
Scalable Real-Time OLAP On Cloud ArchitecturesI

F. Dehnea,∗, Q. Kongb, A. Rau-Chaplinb, H. Zabolia, R. Zhoua

aSchool of Computer Science, Carleton University, Ottawa, Canada
b Faculty of Computer Science, Dalhousie University, Halifax, Canada

Abstract

In contrast to queries for on-line transaction processing (OLTP) systems that typically access only a small
portion of a database, OLAP queries may need to aggregate large portions of a database which often leads to
performance issues. In this paper we introduce CR-OLAP, a scalable Cloud based Real-time OLAP system
based on a new distributed index structure for OLAP, the distributed PDCR tree. CR-OLAP utilizes a
scalable cloud infrastructure consisting of multiple commodity servers (processors). That is, with increasing
database size, CR-OLAP dynamically increases the number of processors to maintain performance. Our
distributed PDCR tree data structure supports multiple dimension hierarchies and efficient query processing
on the elaborate dimension hierarchies which are so central to OLAP systems. It is particularly efficient for
complex OLAP queries that need to aggregate large portions of the data warehouse, such as “report the
total sales in all stores located in California and New York during the months February-May of all years”.
We evaluated CR-OLAP on the Amazon EC2 cloud, using the TPC-DS benchmark data set. The tests
demonstrate that CR-OLAP scales well with increasing number of processors, even for complex queries. For
example, for an Amazon EC2 cloud instance with 16 processors, a data warehouse with 160 million tuples,
and a TPC-DS OLAP query stream where each query aggregates between 60% and 95% of the database,
CR-OLAP achieved a query latency of below 0.3 seconds which can be considered a real time response.

Keywords: Real-time OLAP, Scalability, Cloud Architecture, TPC-DS Benchmark

1. Introduction

On-line analytical processing (OLAP) systems
are at the heart of many business analytics appli-
cations. This paper reports on the results of a re-
search project (supported by the IBM Centre For
Advanced Studies Canada) to investigate the use
of cloud computing for high performance, scalable
real-time OLAP.

1.1. Background

Decision Support Systems (DSS) are designed to
empower the user with the ability to make effec-
tive decisions regarding both the current and fu-
ture state of an organization. DSS allow users to

IA preliminary (short) version appeared in the conference
proceeding of IEEE Big Data 2013.

∗Corresponding author
Email addresses: frank@dehne.net (F. Dehne),

qkong@cs.dal.ca (Q. Kong), arc@cs.dal.ca
(A. Rau-Chaplin), zaboli@graduate.org (H. Zaboli),
xiaoyunzhou@cmail.carleton.ca (R. Zhou)

study relationships in a chronological context be-
tween things such as customers, vendors, products,
inventory, geography, and sales. One of the most
powerful and prominent technologies for knowledge
discovery in DSS environments is on-line analyt-
ical processing (OLAP). OLAP is the foundation
for a wide range of essential business applications,
including sales and marketing analysis, planning,
budgeting, and performance measurement [1, 2].
By exploiting multi-dimensional views of the un-
derlying data warehouse, the OLAP server allows
users to “drill down” or “roll up” on dimension hi-
erarchies, “slice and dice” particular attributes, or
perform various statistical operations such as rank-
ing and forecasting. To support this functionality,
OLAP relies heavily upon a classical data model
known as the data cube [3] which allows users to
view organizational data from different perspectives
and at a variety of summarization levels. It con-
sists of the base cuboid, the finest granularity view
containing the full complement of d dimensions (or

Preprint submitted to Elsevier May 6, 2014

attributes), surrounded by a collection of 2d−1 sub-
cubes/cuboids that represent the aggregation of the
base cuboid along one or more dimensions.

In contrast to queries for on-line transaction pro-
cessing (OLTP) systems which typically access only
a small portion of the database (e.g. update a cus-
tomer record), OLAP queries may need to aggre-
gate large portions of the database (e.g. calculate
the total sales of a certain type of items during
a certain time period) which may lead to perfor-
mance issues. Therefore, most of the traditional
OLAP research, and most of the commercial sys-
tems, follow the static data cube approach proposed
by Gray et al. [3] and materialize all or a subset
of the cuboids of the data cube in order to ensure
adequate query performance. Building the data
cube can be a massive computational task, and sig-
nificant research has been published on sequential
and parallel data cube construction methods (e.g.
[4, 5, 3, 6, 7, 8]). However, the traditional static
data cube approach has several disadvantages. The
OLAP system can only be updated periodically and
in batches, e.g. once every week. Hence, latest in-
formation can not be included in the decision sup-
port process. The static data cube also requires
massive amounts of memory space and leads to
a duplicate data repository that is separate from
the on-line transaction processing (OLTP) system
of the organization. Practitioners have therefore
called for some time for an integrated OLAP/OLTP
approach with a real-time OLAP system that gets
updated instantaneously as new data arrives and
always provides an up-to-date data warehouse for
the decision support process (e.g. [9]). Some recent
publications have begun to address this problem
by providing “quasi real-time” incremental main-
tenance schemes and loading procedures for static
data cubes (e.g. [9, 10, 11, 12]). However, these ap-
proaches are not fully real-time. A major obstacle
are significant performance issues with large scale
data warehouses.

1.2. Contributions

The aim of our research project is to help ad-
dress the above mentioned performance issues for
real-time OLAP systems through the use of efficient
parallel computing methods. In a recent paper [13]
we presented the first parallel real-time OLAP sys-
tem designed to be executed on a multi-core pro-
cessor. We documented significant performance in-
creases with increasing number of processor cores.
Our system won the 2012 IBM Canada Research

Impact Of The Year Award and an IBM sponsored
patent application has been submitted. In this pa-
per, we report on the next phase of our project:
to scale up our real-time OLAP system to utilize
a collection of (m + 1) multi-core processors in a
scalable cloud environment.

We introduce CR-OLAP, a scalable Cloud based
Real-time OLAP system that utilizes a new dis-
tributed index structure for OLAP, refered to as a
distributed PDCR tree. This data structure is not
just another distributed R-tree, but rather a multi-
dimensional data structure designed specifically to
support efficient OLAP query processing on the
elaborate dimension hierarchies that are central to
OLAP systems. The distributed PDCR tree, based
on the sequential DC tree introduced by Kriegel
et al. [14] and our previous PDC tree [13], ex-
ploits knowledge about the structure of individual
dimension hierarchies both for compact data rep-
resentation and accelerated query processing. The
following is a brief overview of the properties of our
system.

Consider a d-dimensional data warehouse with
d dimension hierarchies. CR-OLAP supports an
input stream consisting of insert and query oper-
ations. Each OLAP query can be represented as
an aggregate range query that specifies for each di-
mension either a single value or range of values at
any level of the respective dimension hierarchy, or a
symbol “*” indicating the entire range for that di-
mension. CR-OLAP utilizes a cloud infrastructure
consisting of m+1 multi-core processors where each
processor executes up to k parallel threads. As typi-
cal for current high performance databases, all data
is kept in the processors’ main memories [15]. With
increasing database size, CR-OLAP will increase
m by dynamically allocating additional processors
within the cloud environment and re-arranging the
distributed PDCR tree. This will ensure that both,
the available memory and processing capability will
scale with the database size. One of the m+1 multi-
core processors is referred to as the master, and the
remaining m processors are called workers. The
master receives from the users the input stream of
OLAP insert and query operations, and reports the
results back to the users (in the form of references
to memory locations where the workers have de-
posited the query results). In order to ensure high
throughput and low latency even for compute inten-
sive OLAP queries that may need to aggregate large
portions of the entire database, CR-OLAP utilizes
several levels of parallelism: distributed processing

2

of multiple query and insert operations among mul-
tiple workers, and parallel processing of multiple
concurrent query and insert operations within each
worker. For correct query operation, CR-OLAP en-
sures that the result for each OLAP query includes
all data inserted prior but no data inserted after
the query was issued within the input stream.

CR-OLAP is supported by a new distributed in-
dex structure for OLAP termed distributed PDCR
tree which supports distributed OLAP query pro-
cessing, including fast real-time data aggregation,
real-time querying of multiple dimension hierar-
chies, and real-time data insertion. Note that, since
OLAP is about the analysis of historical data collec-
tions, OLAP systems do usually not support data
deletion. Our system does however support bulk
insert operations of large groups of data items.

The distributed index structure consists of a col-
lection of PDCR trees whereby the master stores
one PDCR tree (called hat) and each worker stores
multiple PDCR trees (called subtrees). Each indi-
vidual PDCR tree supports multi-core parallelism
and executes multiple concurrent insert and query
operations at any point in time. PDCR trees are a
non-trivial modification of the authors’ previously
presented PDC trees [13], adapted to the cloud
environment and designed to scale. For example,
PDCR trees are array based so that they can easily
be compressed and transferred between processors
via message passing. When the database grows and
new workers are added, sub-trees are split off and
sent to the new worker.

We evaluated CR-OLAP on the Amazon EC2
cloud for a multitude of scenarios (different ratios
of insert and query transactions, query transac-
tions with different sizes of results, different sys-
tem loads, etc.), using the TPC-DS “Decision Sup-
port” benchmark data set. The tests demonstrate
that CR-OLAP scales well with increasing num-
ber of workers. For example, for fixed data ware-
house size (10,000,000 data items), when increas-
ing the number of workers from 1 to 8, the av-
erage query throughput and latency improves by
a factor 7.5. When increasing the data warehouse
size from 10,000,000 data items to 160,000,000 data
items while, at the same time, letting CR-OLAP
increase the number of workers used from 1 to 16,
respectively, we observed that query performance
remained essentially unchanged. That is, the sys-
tem performed an 16-fold increase in size, including
an 16-fold increase in the average amount of data
aggregated by each OLAP query, without notice-

able performance impact for the user.
A particular strength of CR-OLAP is to effi-

ciently answer queries with large query coverage,
i.e. the portion of the database that needs to
be aggregated for an OLAP query. For exam-
ple, for an Amazon EC2 cloud instance with 16
processors, a data warehouse with 160 million tu-
ples, and a TPC-DS OLAP query stream where
each query aggregates between 60% and 95% of
the database, CR-OLAP achieved a query latency
of below 0.3 seconds which can be considered a
real time response. CR-OLAP also handles well
increasing dimensionality of the data warehouse.
For tree data structures this is a critical issue as
it is known e.g. for R-trees that, with increasing
number of dimensions, even simple range search
(no dimension hierarchies, no aggregation) can de-
generate to linear search (e.g. [16]). In our ex-
periments, we observed that increasing number of
dimensions does not significantly impact the per-
formance of CR-OLAP. Another possible disadvan-
tage of tree data structures is that they are po-
tentially less cache efficient than in-memory linear
search which can make optimum use of streaming
data between memory and processor caches. To
establish a comparison baseline for CR-OLAP, we
implemented STREAM-OLAP which partitions the
database between multiple cloud processors based
on one chosen dimension and uses parallel memory
to cache streaming on the cloud processors to an-
swer OLAP queries. We observed that the perfor-
mance of CR-OLAP is similar to STREAM-OLAP
for simple OLAP queries with small query coverage
but that CR-OLAP vastly outperforms STREAM-
OLAP for more complex queries that utilize differ-
ent dimension hierarchies and have a larger query
coverage (e.g. “report the total sales in all stores
located in California and New York during the
months February-May of all years”).

The remainder of this paper is organized as fol-
lows. In Section 2 we review related work. In Sec-
tion 3 we introduce the PDCR tree data structure
and in Section 4 we present our CR-OLAP system
for real-time OLAP on cloud architectures. Section
5 shows the results of an experimental evaluation of
CR-OLAP on the Amazon EC2 cloud, and Section
6 concludes the paper.

2. Related Work

In addition to the related work discussed in
the introduction, there are many efforts to store

3

and query large data sets in cloud environments.
Hadoop[17] and its file system, HDFS, are popular
examples of such systems which are typically built
on MapReduce [18]. Related projects most simi-
lar to our work are Hive[19] and HadoopDB[20].
However, these systems are not designed for real-
time (OLTP style) operation. Instead, they use
batch processing similar to [9, 10, 11, 12]. The
situation is similar for BigTable[21], BigQuery[22],
and Dremel[23]. In fact, Dremel[23] uses a colum-
nar data representation scheme and is designed to
provide data warehousing and querying support
for read-only data. To overcome the batch pro-
cessing in Hadoop based systems, Storm [24] in-
troduced a distributed computing model that pro-
cesses in-flight Twitter data. However, Storm as-
sumes small, compact Twitter style data packets
that can quickly migrate between different comput-
ing resources. This is not possible for large data
warehouses.

SAP HANA is a real time in-memory database
system that also supports OLAP queries. In a cloud
computing environment, a basic HANA instance is
for a multi-core processor single compute node. A
scale out version of HANA can be executed on mul-
tiple compute nodes, using a distributed file system
(GPFS) that provides a single shared data view to
all compute nodes. Large tables can be partitioned
using various partitioning criteria and complete ta-
bles or parts thereof can then be assigned to differ-
ent nodes. The execution engine schedules queries
over the different compute nodes and attempts to
execute them on the node that holds the data [25].

For peer-to-peer networks, related work includes
distributed methods for querying concept hierar-
chies such as [26, 27, 28, 29]. However, none of
these methods provides real-time OLAP function-
ality. There are various publications on distributed
B-trees for cloud platforms such as [30]. However,
these method only supports 1-dimensional indices
which are insufficient for OLAP queries. There have
been efforts to build distributed multi-dimensional
indices on Cloud platforms based on R-trees or
related multi-dimensional tree structures, such as
[31, 32, 33]. However, these method do not support
dimension hierarchies which are essential for OLAP
queries.

3. PDCR Trees

Consider a data warehouse with fact table F and
a set of d dimensions {D1, D2, ..., Dd} where each

dimension Di, 1 ≤ i ≤ d has a hierarchy Hi in-
cluding hierarchical attributes corresponding to the
levels of the hierarchy. The hierarchical attributes
in the hierarchy of dimension i are organized as
an ordered set Hi of parent-child relationships in
the hierarchy levels Hi = {Hi1, Hi2, ...,Hil} where
a parent logically summarizes and includes its chil-
dren. Figure 1 shows the dimensions and hierarchy
levels of each dimension for a 4-dimensional data
warehouse.

All Dims

ItemCustomerStore Date

Country

State

City

BYear

BMonth

BDay

Category

Class

Brand

Year

Month

Day

Figure 1: A 4-dimensional data warehouse with 3 hierarchy
levels for each dimension. The first box for each dimension
denotes the name of the dimension.

The sequential DC tree introduced by Kriegel et
al. [14] exploits knowledge about the structure of
individual dimension hierarchies both for compact
data representation and accelerated OLAP query
processing. In our previous work [13], we intro-
duced the PDC tree, a parallel DC tree for a single
multi-core processor. In this section, we outline a
modified PDC tree, termed PDCR tree, which will
become the building block for our CR-OLAP sys-
tem. Here, we only outline the differences between
the PDCR tree and its predecessors, and we refer to
[13, 14] for more details. We note that, our PDCR
tree data structure is not just another distributed
R-tree, but rather a multi-dimensional data struc-
ture designed specifically to support efficient OLAP
query processing on the elaborate dimension hierar-
chies that are central to OLAP systems. Also note
that, DC tree [14] is particularly well suited to han-
dle OLAP queries for both, ordered and unordered
dimensions.

For a cloud architecture with multiple proces-
sors, each processor will store one or more PDCR
trees. Our CR-OLAP system outlined in the follow-
ing Section 4 requires that a sub-tree of a PDCR
tree can be split off and transferred to another pro-
cessor. This required us to (a) devise an array
based tree implementation that can be packed into

4

a message to be sent between processors and (b)
a careful encoding of data values, using compact
IDs related to the different dimension hierarchy lev-
els. For our array based PDCR tree implementa-
tion, a PDC tree is represented in a single array
where all tree links are represented by integer ref-
erences to array locations. Allocation of new tree
nodes was re-implemented as an append operation
at the end of the array, and all tree operations were
re-implemented to use integer references instead of
memory pointers. In the following we outline some
details of the encoding of data values used for our
PDCR tree.

IDs for each dimension represent available enti-
ties in the dimension. Each dimension has a hierar-
chy of entities with l levels. In the example of Fig-
ure 1, an ID may represent an entity at the Country
level for the Store dimension, e.g. US or Canada.
Similarly, another ID may represent an entity at the
City level, e.g. Chicago or Toronto. It is important
to note that an ID may summarize many IDs at
lower hierarchy levels. To build an ID for a dimen-
sion with l levels, we assign bj bits to the hierarchy
level j, 0 ≤ j ≤ l − 1. Different entities at each hi-
erarchy level are assigned numerical values starting
with “1”. By concatenating the numerical values of
the levels, a numerical value is created. We reserve
the value zero to represent “All” or “*”. The exam-
ple in Figure 2 shows an example of an entity at
the lowest hierarchy level of dimension Store. An
ID for the state California will have a value of zero
for its descendant levels City and Store S key. As
a result, containment of IDs between different hi-
erarchy levels can be tested via fast bit operations.
Figure 3 illustrates IDs and their coverages in the
Store dimension with respect to different hierarchy
levels. As illustrated, each entity in level j (Coun-
try) is a country specified by a numerical value and
covers cities that are represented using numerical
values in level j + 1. Note that IDs used for cities
will have specific values at the city level, while the
ID of a country will have a value of zero at the city
level and a specific value only at the country level.

The sequential DC tree introduced by Kriegel
et al. [14] and our previous PDC tree [13] store
so called “minimum describing set” (MDS) entries
at each internal tree node to guide the query pro-
cess; see [14] for details. The MDS concept was
developed in [14] to better represent unordered di-
mensions with dimension hierarchies. Experiments
with our CR-OLAP system showed that in a larger
cloud computing environment with multiple tree

data structures, the number of MDS entries be-
comes very large and unevenly distributed between
the different trees, leading to performance bottle-
necks. On the other hand, the bit representation of
IDs outlined above gives us the opportunity to con-
vert unordered dimensions into ordered dimensions,
and then use traditional ranges instead of the MDS
entries. An example is shown in Figure 4. The
ranges lead to a much more compact tree storage
and alleviated the above mentioned bottleneck. It
is important to note that, this internal ordering im-
posed on dimensions is invisible to the user. OLAP
queries can still include unordered aggregate val-
ues on any dimension such as “Total sales in the
US and Canada” or “Total sales in California and
New York”.

Level 0 Level 1 Level 2 . . . Level l

Store US California Los Angels Store S_key

01 01 1001 101 1011011

 b0 bits b1 bits b2 bits bl bits

Figure 2: Illustration of the compact bit representation of
IDs.

1 2 3Country

City

Store
S_key

1 2 3 1 2

123 4 5 6 7 8 9 10 11-13 14

Hierarchy
Levels

All

Figure 3: Example of relationships between different hierar-
chy levels of a given dimension.

Root
1990-2000
US - Canada

2000-2013
US

2000-2013
UK - Germany

. . .

C1

1995-2000
California
- Virginia

1993-2000
Canada

C2

2000-2010
New York -
Texas

2000-2013
California

Cn

2000-2005
UK

2004-2013
Germany

.

Figure 4: Example of a PDCR tree with 2 dimensions (Store
and Date).

5

4. CR-OLAP: Cloud based Real-time OLAP

CR-OLAP utilizes a cloud infrastructure consist-
ing of m + 1 multi-core processors where each pro-
cessor executes up to k parallel threads. One of
the m+1 multi-core processors is referred to as the
master, and the remaining m processors are called
workers. The master receives from the users the
input stream of OLAP insert and query operations,
and reports the results back to the users (in the
form of references to memory locations where the
workers have deposited the query results). In or-
der to ensure high throughput and low latency even
for compute intensive OLAP queries that may need
to aggregate large portions of the entire database,
CR-OLAP utilizes several levels of parallelism: dis-
tributed processing of multiple query and insert
operations among multiple workers, and parallel
processing of multiple concurrent query and insert
operations within each worker. With increasing
database size, CR-OLAP will increase m by dynam-
ically allocating additional processors within the
cloud environment and re-arranging the distributed
PDCR tree. This will ensure that both, the avail-
able memory and processing capability will scale
with the database size.

We start by outlining the structure of a dis-
tributed PDC tree and PDCR tree on m + 1 multi-
core processors in a cloud environment. Consider
a single PDCR tree T storing the entire database.
For a tunable depth parameter h, we refer to the
top h levels of T as the hat and we refer to the re-
maining trees rooted at the leaves of the hat as the
subtrees s1, . . . , sn. Level h is referred to as the cut
level. The hat will be stored at the master and the
subtrees s1, . . . , sn will be stored at the m workers.
We assume n ≥ m and that each worker stores one
or more subtrees.

CR-OLAP starts with an empty database and
one master processor (i.e. m = 0) storing an empty
hat (PDCR tree). Note that, DC trees [14], PDC
trees [13] and PDCR trees are leaf oriented. All
data is stored in leafs called data nodes. Internal
nodes are called directory nodes and contain ar-
rays with routing information and aggregate val-
ues. Directory nodes have a high capacity and fan-
out of typically 10 - 20. As insert operations are
sent to CR-OLAP, the size and height of the hat
(PDCR tree) grows. When directory nodes of the
hat reach height h, their children become roots at
subtrees stored at new worker nodes that are allo-
cated through the cloud environment. An illustra-

tion of such a distributed PDCR tree is shown in
Figure 5.

Insertion

S1 S2 S3 S4

Query

Hat

Leaf Node

Figure 5: Illustration of a distributed PDCR tree.

For a typical database size, the hat will usually
contain only directory nodes and all data will be
stored in the subtrees s1, . . . , sn. After the initial
set of data insertions, all leaf nodes in the hat will
usually be directory nodes of height h, and the roots
of subtrees in workers will typically be directory
nodes as well. As illustrated in Figure 5, both insert
and query operations are executed concurrently.

4.1. Concurrent insert and query operations

Each query operation in the input stream is
handed to the master which traverses the hat. Note
that, at each directory node the query can gen-
erate multiple parallel threads, depending on how
many child nodes have a non empty intersection
with the query. Eventually, each query will access
a subset of the hat’s leaves, and then the query will
be transferred to the workers storing the subtrees
rooted at those leaves. Each of those workers will
then in parallel execute the query on the respective
subtrees, possibly generating more parallel threads
within each subtree. For more details see Algo-
rithm 3 and Algorithm 4.

For each insert operation in the input stream, the
master will search the hat, arriving at one of the leaf
nodes, and then forward the insert operation to the
worker storing the subtree rooted at that leaf. For
more details see Algorithm 1 and Algorithm 2.

Figures 6 and 7 illustrate how new workers and
new subtrees are added as more data items get in-
serted. Figures 6 illustrates insertions creating an
overflow at node A, resulting in a horizontal split
at A into A1 and A2 plus a new parent node C.
Capacity overflow at C then triggers a vertical split

6

Algorithm 1: Hat Insertion

Input: D (new data item).
Output: void
Initialization:
Set ptr = root

Repeat:
Determine the child node C of ptr that causes
minimal MBR/MDS enlargement for the
distributed PDCR/PDC tree if D is inserted
under C. Resolve ties by minimal overlap, then
by minimal number of data nodes.
Set ptr = C.
Acquire a LOCK for C.
Update MBR/MDS and TS of C.
Release the LOCK for C.
Until: ptr is a leaf node.
if ptr is the parent of Data Nodes then

Acquire a LOCK for ptr.
Insert D under ptr.
Release the LOCK for C.
if capacity of ptr is exceeded then

Call Horizontal Split for ptr.
if capacity of the parent of ptr is
exceeded then

Call Vertical Split for the parent of
ptr.
if depth of ptr is greater than h
then

Create a new subtree with the
parent of ptr as its root, ptr and
its sibling node as the children
of the root.
Choose the next available
worker and update the list of
subtrees in the master.
Send the new subtree and its
data nodes to the chosen worker.

end

end

end

end
if ptr is the parent of a subtree then

Find the worker that contains the subtree
from the list of subtrees.
Send the insertion transaction to the
worker.

end
End of Algorithm.

Algorithm 2: Subtree Insertion

Input: D (new data item).
Output: void
Initialization:
Set ptr = root

Repeat:
Determine the child node C of ptr that causes
minimal MBR/MDS enlargement for the
distributed PDCR/PDC tree if D is inserted
under C. Resolve ties by minimal overlap, then
by minimal number of data nodes.
Set ptr = C.
Acquire a LOCK for C.
Update MBR/MDS and TS of C.
Release the LOCK for C.
Until: ptr is a leaf node.
Acquire a LOCK for ptr.
Insert D under ptr.
Release the LOCK for C.
if capacity of ptr is exceeded then

Call Horizontal Split for ptr.
if capacity of the parent of ptr is exceeded
then

Call Vertical Split for the parent of ptr.
end

end
End of Algorithm.

7

Algorithm 3: Hat Query

Input: Q (OLAP query).
Output: A result set or an aggregate value
Initialization:
Set ptr = root
Push ptr into a local stack S for query Q.

Repeat:
Pop the top item ptr′ from stack S.
if TS(time stamp) of ptr′ is smaller (earlier)
than the TS of ptr then

Using the sibling links, traverse the sibling
nodes of ptr until a node with TS equal to
the TS of ptr is met. Push the visited
nodes including ptr into the stack (starting
from the rightmost node) for reprocessing.

end
for each child C of ptr do

if MBR/MDS of C is fully contained in
MBR/MDS of Q then

Add C and its measure value to the
result set.

end
else

if MBR/MDS of C overlaps
MBR/MDS of Q then

if C is the root of a sub-tree then
Send the query Q to the worker
that contains the subtree.

end
else

Push C into the stack S.
end

end

end

end
Until: stack S is empty.
if the query Q is dispatched to a subtree then

Wait for the partial results of the
dispatched queries from workers.
Create the final result of the collected
partial results.
Send the final result back to the client.

end
End of Algorithm.

Algorithm 4: Subtree Query

Input: Q (OLAP query).
Output: A result set or an aggregate value
Initialization:
Set ptr = root
Push ptr into a local stack S for query Q.

Repeat:
Pop the top item ptr′ from stack S.
if TS(time stamp) of ptr′ is smaller (earlier)
than the TS of ptr then

Using the sibling links, traverse the sibling
nodes of ptr until a node with TS equal to
the TS of ptr is met. Push the visited
nodes including ptr into the stack starting
from the rightmost node for reprocessing.

end
for each child C of ptr do

if MBR/MDS of C is fully contained in
MBR/MDS of Q then

Add C and its measure value to the
result set.

end
else

if MBR/MDS of C overlaps
MBR/MDS of Q then

Push C into the stack S.
end

end

end
Until: stack S is empty.
Send the result back to the master or client
depending on whether Q is an aggregation
query or a data report query.
End of Algorithm.

8

illustrated in 7. This creates two subtrees in two dif-
ferent workers. As outlined in more details in the
CR-OLAP “migration strategies” outlined below,
new workers are requested from the cloud environ-
ment when either new subtrees are created or when
subtree sizes exceed the memory of their host work-
ers. Workers usually store multiple subtrees. How-
ever, CR-OLAP randomly shuffles subtrees among
workers. This ensures that query operations access-
ing a contiguous range of leaf nodes in the hat create
a distributed workload among workers.

R

A B
Cut

level

c = 2

R

C B

A1 A2

(a) (b)

Data Node

Directory Node

Figure 6: Insertions triggering creation of new workers and
subtrees. Part 1. (a) Current hat configuration. (b) Inser-
tions create overflow at node A and horizontal split.

R

C B

A1 A2

Subtree 1

Subtree 2

R

C B

D A2

Worker 1

A1 A3

Worker 2

(a) (b)

Figure 7: Insertions triggering creation of new workers and
subtrees. Part 2. (a) Same as Figure 6b with critical subtrees
highlighted. (b) Insertions create overflow at node C and
vertical split, triggering the creation of two subtrees in two
different workers.

For correct real time processing of an input
stream of mixed insert and query operations, CR-
OLAP needs to ensure that the result for each
OLAP query includes all data inserted prior but
no data inserted after the query was issued within
the input stream. We will now discuss how this is

achieved in a distributed cloud based system where
we have a collection of subtrees in different work-
ers, each of which is processing multiple concurrent
insert and query threads. In our previous work [13]
we presented a method to ensure correct query pro-
cessing for a single PDC tree on a mutli-core pro-
cessor, where multiple insert and query operations
are processed concurrently. The PDC tree main-
tains for each data or directory item a time stamp
indicating its most recent update, plus it maintains
for all nodes of the same height a left-to-right linked
list of all siblings. Furthermore, each query thread
maintains a stack of ancestors of the current node
under consideration, together with the time stamps
of those items. We refer to [13] for more details.
The PDCR tree presented in this paper inherits
this mechanism for each of its subtrees. In fact, the
above mentioned sibling links are shown as horizon-
tal links in Figures 6 and 7. With the PDCR tree
being a collection of subtrees, if we were to main-
tain sibling links between subtrees to build linked
list of siblings across all subtrees then we would en-
sure correct query operation in the same way as for
the PDC tree [13]. However, since different subtrees
of a PDCR tree typically reside on different work-
ers, a PDCR tree only maintains sibling links inside
subtrees but it does not maintain sibling links be-
tween different subtrees. The following lemma show
that correct real time processing of mixed insert and
query operations is still maintained.

Theorem 1. Consider the situation depicted in
Figure 8 where the split of node B created a new
node D and subtree rooted at D that is stored sepa-
rately from the subtrees rooted at A and B. Then,
the sibling links labelled “a” and “c” are not re-
quired for correct real time query processing (as de-
fined above).

Proof. Assume a thread for a query Q that is
returning from searching the subtree below B only
to discover that B has been modified. Let Bstack

be the old value of B that is stored in the stack
stack(Q) associated with Q. If neither B nor any
ancestor of B are in stack(Q) then Q does not con-
tain any data covered by B. Otherwise, Q will fol-
low the sibling link labelled “b” to find B′ and re-
maining data from the node split off B.

4.2. Load balancing

CR-OLAP is executed on a cloud platform with
(m+1) processors (m workers and one master). As
discussed earlier, CR-OLAP uses the cloud’s elas-
ticity to increase m as the number of data items in-

9

P

A CD

B B’

a

b

c

Figure 8: Illustration for Theorem 1.

creases. We now discuss in more detail CR-OLAP’s
mechanisms for worker allocation and load balanc-
ing in the cloud. The insert operations discussed
above create independent subtrees for each height h
leaf of the hat. Since internal (directory) nodes have
a high degree (typically 10 - 20), a relatively small
height of the hat typically leads to thousands of
height h leaves and associated subtrees s1, . . . , sn.
The master processor keeps track of the subtree lo-
cations and allocation of new workers, and it makes
sure that a relatively high n/m ratio is maintained.

As indicated above, CR-OLAP shuffles these
n >> m subtrees among the m workers. This en-
sures that threads of query operations are evenly
distributed over the workers. Furthermore, CR-
OLAP performs load balancing among the workers
to ensure both, balanced workload and memory uti-
lization. The master processor keeps track of the
current sizes and number of active threads for all
subtrees. For each worker, its memory utilization
and workload are the total number of threads of its
subtrees and the total size if its subtrees, respec-
tively.

If a worker w has a memory utilization above a
certain threshold (e.g. 75% of its total memory),
then the master processor determines the worker
w′ with the lowest memory utilization and checks
whether it is possible to store an additional subtree
from w while staying well below it’s memory thresh-
old (e.g. 50% of its total memory). If that is not
possible, a new worker w′ is allocated within the
cloud environment. Then, a subtree from w is com-
pressed and sent from w to w′ via message passing.
As discussed earlier, PDCR trees are implemented
in array format and using only array indices as
pointers. This enables fast compression and decom-
pression of subtrees and greatly facilitates subtree
migration between workers. Similarly, if a worker w

has a workload utilization that is a certain percent-
age above the average workload of the m workers
and is close to the maximum workload threshold
for a single worker, then the master processor de-
termines a worker w′ with the lowest workload and
well below its maximum workload threshold. If that
is not possible, a new worker w′ is allocated within
the cloud environment. Then, the master processor
initiates the migration of one or more subtrees from
w (and possibly other workers) to w′.

Note that, in case workers are under-utilized due
to shrinking workload, the above process can eas-
ily be reversed to decrease the number of work-
ers. However, since the emphasis of our study is
on growing system size for large scale OLAP, this
was not implemented in our prototype system.

5. Experimental Evaluation On Amazon
EC2

5.1. Software

CR-OLAP was implemented in C++, using the
g++ compiler, OpenMP for multi-threading, and
ZeroMQ [34] for message passing between proces-
sors. Instead of the usual MPI message passing li-
brary we chose ZeroMQ because it better supports
cloud elasticity and the addition of new processors
during runtime. CR-OLAP has various tunable pa-
rameters. For our experiments we set the depth h
of the hat to h = 3, the directory node capacity c
to c = 10 for the hat and c = 15 for the subtrees,
and the number k of threads per worker to k = 16.

5.2. Hardware/OS

CR-OLAP was executed on the Amazon EC2
cloud. For the master processor we used an Amazon
EC2 m2.4xlarge instance: “High-Memory Quadru-
ple Extra Large” with 8 virtual cores (64-bit ar-
chitecture, 3.25 ECUs per core) rated at 26 com-
pute units and with 68.4 GiB memory. For the
worker processors we used Amazon EC2 m3.2xlarge
instances: “M3 Double Extra Large” with 8 vir-
tual cores (64-bit architecture, 3.25 ECUs per core)
rated at 26 compute units and with 30 GiB mem-
ory. The OS image used was the standard Amazon
CentOS (Linux) AMI.

5.3. Comparison baseline: STREAM-OLAP

As outlined in Section 2, there is no compari-
son system for CR-OLAP that provides scalable

10

cloud based OLAP with full real time capabil-
ity and support for dimension hierarchies. To es-
tablish a comparison baseline for CR-OLAP, we
therefore designed and implemented a STREAM-
OLAP method which partitions the database be-
tween multiple cloud processors based on one cho-
sen dimension and uses parallel memory to cache
streaming on the cloud processors to answer OLAP
queries. More precisely, STREAM-OLAP builds
a 1-dimensional index on one ordered dimension
dstream and partitions the data into approx. 100×
m arrays. The arrays are randomly shuffled be-
tween the m workers. The master processor main-
tains the 1-dimensional index. Each array repre-
sents a segment of the dstream dimension and is
accessed via the 1-dimensional index. The arrays
themselves are unsorted, and insert operations sim-
ply append the new item to the respective array.
For query operations, the master determines via the
1-dimensional index which arrays are relevant. The
workers then search those arrays via linear search,
using memory to cache streaming.

The comparison between CR-OLAP (using
PDCR trees) and STREAM-OLAP (using a 1-
dimensional index and memory to cache streaming)
is designed to examine the tradeoff between a so-
phisticated data structure which needs fewer data
accesses but is less cache efficient and a brute force
method which accesses much more data but opti-
mizes cache performance.

5.4. Test data

For our experimental evaluation of CR-OLAP
and STREAM-OLAP we used the standard TPC-
DS “Decision Support” benchmark for OLAP sys-
tems [35]. We selected “Store Sales”, the largest
fact table available in TPC-DS. For the remain-
der, the database size N refers to the number of
data items from “Store Sales” that were inserted
into the database. Figure 9 shows the fact table’s 8
dimensions, and the respective 8 dimension hierar-
chies below each dimension. The first box for each
dimension denotes the dimension name while the
boxes below denote hierarchy levels from highest to
lowest. Dimensions Store, Item, Address, and Pro-
motion are unordered dimensions, while dimensions
Customer, Date, Household and Time are ordered.
TPC-DS provides a stream of insert and query oper-
ations on “Store Sales” which was used as input for
CR-OLAP and STREAM-OLAP. For experiments
where we were interested in the impact of query
coverage (the portion of the database that needs

to be aggregated for an OLAP query), we selected
sub-sequences of TPC-DS queries with the chosen
coverages.

All Dims

ItemCustomerStore TimePromotionHouseholdDate Address

Country

Ordered Ordered

Ordered

Ordered

State

City

BYear

BMonth

BDay

Category

Class

Brand

Year

Month

Day

Country

State

City

Income
Band

Name Hour

Minute

Figure 9: The 8 dimensions of the TPC-DS benchmark for
the fact table “Store Sales”. Boxes below each dimension
specify between 1 and 3 hierarchy levels for the respective
dimension. Some dimensions are “ordered” and the remain-
ing are not ordered.

5.5. Test results: impact of the number of workers
(m) for fixed database size (N)

We tested how the time of insert and query oper-
ations for CR-OLAP and STREAM-OLAP changes
for fixed database size (N) as we increase the num-
ber of workers (m). Using a variable number of
workers 1 ≤ m ≤ 8, we first inserted 40 million
items (with d=8 dimensions) from the TPC-DS
benchmark into CR-OLAP and STREAM-OLAP,
and then we executed 1,000 (insert or query) op-
erations on CR-OLAP and STREAM-OLAP. Since
workers are virtual processors in the Amazon EC2
cloud, there is always some performance fluctuation
because of the virtualization. We found that the to-
tal (or average) of 1,000 insert or query operations
is a sufficiently stable measure. The results of our
experiments are shown in Figures 10, 11, and 12.

 0

 0.05

 0.1

 0.15

 0.2

 1 2 4 6 8

Ti
m

e
pe

r
10

00
 o

pe
ra

tio
ns

(s
ec

)

Number of workers(m)

PDCR-tree
1D-index

Figure 10: Time for 1000 insertions as a function of the
number of workers. (N = 40Mil, d = 8, 1 ≤ m ≤ 8)

11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 6 8

Ti
m

e
pe

r
10

00
 o

pe
ra

tio
ns

(s
ec

)

Number of workers(m)

PDCR-tree(10% coverage)
1D-index(10% coverage)

PDCR-tree(60% coverage)
1D-index(60% coverage)

PDCR-tree(95% coverage)
1D-index(95% coverage)

Figure 11: Time for 1000 queries as a function of the number
of workers. (N = 40Mil, d = 8, 1 ≤ m ≤ 8)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 6 8

Sp
ee

du
p

Number of workers(m)

Y=X
PDCR-tree(10% coverage)
1D-index(10% coverage)

PDCR-tree(60% coverage)
1D-index(60% coverage)

PDCR-tree(95% coverage)
1D-index(95% coverage)

Figure 12: Speedup for 1000 queries as a function of the
number of workers. (N = 40Mil, d = 8, 1 ≤ m ≤ 8)

Figure 10 shows the time for 1,000 inser-
tions in CR-OLAP (PDCR-tree) and STREAM-
OLAP (1D-index) as a function of the number
of workers (m). As expected, insertion times in
STREAM-OLAP are lower than in CR-OLAP be-
cause STREAM-OLAP simply appends the new
item in the respective array while CR-OLAP has to
perform tree insertions with possible directory node
splits and other overheads. However, STREAM-
OLAP shows no speedup with increasing number of
workers (because only one worker performs the ar-
ray append operation) whereas CR-OLAP shows a
significant speedup (because the distributed PDCR
tree makes use of the multiple workers). It is im-
portant to note that insertion times are not visible
to the users because they do not create any user
response. What is important to the user are the
response times for OLAP queries. Figure 11 shows
the time for 1,000 OLAP queries in CR-OLAP and
STREAM-OLAP as a function of the number of
workers (m). Figure 12 shows the speedup mea-

sured for the same data. We selected OLAP queries
with 10%, 60% and 95% query coverage, which
refers to the percentage of the entire range of val-
ues for each dimension that is covered by a given
OLAP query. The selected OLAP queries there-
fore aggregate a small, medium and large portion of
the database, resulting in very different workloads.
We observe in Figure 11 that CR-OLAP signifi-
cantly outperforms STREAM-OLAP with respect
to query time (in some cases 2,000%). The dif-
ference in performance is particularly pronounced
for queries with small or large coverages. For the
former, the tree data structure shows close to loga-
rithmic performance and for the latter, the tree can
compose the result by adding the aggregate val-
ues stored at a few roots of large subtrees. The
worst case scenario for CR-OLAP are queries with
medium coverage around 60% where the tree per-
formance is proportional to N1− 1

d . However, even
in this worst case scenario, CR-OLAP outperforms
STREAM-OLAP by between 300% and 500%. Fig-
ure 12 indicates that both systems show a close
to linear speedup with increasing number of work-
ers, however for CR-OLAP that speedup occurs for
much smaller absolute query times.

In a pay-as-you-go cloud environment, relating
query response time to cloud computing cost may
also be of interest. In that context, the close to
linear speedup observed in Figure 12 implies a fixed
cost/performance ratio. For example, cutting query
response time in half would come at the price of
doubling the system cost.

5.6. Test results: impact of growing system size (N
& m combined)

In an elastic cloud environment, CR-OLAP and
STREAM-OLAP increase the number of workers
(m) as the database size (N) increases. In our scale
up experiments, as we increase the number N of
data items from 10 Mil to 160 Mil, CR-OLAP and
STREAM-OLAP increase the number m of work-
ers from 1 to 16. That is, for each 10 Mil inserted
items, CR-OLAP and STREAM-OLAP add one
additional worker to the system. The impact on
the performance of insert and query operations is
shown in Figures 13 and 14, respectively.

With growing system size, the time for insert
operations in CR-OLAP (PDCR-tree) approaches
the time for STREAM-OLAP (1D-index). More
importantly however, the time for query opera-
tions in CR-OLAP again outperforms the time for
STREAM-OLAP by a significant margin (in some

12

 0

 0.05

 0.1

 0.15

 0.2

N=10M,m=1

N=20M,m=2

N=40M,m=4

N=60M,m=6

N=80M,m=8

N=100M,m=10

N=120M,m=12

N=140M,m=14

N=160M,m=16

Ti
m

e
pe

r
10

00
 o

pe
ra

tio
ns

(s
ec

)

Increasing system size(N,m)

PDCR-tree
1D-index

Figure 13: Time for 1000 insertions as a function of system
size: N & m combined. (10Mil ≤ N ≤ 160Mil, d = 8,
1 ≤ m ≤ 16)

 0

 1000

 2000

 3000

 4000

 5000

N=10M,m=1

N=20M,m=2

N=40M,m=4

N=60M,m=6

N=80M,m=8

N=100M,m=10

N=120M,m=12

N=140M,m=14

N=160M,m=16

Ti
m

e
pe

r
10

00
 o

pe
ra

tio
ns

(s
ec

)

Increasing system size(N,m)

PDCR-tree(10% coverage)
1D-index(10% coverage)

PDCR-tree(60% coverage)
1D-index(60% coverage)

PDCR-tree(95% coverage)
1D-index(95% coverage)

Figure 14: Time for 1000 queries as a function of system
size: N & m combined. (10Mil ≤ N ≤ 160Mil, d = 8,
1 ≤ m ≤ 16)

cases more than 1,000%), as shown in Figure 14.
Also, it is very interesting that for both systems, the
query performance remains essentially unchanged
with increasing database size and number of work-
ers. This is obvious for STREAM-OLAP where the
size of arrays to be searched simply remains con-
stant but it is an important observation for CR-
OLAP. Figure 14 indicates that the overhead in-
curred by CR-OLAP’s load balancing mechanism
(which grows with increasing m) is balanced out by
the performance gained through more parallelism.
CR-OLAP appears to scale up without affecting the
performance of individual queries. It performed an
16-fold increase in database size and number of pro-
cessors, including an 16-fold increase in the average
amount of data aggregated by each OLAP query,
without noticeable performance impact for the user.

5.7. Test results: impact of multiple query streams

We evaluated the impact of the number of query
streams on the performance of CR-OLAP. In all
other experiments, we use one single stream of
OLAP queries to measure performance. Here, we
use multiple client processes, issuing multiple con-
current streams of OLAP queries that are fed into
our CR-OLAP system. As shown in Firgure 15,
the number of concurrent query streams (clients)
has no impact on query performance.

 0

 100

 200

 300

 400

 500

1, q=1000

2, q=2000

3, q=3000

4, q=4000

5, q=5000

6, q=6000

7, q=7000

8, q=8000

9, q=9000

10, q=10,000

Ti
m

e
pe

r
10

00
 o

pe
ra

tio
ns

(s
ec

)

Increasing number of clients and queries (client#,q)

PDCR-tree(10% coverage)
PDCR-tree(60% coverage)
PDCR-tree(95% coverage)

Figure 15: Time for 1000 OLAP queries as a function of
of the number of query streams. X-axis first parameter:
number of query streams (clients). X-axis second param-
eter: total number of queries issued (1,000 queries per query
stream). Y-axis: Average time per 1,000 queries in seconds.
(N = 160Mil, d = 8, m = 16)

5.8. Test results: impact of the number of dimen-
sions

It is well known that tree based search meth-
ods can become problematic when the number of
dimensions in the database increases. In Figures
16 and 17 we show the impact of increasing d
on the performance of insert and query operations
in CR-OLAP (PDCR-tree) and STREAM-OLAP
(1D-index) for fixed database size N = 40 million
and m = 8 workers.

Figure 16 shows some increase in insert time for
CR-OLAP because the PDCR tree insertion inher-
its from the PDC tree a directory node split opera-
tion with an optimization phase that is highly sen-
sitive to the number of dimensions. However, the
result of the tree optimization is improved query
performance in higher dimensions. As shown in
Figure 17, the more important time for OLAP query
operations grows only slowly as the number of di-
mensions increases. This is obvious for the array
search in STREAM-OLAP but for the tree search
in CR-OLAP this is an important observation.

13

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 4 5 6 7 8

Ti
m

e
pe

r
10

00
 o

pe
ra

tio
ns

(s
ec

)

Number of Dimensions(d)

PDCR-tree
1D-index

Figure 16: Time for 1000 insertions as a function of the
number of dimensions. (N = 40Mil, 4 ≤ d ≤ 8, m = 8)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4 5 6 7 8

Ti
m

e
pe

r
10

00
 o

pe
ra

tio
ns

(s
ec

)

Number of dimensions(d)

PDCR-tree(10% coverage)
1D-index(10% coverage)

PDCR-tree(60% coverage)
1D-index(60% coverage)

PDCR-tree(95% coverage)
1D-index(95% coverage)

Figure 17: Time for 1000 queries as a function of the number
of dimensions. The values for “1D-index 95% coverage” are
828.6, 1166.4, 1238.5, 1419.7 and 1457.8, respectively. (N =
40Mil, 4 ≤ d ≤ 8, m = 8)

5.9. Test results: impact of query coverages

Figures 18, 19, 20, and 21 show the impact of
query coverage on query performance in CR-OLAP
(PDCR-tree) and STREAM-OLAP (1D-index).

 0

 50

 100

 150

 200

 250

 300

 350

10 20 30 40 50 60 70 80 90

Ti
m

e
pe

r
10

00
 o

pe
ra

tio
ns

(s
ec

)

Query coverage per dimension(%)

Store is *
Customer is *

Item is *
Date is *

Address is *
Household is *
Promotion is *

Time is *
No dimension is *

Figure 18: Time for 1000 queries (PDCR tree) as a function
of query coverages: 10% − 90%. Impact of value “*” for
different dimensions. (N = 40Mil, m = 8, d = 8)

 0

 50

 100

 150

 200

 250

 300

 350

91 92 93 94 95 96 97 98 99

Ti
m

e
pe

r
10

00
 o

pe
ra

tio
ns

(s
ec

)

Query coverage per dimension(%)

Store is *
Customer is *

Item is *
Date is *

Address is *
Household is *
Promotion is *

Time is *
No dimension is *

Figure 19: Time for 1000 queries (PDCR tree) as a function
of query coverages: 91% − 99%. Impact of value “*” for
different dimensions. (N = 40Mil, m = 8, d = 8)

 0

 5

 10

 15

 20

10 20 30 40 50 60 70 80 90

Ti
m

e
ra

tio
 o

f
1D

-in
de

x
ov

er
 P

D
CR

-t
re

e

Query coverage per dimension(%)

Store is *
Customer is *

Item is *
Date is *

Address is *
Household is *
Promotion is *

Time is *
No dimension is *

Figure 20: Time comparison for 1000 queries (Ratio: 1D-
index / PDCR tree) for query coverages 10%−90%. Impact
of value “*” for different dimensions. (N = 40Mil, m = 8,
d = 8)

 0

 5

 10

 15

 20

91 92 93 94 95 96 97 98 99

Ti
m

e
ra

tio
 o

f
1D

-in
de

x
ov

er
 P

D
CR

-t
re

e

Query coverage per dimension(%)

Store is *
Customer is *

Item is *
Date is *

Address is *
Household is *
Promotion is *

Time is *
No dimension is *

Figure 21: Time comparison for 1000 queries (Ratio: 1D-
index / PDCR tree) for query coverages 91%−99%. Impact
of value “*” for different dimensions. (N = 40Mil, m = 8,
d = 8)

For fixed database size N = 40Mil, number of
workers m = 8, and number of dimensions d = 8,
we vary the query coverage and observe the query

14

times. In addition we observe the impact of a “*”
in one of the query dimensions. Figures 18 and
19 show that the “*” values do not have a signif-
icant impact for CR-OLAP. As discussed earlier,
CR-OLAP is most efficient for small and very large
query coverage, with maximum query time some-
where in the mid range. (In this case, the maximum
point is shifted away from the typical 60% because
of the “*” values.) Figures 20, and 21 show the per-
formance of STREAM-OLAP as compared to CR-
OLAP (ratio of query times). It shows that CR-
OLAP consistently outperforms STREAM-OLAP
by a factor between 5 and 20.

5.10. Test results: query time comparison for se-
lected query patterns at different hierarchy
levels

Figure 22 shows a query time comparison be-
tween CR-OLAP (PDCR-tree) and STREAM-
OLAP (1D-index) for selected query patterns. For

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

* * * y * * y m * y m d * m * * m d * * d

Ti
m

e
pe

r
10

00
 o

pe
ra

tio
ns

(s
ec

)

* in different hierarchy levels of dimension Date

PDCR-tree(10% coverage)
PDCR-tree(60% coverage)
PDCR-tree(95% coverage)
1D-index(10% coverage)
1D-index(60% coverage)
1D-index(95% coverage)

Figure 22: Query time comparison for selected query pat-
terns for dimension Date. Impact of value “*” for different
hierarchy levels of dimension Date. (N = 40Mil, m = 8,
d = 8).

fixed database size N = 40Mil, number of work-
ers m = 8 and d = 8 dimensions, we test for di-
mension Date the impact of value “*” for different
hierarchy levels. CR-OLAP is designed for OLAP
queries such as “total sales in the stores located in
California and New York during February-May of
all years’ which act at different levels of multiple
dimension hierarchies. For this test, we created 7
combinations of “*” and set values for hierarchy
levels Year, Month, and Day: *-*-*, year-*-*, year-
month-*, year-month-day, *-month-*, *-month-day,
and *-*-day. We then selected for each combination
queries with coverages 10%, 60%, and 95%. The
test results are summarized in Figure 22. The main

observation is that CR-OLAP consistently outper-
forms STREAM-OLAP even for complex and very
broad queries that one would expect could be eas-
ier solved through data streaming than through tree
search.

6. Conclusion

We introduced CR-OLAP, a Cloud based Real-
time OLAP system based on a distributed PDCR
tree, a new parallel and distributed index structure
for OLAP, and evaluated CR-OLAP on the Ama-
zon EC2 cloud for a multitude of scenarios. The
tests demonstrate that CR-OLAP scales well with
increasing database size and increasing number of
cloud processors. In our experiments, CR-OLAP
performed an 16-fold increase in database size and
number of processors, including an 16-fold increase
in the average amount of data aggregated by each
OLAP query, without noticeable performance im-
pact for the user.

Future work: The next phase of our research col-
laboration with IBM includes the study of how to
add data replication and fault tolerance to our sys-
tem. We also plan to study how the master proces-
sor could be replaced by a decentralized system.

Acknowledgment

The authors would like to acknowledge financial
support from the IBM Centre for Advanced Stud-
ies Canada and the Natural Science and Engineer-
ing Research Council of Canada. We thank the re-
search staff at the IBM Centre for Advanced Stud-
ies Canada, and in particular Stephan Jou, for their
support and helpful discussions.

References

[1] J. Han, M. Kamber, Data Mining: Concepts and Tech-
niques, Morgan Kaufmann Publishers, 2000.

[2] The OLAP Report, http://www.olapreport.com.
[3] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Re-

ichart, M. Venkatrao, F. Pellow, H. Pirahesh, Data
Cube: A Relational Aggregation Operator Generaliz-
ing Group-By, Cross-Tab, and Sub-Totals, Data Min.
Know. Disc. 1 (1997) 29–53.

[4] Y. Chen, F. Dehne, T. Eavis, A. Rau-Chaplin, PnP:
sequential, external memory, and parallel iceberg cube
computation, Distributed and Parallel Databases 23 (2)
(2008) 99–126.

[5] F. Dehne, T. Eavis, S. Hambrusch, Parallelizing the
data cube, Distributed and Parallel Databases 11 (2002)
181–201.

15

[6] Z. Guo-Liang, C. Hong, L. Cui-Ping, W. Shan, Z. Tao,
Parallel Data Cube Computation on Graphic Process-
ing Units, Chinese Journal of Computers 33 (10) (2010)
1788–1798.

[7] R. T. Ng, A. Wagner, Y. Yin, Iceberg-cube computation
with PC clusters, ACM SIGMOD 30 (2) (2001) 25–36.

[8] J. You, J. Xi, P. Zhang, H. Chen, A Parallel Algo-
rithm for Closed Cube Computation, IEEE/ACIS In-
ternational Conference on Computer and Information
Science (2008) 95–99.

[9] R. Bruckner, B. List, J. Schiefer, Striving towards near
real-time data integration for data warehouses, DaWaK
LNCS 2454 (2002) 173–182.

[10] D. Jin, T. Tsuji, K. Higuchi, An Incremental Mainte-
nance Scheme of Data Cubes and Its Evaluation, DAS-
FAA LNCS 4947 (2008) 36–48.

[11] R. Santos, J. Bernardino, Real-time data warehouse
loading methodology, IDEAS (2008) 49–58.

[12] R. J. Santos, J. Bernardino, Optimizing data warehouse
loading procedures for enabling useful-time data ware-
housing, IDEAS (2009) 292–299.

[13] F. Dehne, H. Zaboli, Parallel real-time olap on
multi-core processors, in: Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (ccgrid 2012), 2012, pp.
588–594.

[14] M. Ester, J. Kohlhammer, H.-P. Kriegel, The dc-tree:
A fully dynamic index structure for data warehouses,
in: In Proceedings of the 16th International Conference
on Data Engineering (ICDE, 2000, pp. 379–388.

[15] H. Plattner, A. Zeier, In-Memeory Data Management,
Springer Verlag, 2011.

[16] M. Ester, J. Kohlhammer, H.-P. Kriegel, The DC-
tree: a fully dynamic index structure for data ware-
houses, 16th International Conference on Data Engi-
neering (ICDE) (2000) 379–388.

[17] Hadoop.
URL http://hadoop.apache.org/

[18] J. Dean, S. Ghemawat, Mapreduce: simplified data pro-
cessing on large clusters, Commun. ACM 51 (1) (2008)
107–113.

[19] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, R. Murthy, Hive: a
warehousing solution over a map-reduce framework,
Proc. VLDB Endow. 2 (2) (2009) 1626–1629.

[20] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Sil-
berschatz, A. Rasin, Hadoopdb: an architectural hy-
brid of mapreduce and dbms technologies for analytical
workloads, Proc. VLDB Endow. 2 (1) (2009) 922–933.

[21] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, R. E. Gru-
ber, Bigtable: A distributed storage system for struc-
tured data, ACM Trans. Comput. Syst. 26 (2) (2008)
4:1–4:26.

[22] Bigquery.
URL http://developers.google.com/bigquery/

[23] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shiv-
akumar, M. Tolton, T. Vassilakis, Dremel: interactive
analysis of web-scale datasets, Proc. VLDB Endow.
3 (1-2) (2010) 330–339.

[24] Twitter storm.
URL http://storm-project.net/

[25] F. Färber, N. May, W. Lehner, P. Große, I. Müller,
H. Rauhe, J. Dees, The sap hana database–an archi-
tecture overview., IEEE Data Eng. Bull. 35 (1) (2012)

28–33.
[26] K. Doka, D. Tsoumakos, N. Koziris, Online querying of

d-dimensional hierarchies, J. Parallel Distrib. Comput.
71 (3) (2011) 424–437.

[27] A. Asiki, D. Tsoumakos, N. Koziris, Distributing and
searching concept hierarchies: an adaptive dht-based
system, Cluster Computing 13 (3) (2010) 257–276.

[28] K. Doka, D. Tsoumakos, N. Koziris, Brown dwarf: A
fully-distributed, fault-tolerant data warehousing sys-
tem, J. Parallel Distrib. Comput. 71 (11) (2011) 1434–
1446.

[29] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, Y. Ko-
tidis, Dwarf: shrinking the petacube, in: Proceedings
of the 2002 ACM SIGMOD international conference on
Management of data, 2002, pp. 464–475.

[30] S. Wu, D. Jiang, B. C. Ooi, K.-L. Wu, Efficient b-tree
based indexing for cloud data processing, Proc. VLDB
Endow. 3 (1-2) (2010) 1207–1218.

[31] J. Wang, S. Wu, H. Gao, J. Li, B. C. Ooi, Indexing
multi-dimensional data in a cloud system, in: Proceed-
ings of the 2010 ACM SIGMOD International Confer-
ence on Management of data, 2010, pp. 591–602.

[32] X. Zhang, J. Ai, Z. Wang, J. Lu, X. Meng, An efficient
multi-dimensional index for cloud data management,
in: Proceedings of the first international workshop on
Cloud data management, 2009, pp. 17–24.

[33] M. C. Kurt, G. Agrawal, A fault-tolerant environment
for large-scale query processing, in: High Performance
Computing (HiPC), 2012 19th International Conference
on, 2012, pp. 1–10.

[34] Zeromq socket library as a concurrency framework.
URL http://www.zeromq.org/

[35] Transaction processing performance council, tpc-ds (de-
cision support) benchmark.
URL http://www.tpc.org

16

