requires only the local

computation of the shuffled row-major number of the respective pixel at each processor.

For a M × M image, this takes O(log M) local computation steps. Step 2 requires time

O(log M) as it can be realized by a single Bit-Permute-Complement operation [15]. Step 3

can be implemented by building the tree level by level, starting with the leaves (which are

10

given). Since it is a complete tree, at each stage the addresses of the nodes of the

subsequent level can be immediately computed. Thus, Step 3 requires time O(log2M)

because each level can be constructed using a concentrate and distribute operation [13].

 Step 4 is a multi-way search operation as outlined in Section 2.3, with traveling messages

represented by query processes. Hence, it requires time O(h log M)=O(log2M). Note that,

Step 4 does not change the topology of the tree but marks only the nodes to be deleted. In

 Step 5 , the marked nodes are deleted by compressing the sequence of the remaining (non

marked) nodes and the pointers (address references between tree nodes) are updated. This

can be accomplished in O(log M) time using the updateTree operation from [BRANCH

AND BOUND]

Linear quadtrees without path encoding can be constructed in essentially the same way

by marking in Step 4 also gray nodes as "to be deleted". For linear quadtrees with path

encoding, we also need to compute (between Steps 4 and 5) the path encoding for each leaf

by applying one additional multi-way search procedure.

Corollary 1 The linear quadtree representation (with or without path encoding) of a M ×

M binary image can be computed in time O(log2M) and O(log M) on a hypercube and

PRAM, respectively, with s=p=M.

3.2 Quadtree from Boundary Code

Consider an image I described by a boundary code of length b; i.e., a sequence a1, ..., ab

of b boundary elements ai∈{r,l,u,d} as shown in Figure 3 (see [14]). The image I consists

of the entire area inside the boundary line defined by the boundary code. The unit size

pixels of I that are adjacent to the boundary line are called boundary pixels (see Figure 3).

For the remainder, let SI denote a smallest (isothetic) square containing I. Note that SI has a

width of at most b.

11

r r r r r r r

d

d

dr r

d

d

d

d

lllllll

u

ull

u

u

u

u

u

starting point
boundary code

boundary pixel

Figure 3. Boundary Code and Boundary Pixels of an Image

Our parallel algorithm for computing the pointer based quadtree from the boundary code

consists of two phases, each of which is outlined below.

Phase 1 computes a quadtree template representing only the boundary pixels of I . What

remains to be done in Phase 2 is the creation of leaf nodes corresponding to the black and

white area inside and outside the boundary line, respectively. The missing children of an

internal node x, at the end of Phase 1, will be referred to as absent children of x. Note that,

all absent children are leaves.

 Phase 1:

(1) For each boundary element, its absolute address (in SI) is computed, and the

adjacent boundary pixels are created (see [14]).

(2) The shuffled row-major number of each boundary pixel with respect to SI is

computed.

(3) All boundary pixels are sorted with respect to their shuffled row-major number.

(4) A quadtree with the above sequence of boundary pixels as leaves is built. For

nodes with less than four children, for each missing child a node marked "absent"

is created.

In order to build the final quadtree from the template created in Phase 1, we recall the

following from [14].

Lemma 1 ([14]) After Phase 1, if an absent child of a node is black {white}, then all other

absent children of a node are black {white}.

12

Lemma 2 ([14]) After Phase 1, consider a node, x, with at least one absent child. Choose

an absent child R adjacent to a non-absent (black or gray) sibling Q, and a non-absent leaf q

in the subtree rooted at Q which is adjacent to R. If q is white then R is white. If q is black

and adjacent to the boundary line, then R is white if the boundary line is between q and R ,

and black if the boundary line does not separate them. If q is black and not adjacent to the

boundary line, then R is black.

The following outlines the remainder of the algorithm.

 Phase 2:

(1) From each leaf, a message is sent to the root of the tree. The messages move

synchronously upwards from level to level. For each node, a value Nodetype is

determined which indicates for each side of its respective quadrant whether it is

completely inside the image I, completely outside of I, or intersected by the border

line (see also [14]). Note that, the Nodetype value for every boundary pixel (leaf

of template quadtree) is given; for every internal node, given the Nodetype values

of all its children, its Nodetype value can be easily determined in constant time.

For each internal node x with at least one absent child, the absent children are

created and their values are determined as follows:

 (a) An absent child R adjacent to a non-absent child Q is selected. The color of

R is determined according to Lemma 2. However, the color of R is

determined directly from the Nodetype value of Q rather than from the leaf q

referred to in Lemma 2. All other absent children of x are assigned the same

color as R (Lemma 1).

(b) The Nodetype values of the previously absent children are determined.

Finally, the Nodetype value of x is computed.

(2) From each leaf, a message is sent to the root of the tree. The messages move

synchronously upwards from level to level. (This is ensured by wait loops for

messages starting at leaves of smaller depth.) At each level, the following is

executed:

 If all four messages reaching a node x come from black {white} children,

then x is set to black {white} and its children are marked "to be deleted". If

the messages reaching x are from children with different color, then x is set

to gray.

13

(3) All nodes marked "to be deleted" are removed, the remaining nodes are

compressed to form a consecutive sequence, and all pointers are updateed.

Theorem 2 The pointer based quadtree representation of a binary image described by a

boundary code of length b can be computed in time O(log b (h+ log2log b)), with s=p=b.

Proof: The correctness of the algorithm follows from [14]. What remains to be shown is

that the individual steps listed in the above two phases can be implemented with the claimed

time complexity. We start by describing a hypercube implementation of Phase 1 . For Step

 1 , the x-coordinates of the absolute addresses are computed by assigning a value 1, -1, 0,

and 0 to the boundary elements r,l,u,d, respectively, and computing the partial sums of this

sequence. All y-coordinates are computed analogously. For each boundary element, the

creation of the boundary pixels requires only information about the directly adjacent

boundary elements; otherwise, it is a local O(1) time operation. Hence, Step 1 can be

executed in O(log b) time. Step 2 requires O(log b) local computation steps at each

processor. Step 3 requires time O(log b log2log b) [4]. Step 4 can be implemented by

building the tree level by level, starting with the leaves (which are given). At each level,

every node (initially leaves) examines its three neighbors to the right and left and

determines (using the shuffled row-major numbering and current level information) with

whom a common ancestor is to be created. This can be implemented with O(log b) time per

level by using a constant number of partial sum as well as concentrate and distribute [13]

operations. At the beginning of Phase 2 , we have a quadtree template representing only the

boundary pixels of the image I. The nodes corresponding to the black and white area inside

and outside the boundary line, respectively, are now created by successive dynamic multi-

way search procedures. In Step 1 , a dynamic multi-way search procedure is used to add

and update the absent children inO(h log b) time. Step 2 and Step 3 are the same as Step 4

and Step 5, respectively, of the algorithm in Section 3.1. Therefore, Step 2 can be

implemented in time O(h log b) ; Step 3 requires time O(log b).

Linear quadtrees without path encoding can be constructed in essentially the same way

by marking in Step 2 of Phase 1 also gray nodes as "to be deleted". For linear quadtrees

with path encoding, we also need to compute (between Steps 2 and 3 of Phase 2) the path

encoding for each leaf by applying one additional multi-way search procedure. Therefore,

the linear quadtree representation (with or without path encoding) of a binary image

14

represented by a boundary code of length b can also be computed in a hypercube with b

processors in time O(log b (h + log2log b)).

4 Operations on Quadtrees

4.1 Finding Neighbors in Quadtrees and Computing Region Properties

One of the main advantages of using the pointer based quadtree is that, once the quadtree

has been constructed, parallel searching algorithms on quadtrees can be easily adapted from

the existing sequential methods by using the dynamic multi-way search technique outlined

in Section 2.3. One of the most important building blocks of quadtree applications are

neighbor finding techniques. For a leaf x representing a quadrant X, a neighbor of x is a

leaf y representing a quadrant that is adjacent to X (with respect to the image) and has at

least the same size as X. The multiple neighbor finding problem consists of finding the

neighbors of all leaves of the quadtree.

Theorem 3 Given a pointer based quadtree of size N stored on a hypercube with s=p=N,

then the multiple neighbor finding problem can be solved in time O(h log N).

Proof: The sequential method described in [16] for finding the neighbor y of one single

leaf x traverses the tree from x upwards, along path π(x), to the lowest common ancestor

of x and y; then it descends downwards to y by using the "mirror image" of the upwards

path π(x). The main problem with parallelizing this method to parallel traversals for all

leaves of the tree, using multi-way search, is that a message used in multi-way search may

only be of constant size and, thus, cannot store the path π(x). Assume w.l.o.g. that the

right neighbor of x is to be determined. Let α denote the right border of the quadrant

associated with x, and let β denote the line defined by extending α. We observe that a

query can also be routed from a leaf x to its right neighbor y (along the same path as

described above) as follows: The query moves upwards from x until it reaches a node

whose associated quadrant intersects β. Then, it descends downwards by selecting always

the child whose associated quadrant is adjacent to α. Hence, a query process to be routed

from x to its neighbor y needs to store only α and β. With this, multiple neighbor finding

reduces to multi-way search and, thus, the theorem follows.

15

Once the neighbors of each leaf in all four directions have been determined, the

calculation of, e.g., the perimeter of the image follows immediately (see [2]).

Corollary 3 Given a pointer based quadtree of size N stored on a hypercube with

s=p=N, then the perimeter of the associated image can be computed in time O(h log N).

Remark. Notice that, numerous region properties of images such as the area or

centroid, which are simply associative functions of the leaves (and do not need neighboring

information), can be immediately calculated by partial sum operations (see [2]). This

requires time O(log N) on a hypercube with s=p=N .

4.2 Rotating Quad Trees By 90o

Given a pointer based quadtree T, the following algorithm computes the quadtree T' for the

image of T rotated by 90o on a hypercube or PRAM, with s=p=N.

(1) For each node, the position of the rotated associated quadrant is computed.

(2) For each rotated quadrant, the shuffled row-major number (with respect to the

partitioning into quadrants of the same size) is computed.

(3) The nodes are sorted by major key level and minor key shuffled row-major

number.

(4) All nodes are resorted to their original position in the old tree. Each node sends its

new address to its parent.

(5) All nodes are again sorted by major key level and minor key shuffled row-major

number.

Theorem 4 Given a pointer based quadtree T of size N stored on a hypercube with

s=p=N, then the quadtree T' representing the image, associated with T, rotated by 90o can

be computed in time O(h+log N log2log N).

Proof: The correctness of the algorithm follows from the observation that if a node v is the

parent of a node w in T then the node in T' representing the rotated quadrant of v is also the

parent of the node in T' representing the rotated quadrant of w. The computation of the

shuffled row-major number in Step 2 requires O(h) local computation steps at each

processor. The remainder of the algorithm reduces to a constant number of sorting

operations. Therefore, the time complexities follow.

16

4.3 Constructing the Union and Intersection

The union (intersection) of two quadtrees TA and TB is defined as the quadtree TA∪B

(TA∩B) representing the image composed of the bitwise OR (AND) of the two original

images. In this section, we study the parallel computation of the union and intersection of

two pointer based quadtrees. Notice that the complement of an image represented by a

pointer based quadtree can be trivially computed in O(1) time. Below, we introduce some

definitions that will be used in the remainder of this section.

A tree TA+B is called an overlay of TA and TB if it is the smallest 4-ary tree such that for

each node v of TA or TB there exists a node δ(v) in TA+B representing the same image area

(assuming that TA+B represents an image subdivision defined in standard quadtree

fashion). The combined level order numbering of TA and TB is defined as follows: For

each node v of TA or TB, the combined level order number ηA+B(v) is the level order

number of δ(v) in TA+B. The shuffled row major number of a node v of TA (or TB) is the

shuffled row major number of the associated quadrant with respect to the subdivision of the

image plane into quadrants of the same size.

A1

A6 A7 A8

A5A2 A3 A4

B1

B6 B7 B8 B9

B2 B3 B4 B5

A9 A10 A11 A12 A13 B10B11B12B13

A1 A6 A7 A8A5A2 A3 A4

B1 B6 B7 B8 B9B2 B3 B4 B5

A9 A10 A11 A12 A13

B10 B11 B12 B13

1 3 3 3 32 2 2 2 3 3 3 33 3 3level

0 9 10 11 121 2 3 4 13 14 15 165 6 7 8

content

proc. #

3

Figure 4. Combined Level Order Numbering Scheme.

We assume that both quadtrees are stored by level order number as indicated in Section

2.2. As a preprocessing, we convert this storage scheme into a combined level order

numbering scheme where every node v of TA or TB is stored at processor number

ηA+B(v). Note that, every processor stores at least one node, but at most two nodes, one of

each tree. The new relative order of the nodes of one tree, say TA, is the same as their order

17

in the initial level order numbering of TA. The combined level order numbering scheme can

be obtained as follows: All nodes are sorted by major key level (height within their tree)

and minor key shuffled row major number. For any two nodes with the same major and

minor keys stored in two adjacent processors Pi and Pi+1, the node in Pi+1 is moved to Pi.

Finally the contents of the processors are shifted leftwards so that processors without data

are avoided.

Given this storage scheme for the two quadtrees TA and TB, the following is an outline

of a parallel algorithm for computing the quadtree TA∪B. Our algorithm uses dynamic

multi-way search (see Section 2.3) with three different types of messages: "compare",

"copy" and "update" messages.

(1) From each of the roots of TA and TB a wave of "compare" messages is sent

towards the leaves. That is, a "compare" message is sent to each root and, each

node receiving a message, duplicates it and sends one to each child (within its own

tree). Messages move synchronously downwards from level to level. During this

process, a new tree T is created, which will subsequently be converted into TA∪B.

At each level, the following is executed:

(a) Each node x receiving a "compare" message, compares itself with the

respective node y (representing the same image area) of the other tree. The

node y is stored at the same processor P as node x and receives a "compare"

message at the same time as node x does. Unless x and y are the roots of TA

and TB, respectively, let parent(x) and parent(y) denote their respective

parents. Note that, parent(x) and parent(y) are both "gray" nodes stored at

the same processor P' and, previously, received a "compare" message at the

same time.

 Case 1: x and y are both "gray":

A new "gray" node z for T representing the same quadrant as x and y is

created and stored at processor P. Note that, parent(x) and parent(y)

previously created a "gray" node z' for T. This node z' is made the parent of

z in T.

 Case 2: x or y is "black":

A new "black" node z for T representing the same quadrant as x and y is

created and stored at processor P. The "gray" node z' created by parent(x)

18

and parent(y) is made the parent of z in T. The two "compare" messages

which reached x and y are not forwarded but deleted.

 Case 3: One node, x or y, is gray and the other node is white:

A new "gray" node z for T representing the same quadrant as x and y is

created and stored at processor P. The "gray" node z' created by parent(x)

and parent(y) is made the parent of z in T. The "compare" message which

reached the "white" node is deleted. The "compare" message which reached

the "gray" node, is changed to a "copy" message, duplicated, and forwarded

to all children.

 Case 4: x and y are both "white":

A new "white" node z for T representing the same quadrant as x and y is

created and stored at processor P. The "gray" node z' created by parent(x)

and parent(y) is made the parent of z in T. The two "compare" messages

which reached x and y are not forwarded but deleted.

(b) Each node x receiving a "copy" message (in the other tree there exists no

node y representing the same quadrant) creates a new node z for T with the

same color as x and representing the same quadrant. The node z' created by

parent(x) and parent(y) is made the parent of z in T. A "copy" message is

sent to each child, or the message is deleted if x is a leaf.

(2) From each leaf an "update" message is sent to the root of the tree. The "update"

messages move synchronously upwards from level to level. (This is ensured by

wait loops for messages starting at leaves of smaller depth.) At each level, the

following is executed:

 If all four "update" messages reaching a node x come from black {white}

children, then x is set to black {white} and its children are marked "to be

deleted". If the "update" messages reaching x are from children with

different color, x is set to gray.

(3) All nodes marked "to be deleted" are deleted, the remaining nodes are compressed

to form a consecutive sequence, and all pointers are updated.

Computing the intersection of two pointer based quadtrees is analogous. All steps of the

above algorithm remain unchanged except for Cases 2, 3, and 4 where "black" and "white"

should be exchanged.

19

Theorem 5 Given two pointer based quadtrees with a total number of N nodes stored on a

hypercube or PRAM with s=p=N, then the union {intersection} of these quadtrees can be

computed in time O((h+ log2log N) log N) and O(h+log N), respectively, where h denotes

the maximum height of the two trees.

Proof: In order to observe the correctness of the algorithm we first study the intermediate

tree T created at the end of Step 1. Consider two nodes x and y in TA and TB representing

the same quadrant. Then, a node z in T is created in Step 1a (a "compare" message reaches

x and y), and it is easy to see that through Cases 1 to 4 the right color, representing the

union {intersection} of x and y, is assigned to z. Consider, on the other hand, a node x for

quadrant X in, say, TA with no node in TB representing the same quadrant. Then, TB has a

leaf y for a quadrant Y containing X. Let x' be the ancestor of x representing quadrant Y. If

Y is "black" {"white"} then no node needs to be created in T, which is guaranteed by the

deletion of the "compare" messages reaching x' and y (Step 1a, Case 2). If Y is "white"

{"black"} then the entire subtree rooted at x' has to be copied into T. This is achieved by

the "copy" messages started at x' (Step 1a, Case 3 and Step 1b).

In order to prove the claimed time complexity, we first observe that the preprocessing

reduces to a sorting operation followed by a concentrate [13] and partial sum for the

hypercube and PRAM, respectively. Hence, its time complexity is O(log N log2log N) and

O(log N) on the hypercube and PRAM, respectively. The combined level order numbering

scheme used to store the trees TA, TB, and T allows simultaneous multi-way search on all

three trees, because TA, TB, and T are subtrees of TA+B, and all nodes are stored with

respect to their level order number in TA+B (see Section 2.2 and 2.3). Hence, Step 1 can be

implemented on a hypercube using the dynamic multi-way search procedure outlined in

Section 2.3. That is, Step 1 requires time O(h log N) on the hypercube. We observe that,

during Step 1, at any time no tree node is visited by more than one message. Therefore

advancing all messages from one level of the tree to the next level can be implemented, on

the PRAM, in time O(1). This is due to the fact that for assigning processors to messages

we do not require a partial sum operation as in the general case, but we can use a fixed

scheme where every processor is assigned to one node and responsible for the message

visiting that node. Hence, Step 1 requires time O(h) on the PRAM. Steps 2 and 3 are

equivalent to Steps 4 and 5 of the algorithm in Section 3.1. Hence, from Theorem 1, their

time complexity is O((h+ log2log N) log N) and O(h+log N) on the hypercube and PRAM,

respectively.

20

5 Results for the PRAM

In this Section we show how the algorithms for hypercubes described in the previous

Sections can be implemented in a CREW PRAM, yielding improved algorithms for

construction and manipulation of quadtrees. We first recall the complexities of the main

operations used in the previous algorithms and then state our results.

On a PRAM, as it was pointed out in Section 2.3, the time complexity of m-way search and

dynamic m-way search for m queries on a tree of size k and height h is O(h) and O(h log

(max{k,m})), respectively. Sorting and prefix-like operations take O(log p) time with p

processors, and Concurrent Read and Random Access Write operations require O(1) time.

Therefore,

Corollary 2 The pointer based quadtree representation and the linear quadtree (with or

without path encoding) representation of a binary image described by a boundary code of

length b can be computed in time O(h log b) on a PRAM, with s=p=b.

Corollary 3 Given a pointer based quadtree T of size N stored on a PRAM with s=p=N,

then

•the multiple neighbor finding problem can be solved in time O(h).

•the perimeter of the associated image can be computed in time O(h).

•the quadtree T' representing the image, associated with T, rotated by 90o can be

computed in time O(h+log N).

Corollary 5 Given two pointer based quadtrees with a total number of N nodes stored on

a PRAM with s=p=N, then the union {intersection} of these quadtrees can be computed in

time O(h+log N), where h denotes the maximum height of the two trees.

21

5 Conclusion

In this paper we have demonstrated that, for parallel processing, pointer based quadtrees

are an attractive alternative to linear quadtrees. We presented efficient hypercube (and

PRAM) algorithms for constructing pointer based (and also linear) quadtrees, either from a

binary image or from a boundary representation. We also presented, for pointer based

quadtrees, efficient parallel manipulation algorithms such as finding the neighbors of all

leaves in a quadtree and computing the union/intersection of two quadtrees.

All the proposed algorithms are suitable for implementation on existing hypercube

multiprocessor systems, like the Connection Machine CM2. Previous experiments with

actual implementations of dynamic multi way search on this machine suggest that the

parallel quadtree algorithms described in this paper should be efficient in practice, not just

asymptotically.

References

[1] J. L. Bentley and D. F. Stanat, "Analysis of range searches in quad trees,"
Information Processing Letters, Vol. 3, No. 6, 1975, pp. 170-173.

[2] S. K. Bhaskar, A. Rosenfeld, and A. Y. Wu, "Parallel processing of regions
represented by linear quadtrees," Computer Vision, Graphics, and Image
Processing, Vol. 42, 1988, pp. 371-380.

[3] R. Cole, "Parallel merge sorting", SIAM J. of Computing, Vol. 17, N° 4, 1988,
pp. 770-785.

[4] R. Cypher and C. G. Plaxton, "Deterministic sorting in nearly logarithmic time on
a hypercube and related computers," to appear in Proc. ACM Symposium on
Theory of Computing, 1990.

[5] F. Dehne, A. Ferreira, and A. Rau-Chaplin, "Parallel branch and bound on fine
grained hypercube multiprocessors," to appear in Parallel Computing.

[6] F. Dehne and A. Rau-Chaplin, "Implementing data structures on a hypercube
multiprocessor and applications in parallel computational geometry," Journal of
Parallel and Distributed Computing, Vol. 8, 1990, pp. 367-375.

[7] S. Edelman and E. Shapiro, "Quadtrees in concurrent prolog," in Proc.
International Conference on Parallel Processing, 1985, pp. 544-551.

[8] R. A. Finkel and J. L. Bentley, "Quad trees - a data for retrieval on composite
keys," Acta Informatica, Vol. 4, No. 1, 1974, pp. 1-9.

22

[9] Y. Hung and A. Rosenfeld, "Parallel processing of linear quadtrees on a mesh-
connected computer," Journal of Parallel and Distributed Computing, Vol. 7,
1989, pp. 1-27.

[10] K. J. Jacquemain, "The complexity of constructing quad-trees in arbitrary
dimensions," in Proc. 7th Conference on Graphtheoretic Concepts in Computer
Science (WG81), 1982, J. Mühlbacher (Ed.), pp. 293-301.

[11] M. Martin, D. M. Chiarulli, and S. S. Iyengar, "Parallel processing of quadtrees
on a horizontally reconfigurable architecture computing system," in Proc.
International Conference on Parallel Processing, 1986, pp. 895-902.

[12] G.-G. Mei and W. Liu, "Parallel processing for quadtree problems," in Proc.
International Conference on Parallel Processing, 1986, pp. 452-454.

[13] D. Nassimi and S. Sahni, "Data broadcasting in SIMD computers," IEEE
Transactions on Computers, Vol. 30, No. 2, 1981, pp. 101-106.

[14] H. Samet, "Region representation: quadtrees from boundary codes,"
Communications of the ACM, Vol. 23, No. 3, 1980, pp. 163-170.

[15] S. Ranka and S. Sahni, Hypercube algorithms with applications to image
processing and pattern recognition, Bilkent University Lecture Series, Springer-
Verlag New York Inc., 1990.

[16] H. Samet, "Neighbor finding techniques for images represented by quadtrees,"
Computer Graphics and Image Processing, Vol. 18, No. 1, 1982, pp. 37-57.

[17] H. Samet, "The quadtree and related hierarchical data structures," Computing
Surveys, Vol. 16, No. 2, 1984, pp. 187-260.

