
RCUBE: Parallel Multi-Dimensional
ROLAP Indexing1

Frank Dehne School of Computer Science, Carleton University, Ottawa, Canada K1S
5B6, frank@dehne.net, http://www.dehne.net

Todd Eavis Dept. of Computer Science, Concordia University, Montreal, Canada H3G
1M8, eavis@cse.concordia.ca.

Andrew Rau-Chaplin Faculty of Computer Science, Dalhousie University, Halifax,
Canada B3H 3J5, arc@cs.dal.ca, http://www.cs.dal.ca/~arc

Abstract

This paper addresses the query performance issue for Relational OLAP (ROLAP)
datacubes. We present RCUBE, a distributed multi-dimensional ROLAP indexing
scheme which is practical to implement, requires only a small communication volume,
and is fully adapted to distributed disks. Our solution is efficient for spatial searches in
high dimensions and scalable in terms of data sizes, dimensions, and number of
processors. Our method is also incrementally maintainable. Using “surrogate” group-bys,
it allows for the efficient processing of arbitrary OLAP queries on partial cubes, where
not all of the group-bys have been materialized.
Our experiments with RCUBE show that the ROLAP advantage of better scalability, in
comparison to MOLAP, can be maintained while providing, at the same time, a fast and
flexible index for OLAP queries.

Keywords. Data Warehousing and OLAP; Datacube; High Performance Computing;
Parallel ROLAP Indexing; Scalability to Large Databases; Algorithmic Complexity,
Efficiency, and Scalability Issues.

INTRODUCTION

Online Analytical Processing (OLAP) has become a fundamental component of
contemporary decision support systems. Gray et al. (1995) introduced the datacube, a
relational operator used to compute summary views of data that can, in turn, significantly
enhance the response time of core OLAP operations such as roll-up, drill down, and slice
and dice. Typically constructed on top of relational data warehouses, these summary
views (called group-bys) are formed by aggregating values across attribute combinations.

1 Research partially supported by the Natural Sciences and Engineering Research Council of Canada.

http://www.dehne.net/

For a d-dimensional input set R, there are 2d possible group-bys. Figure 1 illustrates a
datacube as well as a lattice which is often used to represent the inherent relationships
between group-bys (Harinarayan, 1996).

 (a) (b)

Figure 1: (a) A three dimensional datacube for automobile sales data. (b) The lattice
corresponding to a four dimensional datacube with dimensions A, B, C and D.

There are two standard datacube representations: MOLAP (multi-dimensional array) and
ROLAP (set of relational tables). The array-based model, MOLAP (Multi-dimensional
OLAP), has the advantage that native arrays provide an immediate form of indexing for
cube queries. Interesting MOLAP based systems have been described and implemented
in both the sequential and parallel settings; e.g. (Goil, 1997). However there is some
evidence, that MOLAP based systems may encounter significant scalability problems
(Pendse, 2002). For example, high-dimension datacubes represent extremely sparse
spaces that are not easily adapted to the MOLAP paradigm. Hybrid indexing schemes are
often used, significantly diminishing the power of the model. Moreover, since MOLAP
needs to be integrated with standard relational databases, middleware of some form must
be employed to handle the conversion between relational and array-based data
representations. The relational model, ROLAP (Relational OLAP), does not suffer from
such restrictions. Its summary records are stored directly in standard relational tables
without any need for data conversion. Its table based data representation does not pose
scalability problems. Yet, many current commercial systems use the MOLAP approach
(Pendse, 2002). The main reason, as outlined in (Pendse, 2002), is the indexing problem
for the fast execution of OLAP queries. The problem for ROLAP is that it does not
provide an immediate and fast index for OLAP queries. Many vendors have chosen to
sacrifice scalability for performance. However, this path is becoming increasingly

unsustainable. As outlined in the 2005 Winter Report (Winter Corp., 2005), the size of
data warehouses grew exponentially during recent years. More precisely, between 2001
and 2005 the average size of data warehouses grew by 243%, and the size of the largest
data warehouses grew by an astounding 578% (Winter Corp., 2005). Hence, there is an
urgent need for scalable (i.e. ROLAP) and high performance datacube indexing methods.

This paper addresses the query performance issue for ROLAP and proposes a novel,
distributed multi-dimensional ROLAP indexing scheme. We show that the ROLAP
advantage of high scalability can be maintained, while at the same time providing a fast
index for OLAP queries. We present RCUBE, a distributed indexing scheme which is a
combination of packed R-trees with distributed disk striping and Hilbert curve based data
ordering. Our method requires only very low communication volume between processors
and works in ``low bandwidth connectivity'' multi-processor environments such as
processor clusters or workstation farms. Our method does not require a shared disk and
scales well with respect to the number of processors used. We also note that our
implementation of our new distributed multi-dimensional ROLAP indexing scheme is
based on standard R-trees. This is done to support maximum compatibility with standard
database systems. Clearly, more sophisticated data structures such as the RA*-tree
(Juergens, 1998) could be employed and possibly yield further improvements of our
result.

To further improve the scalability of ROLAP with respect to the size and dimension of
the data set (which was already better than MOLAP's scalability), we extend RCUBE to
the partial cube case. The large number of group-bys, 2^d, is a significant problem in
practice for any datacube method. We consider the case where we do not wish to build
(materialize) all group-bys, but only a subset. For example, a user might want to only
materialize those group-bys that are most frequently used, thereby saving disk space and
time for the cube construction. The problem then is to find a way to answer effectively
those less frequent OLAP queries which require group-bys that have not been
materialized. We present an indexing scheme, based on ``surrogate group-bys'', which
answers such queries efficiently. In fact, our experiments show that RCUBE queries are
almost as efficient on ``virtual'' group-bys as on ones that actually exist.

In summary, our distributed RCUBE indexing method provides a framework for
distributed high performance indexing of ROLAP cubes with the following properties:

• practical to implement,
• low communication volume,
• fully adapted to external memory (i.e. disks), no shared disk required,
• incrementally maintainable,
• efficient for spatial searches in high dimensions,
• scalable in terms of data sizes, dimensions, and number of processors.

We have implemented our distributed RCUBE indexing method in C++, STL and MPI,
and tested it on a 17 node Beowulf cluster (a frontend and 16 compute nodes). While
easily extendible to shared everything multi-processors, our algorithms perform well on
these low-cost commodity-based systems. Our experiments show that for RCUBE index

construction and updating, close to optimal speedup is achieved. An RCUBE index for a
fully materialized data cube of ~640 million rows (17 Gigabytes) on a 16 processor
cluster can be generated in just under 1 minute. Our method for distributed query
resolution also exhibits good speedup achieving, for example, a speedup of 13.28 on 16
processors. For distributed query resolution in partial datacubes, our experiments show
that searches against absent (i.e. non-materialized) group-bys can typically be resolved at
only a small additional cost. Our results demonstrate that it is possible to build a ROLAP
datacube that is scalable and tightly integrated with the standard relational database
approach and, at the same time, provide an efficient index for OLAP queries.

The remainder of this paper is organized as follows. We first review some key research
results from the sequential and parallel settings and describe our framework for
distributed index generation, including mechanisms for building and updating the
indexes. We then present the distributed query engine that is used to access the indexed
group-bys and a performance analysis of our current prototype.

DISTRIBUTED INDEX CONSTRUCTION FOR ROLAP

Various methods have been proposed for building ROLAP datacubes (Agarwal, 1996;
Beyer, 1999; Chen, 2006; Chen, 2004; Chen, 2005; Chen, 2006; Dehne, 2001; Dehne,
2001; Dehne, 2006; Gray, 1996; Harinarayan, 1996; Ross, 1997; Sarawagi 1996) but
there are only very few results available for the indexing of such cubes. For sequential
query processing, (Gupta, 1997) propose an indexing model composed of a collection of
b-trees. While adequate for low-dimensional datacubes, b-trees are inappropriate for
higher dimensions in that (a) their performance deteriorates rapidly with increased
dimensionality and (b) multiple, redundant attribute orderings are required to support
arbitrary user queries. Roussopoulos et al. (1997) propose the cubetree, an indexing
model based upon the concept of a packed R-tree (Roussopoulos, 1985). For parallel
query processing, a typical approach used by current commercial systems like ORACLE
RAC is to improve throughput by distributing a stream of incoming queries over multiple
processors and having each processor answer a subset of queries. Other relevant
commercial systems include IBM DBs's multidimensional clustering, Transaction
TransBase's Z-ordered B-trees (Padmanabhan, 2003; Ramsek, 2000). However, these
approaches provides no speedup for each individual query. For OLAP queries, which can
be time consuming, the parallelization of each individual query is important for the
scalability of the entire OLAP system. With respect to the parallelization of R-tree
queries, a number of researchers have presented solutions for general purpose
environments. Koudas et.al. (1996) present a Master R-tree model that employs a
centralized index and a collection of distributed data files. Schnitzer and Leutenegger's
(1999) Master-Client R-tree improves upon the earlier model by partitioning the central
index into a smaller master index and a set of associated client indexes. While offering
significant performance advantages in generic indexing environments, neither approach is
well-suited for OLAP systems. In addition to the sequential bottleneck on the main server
node, both utilize partitioning schemes that can lead to the localization of searches. In
addition, neither approach provides a mechanism for incremental updates. In the

remainder of this section, we present the distributed RCUBE indexing method which has
no sequential bottleneck, provides load balancing across the p processors during the
resolution of each query (i.e. good parallelization), and allows for incremental updates.

Generating the Distributed RCUBE Index

The distributed RCUBE consists of a distributed datacube and a distributed RCUBE
index which is used to answer multi-dimensional range queries on individual group-bys.
The challenge is in how data ordering and partitioning can be used to help satisfy the
following goals: 1) partition the data such that the number of records retrieved per node is
as balanced as possible, thereby maximizing the simultaneous involvement of all
processors for each query resolution, and 2) minimize the number of disk seeks required
in order to retrieve the records returned by a query.

In the distributed RCUBE, as with the Master-Client technique, local partial R-tree
indexes are constructed on each processor and used to resolve a portion of the query.
However, for our distributed RCUBE, there is no global R-tree on the front-end. Instead,
queries are passed directly to each processor in the cluster, via a single short message,
and intermediate results remain distributed and available for further processing. For
OLAP query results that are to be further processed, this also avoids the possible
bottleneck of previous solutions where the results were always gathered on the front-end.
Another difference to previous methods is that the distributed RCUBE index results in
the generation of local packed R-tree forests rather than a single R-tree.

Figure 2: Hilbert curve packing versus XYZ

Figure 3: Striping the data across two processors. (Block capacity = 3)

A further important difference between our distributed RCUBE index and the previous
work in (Gupta, 1997; Roussopoulos, 1997; Schnitzer, 1999) is that our distributed
RCUBE index method applies a novel combination of Hilbert-curve sort ordering and
round robin disk striping for data partitioning. Previous approaches used XYZ (sometimes
also called lowX or nearest-X) data ordering, which is simply the standard multi-
dimensional sort ordering. The disadvantage of that approach is that response time
deteriorates rapidly when non-primary indices are required, since relevant points are
dispersed broadly across the entire data set. Our approach applies a combination of
Hilbert-curve sort ordering and round robin disk striping. Hilbert-curve orderings have
been shown to be an effective tool for ordering data such that items that are close to each
other in the original space are likely to be placed close to each other in the sorted order
(Faloutsos, 1989; Kamel, 1993). Experimental evidence indicates a significant
performance advantage over the XYZ ordering on sequential range queries (Kamel,
1993). Figure 2 illustrates a typical case. While XYZ is likely to be efficient for range
queries with a large X component and a small Y component, queries with large Y
components are likely to require an excessive number of disk accesses. In higher
dimensions, the problem is exacerbated. Hilbert-based ordering, on the other hand, favors
no single dimension and is therefore very well suited to arbitrary range queries. In the
parallel environment, considered here for distributed RCUBE index constrution, we have,
however, the additional requirement that we seek to balance the retrieval times for
arbitrary range queries across all p processors. Therefore, an effective data partitioning
mechanism is essential. Our approach is to stripe the Hilbert-curve ordered data in a
round robin fashion such that successive records are sent to successive processors. We
then build local packed R-trees from the striped data. The motivation for this striping
pattern is that it dramatically increases the likelihood that the space bounded by the
hyper-rectangle of an arbitrary user query will be evenly distributed across the p
processors. Figure 3 illustrates this argument. The diagram shows the effect of striping
the original space across two processors. The user query (shown as a dashed rectangle)
results in the retrieval of eight points, with each processor contributing four points from a
pair of contiguous blocks. It is also worth noting that this example would require four
accesses with a sequential R-tree implementation.

Algorithm 1 Outline of Distributed RCUBE Construction
Input: Raw data set R.
Output: A distributed data cube, C, distributed RCUBE index, I.

1. Using the parallel ROLAP data cube generation algorithms from (Chen, 2004) or
(Dehne, 2001) generate the distributed data cube, C.

2. Using parallel sample sort (Li, 1993), order each group-by v of C in Hilbert order
and stripe the result across the processors in a round-robin fashion such that each
of the p processors receives a stripe of size ⎡n/p⎤, where n is the number of
records in v.

3. Each processor Pi, independently and in parallel, performs the following for each
local data stripe for a group-by v: For a disk block size of m records, and a local
record count k for the group-by v, associate a bounding box with each of the
⎡k/m⎤ blocks in the stripe. Using these blocks as the base (for the leaves), build
the packed R-tree in the usual bottom-up fashion. Write the disk blocks
representing the R-tree to disk in level ordering, starting with the block
representing the root.

Algorithm 1 presents an outline of our distributed RCUBE index generation method.
Much of the communication complexity of the algorithm is associated with Step 2 which
we will now discuss in more detail. In Step 1, the distributed data cube was generated
using the parallel ROLAP data cube generation algorithms from (Chen, 2004) or (Dehne,
2001). Note that, in (Dehne, 2001) every group-by generated is entirely stored on one
single processor, whereas in (Chen, 2004) every group-by is distributed evenly across the
p processors. This implies different sort criteria for these two cases. The computation of
the comparison function for the global sort ordering is a non trivial combination of the
Hilbert curve comparison function (in our implementation, we use code from Moore,
2002) and a comparison function representing round robin disk striping. Furthermore, we
do not wish to execute a separate sort for each group-by, which could result in up to 2^d
sort operations. Instead, we combine the comparison functions for all group-bys into one
single global sort operation. As a result, we can implement Step 2 with only two h-
relation (MPI_AllToAllv) operations.

Updating the Distributed RCUBE

An important advantage of our distributed RCUBE generation method is that it is easy to
perform efficient cube updates. In typical data warehousing applications, updates consist
of an accumulated additional data set R' that needs to be added to the original data set R.
Such updates typically occur on a daily or monthly schedule.

In order to add R' to the data cube, our method constructs the data cube C' for R', sorts
each group-by of C' in Hilbert-curve ordering and stripes it across the disk in round-robin
fashion. Each processor performs, for each group-by v and received update v' of C'
relevant for v, the following two operations: (1) it merges v' into v and agglomerates, and
(2) it merges the two packed R-trees for v and v'.

DISTRIBUTED ROLAP QUERY ENGINE

Previous R-tree parallelization results have focused exclusively on the retrieval
characteristics of R-trees (Gupta, 1997; Roussopoulos, 1997). However, in an OLAP
environment, accessing disk blocks is only the first phase of query resolution. Typically,
some form of post-processing is then required to fully resolve the original query. An
important example of this is partial cube extrapolation. The construction of a partial cube
implies that some number of group-bys do not physically exist on disk. There needs to be
an efficient mechanism for performing searches in these non-materialized group-bys.

In this section, we describe the implementation of a distributed datacube query engine. A
general framework for post-processing is presented, along with a specific algorithm for
handling partial cube indexing.

Distributed RCUBE Query Resolution

As discussed, our distributed RCUBE index has been designed to balance the retrieval of
query records across all p processors. Once the records have been obtained, additional
OLAP processing is often necessary. The fundamental model, outlined in Algorithm 2,
provides the means by which both forms of computation may be carried out in an
efficient, load balanced manner.

Algorithm 2 Outline of Distributed RCUBE Query Resolution
Input: A set S of indexed group-bys, striped evenly across p processors P_1, … P_p, and
a query Q.
Output: Query result deposited on front-end or distributed across the p processors.

1. Pass query Q to each of the p processors.
2. Locate target group-by T.
3. Transform Q into Q’ according to the attribute ordering of the records in T.
4. In parallel, each processor Pj retrieves the record set Rj matching Q’ for its local

data and then reorders the values of each record of Rj to match the attribute
ordering of Q.

5. Perform a parallel sample sort (Li, 1993) of R1 ∪ R2 ∪ … ∪ Rp with respect to
the attribute ordering of Q.

6. IF the query result is to be deposited on the front-end THEN collect the result via
a MPI_AllGather.

In Step 1, the query is distributed to all of the p processors, avoiding unnecessary
bottlenecks on the frontend. The query usually cannot be executed in its native form,
however, since the user's request is not likely to match the physical ordering of attributes
that was determined by the original datacube build algorithm. For example, the user may
request a three-dimensional group-by sorted and presented as A × B × C, while

Algorithm 1 may have generated that group-by as C × A × B. In Steps 2 and 3, we
identify the group-bys whose dimensions represent a valid permutation of the dimensions
of the user request and then transform the original query to match the attribute order of
the index/group-by. This transformed query is passed to the packed R-tree. Since the
retrieved records are not guaranteed to have the right attribute ordering or the right
ordering of records, further processing is necessary. In Step 4, the attributes of each
record are permuted, if necessary, via a single linear scan of the query result. In Step 5,
the query result is sorted. If the query result is to be deposited on the front-end, it is
simply collected via a MPI_AllGather operation. Otherwise, the result remains
distributed over the p processors for further parallel processing.

A number of additional performance improvements are included in our solution. Our
packed R-tree implementation performs a prefetch on all parent pages in the group-by
index. Because the pages of level i in the packed R-tree are written contiguously to disk
prior to the pages in level i - 1 (Step 3 of Algorithm 1), the prefetch of all relevant parent
pages allows the query engine to minimize the seek time associated with traversing the
index.

We also employ a threshold factor α to determine whether or not a full parallel sort is
required. For very small result sets, a p processor sort would introduce unnecessary
communication overhead. If the number of records in the result set is below α, then the
partial result sets are sent directly to a single processor for sorting. The threshold factor
can be tuned to the physical characteristics of the parallel machine.

Distributed Partial RCUBE Query Resolution

To further improve the scalability of ROLAP with respect to the size and dimension of
the data set, we now consider the case where we do not wish to build all group-bys but
only a subset. Since the computation of all 2^d group-bys can lead to unacceptable
processing and storage requirements, particularly in higher dimensions, a user might want
to only build those group-bys that are most frequently used, thereby saving disk space
and time for the cube construction. The problem for OLAP query resolution is then to
find a way to answer effectively those less frequent OLAP queries which require group-
bys that have not been materialized.

Algorithm 3 Outline of Distributed Partial RCUBE Query Resolution
Input: A partial set S' of indexed group-bys, striped evenly across p processors P1, …,
Pp, and a query Q.
Output: Query result deposited on front-end or distributed across the p processors.

1. Pass query Q to each of the p processors.
2. Locate a surrogate group-by T containing the attributes in Q and possibly some

additional, peripheral, attributes. Among all possible such group-bys select as
surrogate group-by T the one with smallest size.

3. Transform Q into Q’ according to the attribute ordering of the records in T and
add “*” values for the peripheral attributes.

4. In parallel, each processor Pj retrieves the record set Rj matching Q’ for its local
data and then reorders the values of each record of Rj to match the attribute
ordering of Q. While performing the re-ordering, processor Pj removes from each
record the redundant values for the peripheral attributes of T.

5. Perform a parallel sample sort (Li, 1993) of R1 ∪ R2 ∪ … ∪ Rp with respect to
the attribute ordering of Q. While performing the sort, aggregate duplicate records
that have been introduced by peripheral attributes of the surrogate group-by T.

6. IF the query result is to be deposited on the front-end THEN collect the result via
a MPI_AllGather.

It is important to observe that datacube construction costs are skewed heavily towards the
upper (high dimensional) portion of the lattice. For example, in a ten dimensional
datacube, much of the weight is typically associated with group-bys of five to ten
dimensions. In the upper portion of the lattice, little aggregation takes place and the
group-bys are very similar to one another. For example, we measured the sizes of group-
bys of a data cube for a 10 dimensional data set of 1 Million records. Most group-bys
with 6 through 10 dimensions contain almost 97% of all records in the original input set.
Therefore, it is not efficient to build all these very similar group-bys. Clearly, a partial
cube construction and indexing method is required. However, the query engine must then
be able to efficiently answer queries on group-bys that do not physically exist. In the
following, we present a new method, based on ``surrogate group-bys'', which answers
such queries efficiently. An outline of our method is given in Algorithm 3.

There are a number of key difference between Algorithm 3 and the previous Algorithm 2.
First, a surrogate group-by T is used as the basis of query resolution for Q. A surrogate is
an alternate group-by that will be used to answer the query on the group-by requested by
the user, termed the primary group-by. To select a surrogate, each processor scans its
local disk to find those group-bys whose dimensions represent a superset of the
dimensions specified by the user. From the group-bys in this list, it selects the group-by
of minimum size. Note that, since this surrogate group-by contains even more detailed
information than the original group-by, we can answer all queries associated with the
original group-by. Furthermore, we note that because Hilbert-based R-tree packing has
been used, there is no performance problem due to the different ordering of the records in
the group-by, since the Hilbert curve does not favor any particular order. In (Sismanis,
2002), the authors observe that when XYZ ordering is used, the only alternate group-bys
that can be efficiently used for this purpose are the ones in which the attributes of Q
represent a prefix of T. Since this situation is unlikely to occur in practice, XYZ ordering
makes partial cube query resolution very costly. However, as shown in the experiments in
Section 4, such problems do not occur with Hilbert ordering.

Once the surrogate group-by T has been determined, the query is transformed by (i) re-
arranging the attributes of the query to match the order of the surrogate and (ii) adding
``*'' values for the peripheral attributes of the surrogate to the the original query. A
peripheral attribute is a dimension that is not part of the user query but that must be
passed to the packed R-tree query in order to resolve the query on the surrogate. The

result of the packed R-tree query is a superset of the records that would have been
retrieved had the primary group-by actually existed. However, we note that, since partial
cube indexing is most attractive within environments in which data sparsity creates large
group-bys of almost identical size, the difference between the sizes of the surrogate result
and the actual result are likely to be small in such cases. In addition, since the disk blocks
for the packed R-tree are arranged to support contiguous retrieval of disk blocks, the time
taken to answer the query will be less influenced by the use of a surrogate because the
additional blocks are likely to be accessed within the same disk scans rather than with
costly additional disk seeks. These observations are consistent with our experimental
results.

When the records have been retrieved, their values must be re-ordered to match the order
of attribute values in Q. Furthermore, during this re-ordering, the redundant values for the
peripheral attributes of T are removed. Thereby, no additional disk accesses are
introduced for the removal of the redundant values.

During the final sort of the query result, it is easy to aggregate, at the same time, the
duplicate records that have been introduced by the peripheral attributes of the surrogate
group-by T. Again, no additional disk accesses are introduced for the removal of the
redundant records.

In summary, our partial cube query mechanism is build directly upon the method for
completely built datacubes, requiring only very little additional computation. Our
experiments, discussed in the following section, show that our distributed query engine is
almost as efficient on ``virtual'' group-bys as it is on ones that actually exist.

PERFORMANCE ANALYSIS

We have implemented our distributed datacube indexing prototype using C++, STL and
the LAM MPI communication library, version 6.5.6. The current prototype consists of
approximately 8,000 lines of code (not including libraries) and was created by a single
programmer over a seven month period.

Our experimental platform consisted of a 17 node Beowulf cluster (a frontend and 16
compute nodes), with 1.8 GHz Intel Xeon processors, 1 GB RAM per node and two 40
GB 7200 RPM IDE disk drives per node. Every node was running Linux Redhat 7.2 with
gcc 2.95.3. All nodes were interconnected via an Intel 100 Megabyte Ethernet switch.
Note that on this machine communication speed is quite slow in comparison to
computation speed. We will shortly be replacing our 100 Megabyte interconnect with a 1
Gigabyte Ethernet interconnect and expect that this will further improve performance
results obtainable on this machine.

In the following experiments all sequential times were measured as wall clock times in
seconds. All parallel times were measured as the wall clock time between the start of the
first process and the termination of the last process. We will refer to the latter as parallel

wall clock time. All times include the time taken to read the input from files and to write
the output into files. Furthermore, all wall clock times were measured with no other users
except us on the Beowulf cluster.

Figure 4: (a) RCUBE index construction, and (b) corresponding Speedup.

Figure 4 shows, for an input data set consisting of 10 dimensions and 1,000,000 records,
the parallel wall clock time observed for RCUBE index construction as a function of the
number of processors used. We observe that for index construction our method achieves
close to optimal speedup; generating, on a 16 processor cluster, the RCUBE index for a
fully materialized data cube of ~640 million rows (17 Gigabytes) in just under 1 minute.

Figure 5: (a) Distributed query resolution, and (b) corresponding Speedup.

Figure 5 shows the parallel wall clock time for distributed query resolution as a function
of the number of processors used, and the corresponding speedup. In this experiment,
batches of ten multi-dimensional queries were resolved against random views in a 10
dimensional data cube consisting of 1,000,000 records, where the queries were

constructed to return approximately 15% of the corresponding group-bys. We observe
that for distributed query resolution our method achieves good speedup. For example, for
16 processors, a speedup of 13.28 is achieved. The source of the difference between this
speedup and perfect speedup is interesting. Perhaps surprisingly, it does not arise from
the queries returning different numbers of data points on different processors. Hilbert
ordering combined with round-robin striping almost perfectly balances the query results
evenly over the parallel machine. The small work imbalance observed results from the
parallel sample sort used to order the query results. This suggests that these speedup
results might be further improved by using a better sort code.

Figure 6: (a) Disk blocks received vs. number of disk seeks required on 16 processors,
and (b) Relative record imbalance percentage.

Figure 6a shows the number of disk blocks retrieved and corresponding number of disk
seeks required in performing distributed query resolution on views of differing sparsity.
Each point represents the average of 15 random queries, each of which returns between
5% and 15% of the associated view, drawn from the 10 dimensional data cube described
above. The low density (i.e. sparse) views were typically views high in the lattice, while
the high density views were typically views low in the lattice. Again, we observe the
benefit of using Hilbert ordering combined with round-robin striping in our distributed
RCUBE. Even when a large number of blocks need to be retrieved, the number of disk
seeks across our parallel machine is very small. This is crucial to achieving good
performance, given that contiguous reads are an order of magnitude faster than reads that
require an associated disk seek. Figure 6b shows the relative record imbalance, that is the
maximum percentage variation between the size of query results on different processors
computed over the experiments illustrated in Figure 6a. We observe that the Hilbert
ordering combined with round-robin striping leads to a maximum imbalance of less than
0.3% with up to 16 processors.

Figure 7: (a) Distributed query resolution in surrogate group-bys, and (b) Relative
percentage cost of using surrogate view instead of materialized primary view.

Figure 7a compares parallel wall clock times for distributed query resolution in primary
and surrogate group-bys as a function of the number of processors used. Figure 7b shows
the corresponding relative cost of a surrogate-based query resolution over the same
search in the corresponding materialized primary group-by. We observe from Figure 7a
that the overhead of using surrogates, that is performing query resolution against non-
materialized views, is reasonable small, ranging from 3.5 seconds for a batch of 10
queries on a single processor to 0.12 seconds for the same queries on 16 processors.
Figure 7b illustrates an interesting trend. As the number of processors grows the relative
cost of using surrogate group-bys decreases.

CONCLUSION

In this paper, we have shown that it is possible to build an efficient parallel ROLAP
index that is scalable and tightly integrated with the standard relational database
approach. Our parallel RCUBE index has the additional advantage of being able to
process arbitrary queries on partial datacubes.

ACKNOWLEDGEMENTS

Research partially supported by the Natural Sciences and Engineering Research Council
of Canada.

REFERENCES
S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrishnan, and S.
Sarawagi. On the computation of multidimensional aggregates. Proceedings of the 22nd
International VLDB Conference, pages 506-521, 1996.

K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes.
Proceedings of the 1999 ACM SIGMOD Conference, pages 359-370, 1999.

Y. Chen, F. Dehne, T. Eavis, D. Green, A. Rau-Chaplin, and E. Sithirasenan. cgmOLAP:
Efficient parallel generation and querying of terabyte size ROLAP data cubes. In Proc.
22nd Int. Conf. on Data Engineering (ICDE), pages 164-164. IEEE Comp. Soc. Dig.
Library, 2006.

Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin. Parallel ROLAP data cube
construction on shared-nothing multiprocessors. Distributed and Parallel Databases,
15:219-236, 2004.

Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin. PnP: Parallel and external memory
iceberg cube computation. In Proc. 21st Int. Conf. on Data Engineering (ICDE), pages
576-577. IEEE Comp. Soc. Dig. Library, 2005.

Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin. Improved data partitioning for
building large ROLAP data cubes in parallel. Journal of Data Warehousing and Mining,
2(1):1-26, 2006.

F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin. Parallelizing the datacube.
Distributed and Parallel Databases (Special Issue on Parallel and Distributed Data
Mining), 11(2):181-201, 2001.

F. Dehne, T. Eavis, and A. Rau-Chaplin. A cluster architecture for parallel data
warehousing. IEEE International Symposium of Cluster Computing and the Grid
(CCGRid'01), 2001.

F. Dehne, T. Eavis, and A. Rau-Chaplin. The cgmCUBE project: Optimizing parallel data
cube generation for ROLAP. Distributed and Parallel Databases, 19(1):29-62, 2006.

C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. Symposium on
Principles of Database Systems, pages 247-252, 1989.

S. Goil and A. Choudhary. High performance olap and data mining on parallel
computers. Journal of Data Mining and Knowledge Discovery, 1(4), 1997.

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Proceeding of the 12th
International Conference On Data Engineering, pages 152-159, 1996.

H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index selection for olap.
Proceeding of the 13th International Conference on Data Engineering, pages 208-219,
1997.

V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes. Proceedings of
the 1996 ACM SIGMOD Conference, pages 205-216, 1996.

M. Juegens and H.-J. Lenz. The Ra*-tree: An improved r-tree with materialized data for
supporting range queries on OLAP-data. In DEXA Workshop, pages 186-191, 1998.

I. Kamel and C. Faloutsos. On packing r-trees. Proceedings of the Second International
Conference on Information and Knowledge Management, pages 490-499, 1993.

N. Koudas, C. Faloutsos, and I. Kamel. Declustering spatial databases on a multi-
computer architecture. In Proceedings of Extended Database Technologies, pages 592-
614, 1996.

X. Li, P. Lu, J. Schaefer, J. Shillington, P. S. Wong, and H. Shi. On the versatility of
parallel sorting by regular sampling. Parallel Computing, 19(10):1079-1103, 1993.

D. Moore. Fast hilbert curve generation, sorting, and range queries. http://www. caam.
rice. edu/~dougm/twiddle/Hilbert, 2002.

S. Padmanabhan, B. Bhattacharjee, T. Malkemus, L. Cranston, and M. Huras. Multi-
dimensional clustering: A new data layout scheme in DB2. In ACM SIGMOD, pages
637-641, 2003.

N. Pendse and R. Creeth. The OLAP Report. http://www.olapreport.com/, 2002.

F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer. Integrating the UB-
tree into a database system kernel. In VLDB Conference, pages 263-272, 2000.

K. Ross and D. Srivastava. Fast computation of sparse data cubes. Proceedings of the
23rd VLDB Conference, pages 116-125, 1997.

N. Roussopolis and D. Leifker. Direct spatial search on pictorial databases using packed
r-trees. Proceedings of the 1985 ACM SIGMOD Conference, pages 17-31, 1985.

N. Roussopoulos, Y. Kotidis, and M. Roussopolis. Cubetree: Organization of the bulk
incremental updates on the data cube. Proceedings of the 1997 ACM SIGMOD
Conference, pages 89-99, 1997.

S. Sarawagi, R. Agrawal, and A.Gupta. On computing the data cube. Technical Report
RJ10026, IBM Almaden Research Center, San Jose, California, 1996.

B. Schnitzer and S. Leutenegger. Master-client r-trees: a new parallel architecture. 11th
International Conference of Scientiffic and Statistical Database Management, pages 68-
77, 1999.

Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis. Dwarf: shrinking the
petacube. Proceedings of the 2002 ACM SIGMOD Conference, pages 464-475, 2002.

Winter Corporation. Report. 2005. http://www.wintercorp.com.

	RCUBE: Parallel Multi-Dimensional ROLAP Indexing
	Abstract

	INTRODUCTION
	DISTRIBUTED INDEX CONSTRUCTION FOR ROLAP
	Generating the Distributed RCUBE Index
	Updating the Distributed RCUBE

	DISTRIBUTED ROLAP QUERY ENGINE
	Distributed RCUBE Query Resolution
	Distributed Partial RCUBE Query Resolution

	PERFORMANCE ANALYSIS
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

