
Dynamic View Selection for OLAP

Michael Lawrence and Andrew Rau-Chaplin

Faculty of Computer Science
Dalhousie University
Halifax, NS, Canada

B3H 1W5
{michaell, arc}@cs.dal.ca

www.cgmLab.org

Abstract. Due to the increasing size of data warehouses it is often in-
feasible to materialize all possible aggregate views for Online Analytical
Processing. View selection, the task of selecting a subset of views to ma-
terialize based on knowledge of the incoming queries and updates, is an
important and challenging problem. In this paper we explore Dynamic
View Selection in which the distribution of queries changes over time,
and a subset of a materialized view set is updated to better serve the
incoming queries.

1 Introduction

In a data warehousing environment, users interactively pose queries whose an-
swers are used to support data-driven decision making. Such queries usually
make heavy use of aggregation, which may be realized using the GROUP-BY clause
in SQL. Since aggregate queries are so common and their results are typically
very expensive to compute, aggregate views of the data are often pre-computed
and stored in OLAP systems in order to speed up future query processing.
From the perspective of efficient query answering, ideally all views would be
pre-computed and made available for answering aggregate queries, however re-
alistically storage and computational constraints limit the number of views that
are usefully pre-materialized.

The problem of choosing a set of views for materialization is known as the
View Selection Problem. In the view selection problem one wishes to select a set
of views for materialization which minimizes one or more objectives, possibly
subject to one or more constraints. Many variants of the view selection problem
have been studied including minimizing the query cost of a materialized view
set subject to a storage size constraint [1,2,3,4], minimizing a linear combination
of query cost and maintenance cost of a materialized view set [5,6,7,8,9], and
minimizing query cost under a maintenance cost constraint [3,10,11,12,13]. Note
however that in most of these cases the problem considered is static in that:
1) Query frequencies are assumed to be static (i.e., not changing over time),
and 2) It is assumed that the pool of materialized views is to be selected and
computed from scratch rather than making use of a running OLAP system’s

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 33–44, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

34 M. Lawrence and A. Rau-Chaplin

pool of previously materialized views. While the static view selection problem
is important, it captures only the start-up phase of a OLAP system and does
not address what is arguably in practice the more important dynamic question:
how, given a running OLAP system with an existing pool of materialized views
and a new vector of query frequencies, should we identify views that should be
added to our materialized pool and views that should be removed in order to
best minimize query times subject to a storage size constraint?

The need for dynamic view management was forcefully made by Kotidis et al.
in their DynaMat system [14]. As they observe, “This static selection of views [...]
contradicts the dynamic nature of decision support analysis.” There are a num-
ber of ways to approach the dynamic view selection problem, which we review in
Section 2.2. In this paper we explore an alternative approach to Dynamic View
Selection. We consider an OLAP system with two phases of operation: Startup
and Online. In the Startup Phase an initial set of views must be selected based
on some estimated query probabilities. This is the classical (static) view selection
problem. In the Online Phase an “in use” OLAP system is considered, for which
a set of views M has already been selected and materialized. Since over time
the relative importance of each type of aggregate query may change due to the
changing demands of its users, the system may elect to select a new set of views,
M ′, which better serves the incoming queries. However, view materialization is
computationally expensive and the time window in which new views can be ma-
terialized may prohibit selection of an entirely new view set. Thus the problem
becomes selecting a new view set M ′ by discarding some views from M , and
adding new ones to be materialized. We refer to the problem of incrementally
updating a view set as the Online View Selection Problem (see Section 2). We be-
lieve that the online view selection problem is an important addition to the static
variant, as OLAP systems in practice are restarted from scratch only infrequently
and must be able to tune their performance to changing conditions on-the-fly.

Our approach to online view selection is to adapt methods that have proven to
be effective for the static variant. In this paper we develop online adaptations of
the greedy heuristic, BPUS, introduced by Harinarayan et al. [1] and three ran-
domized techniques (iterative improvement, simulated annealing and two-phase
optimization) initially proposed for static view selection by Kalnis et al. [3] (see
Sections 3 and 4). Our challenge is two-fold. For the static phase, the randomized
methods must be adapted so as to take into account maintenance cost in addi-
tion to the space constraint and for the online phase all of the methods must be
adapted to take into account the existing pool of previously materialized views.

2 Problem Definition and Related Work

2.1 Static View Selection

A typical data warehouse stores its information according to a star schema hav-
ing a central fact table with d feature attributes (dimensions), and some number
of measure attributes. Queries to the data warehouse request aggregated mea-
sures from the perspective of some subset of the dimensions in the fact and

Dynamic View Selection for OLAP 35

dimension tables, which can be specified using the GROUP-BY clause in SQL. The
aggregated table from which a query’s results are collected is called a view, and
is identified by the dimensions selected. Harinarayan et al. introduced the data
cube lattice in [1] expressing the relationship between views as a partial order.
There is a path from a view v1 to a view v2 in the lattice if queries on v2 can
be answered also using v1 (although likely at a higher cost). The total number
of views in the lattice is exponential in the number of dimensions.

The view selection problem can be formally defined as follows. For each view
v in the lattice L, we have some estimate of the number of records rv in v, and
the frequency of queries fv on v. As in most previous studies, we adopt the linear
cost model presented in [1], where the cost of answering a query on a view v is rv.
The cost q(v, M) of answering aggregate queries on view v using a materialized
view set M is equal to the number of records in the smallest view in M which
is an ancestor of v in the data cube lattice. The overall query time using M is a
weighted sum of these terms

Q(M) =
∑

v

fvq(v, M),

and the size S(M) of M is simply the sum of the sizes of each of the views in
M . The update or maintenance cost u(v, M) of a materialized view v in M is
modeled based on a maintenance cost which is assigned to every edge (v1, v2)
in the lattice. This represents the cost of maintaining v2 using updates from
v1, and the maintenance cost u(v, M) is the smallest maintenance cost over all
paths from materialized ancestors of v1 to v2. Each node v also has an update
frequency gv, and the total update cost for a set of materialized views M is

U(M) =
∑

v∈M

gvu(v, M).

Note that while Q(M) decreases when new views are added, U(M) does not
always increase, as the additional cost of maintaining a materialized view v
might be outweighed by the benefit that v has in propagating smaller batches of
updates to its children. Our goal for the static phase is as follows: to select a M
which has the minimum Q(M) + U(M) subject to the constraint S(M) < Smax

for some maximum size Smax.
Numerous solutions have been proposed to the (static) view selection problem

on data cubes. The first is a greedy algorithm presented by Harinarayan et al.
[1], which is proven to find a solution within 63% of optimal. In [5] the same
heuristic was extended to minimize sum of query and update cost. Shukla et
al. give a heuristic minimizing query cost in [2] which is asymptotically faster
than that of [1], but achieves the same solution only under certain conditions.
In [6] a greedy algorithm for minimizing the sum of query and update cost is
given, their update cost modeling is more accurate, however when choosing a
view v to select they only consider the update cost of v and not its impact on
the entire view set. Gupta gives the first solution to the view selection problem
minimizing query cost under an update cost constraint in [13], followed by two

36 M. Lawrence and A. Rau-Chaplin

algorithms of Liang et al. in [10], and genetic algorithm approaches in [12,11]
In [15] Agrawal et al. present a tool and algorithms for selecting a set of views
based on a cost metric involving query cost, update cost, index construction and
other factors. Nadeau and Teorey give a greedy algorithm minimizing query cost
under a space constraint which is polynomial in the number of dimensions [4], but
does not perform as well as other greedy heuristics. Kalnis et al. use randomized
algorithms to search the solution space of view sets in [3], minimizing query cost
and constrained by space or update cost.

2.2 Online View Selection

For the online phase we consider a data warehousing system which has a fixed-
sized time window to materialize new views which are not currently materialized,
but are perhaps more beneficial to the changing query patterns of the users. How-
ever because of the space constraint, a number of views may have to be discarded
as well. Based on the size of the available time window for computing new views,
the database administrator calculates how much of the materialized view set can
be replaced. We do not consider update costs in online view selection because
updates themselves are counter to the purpose of online view selection. Online
view selection is an act which is typically performed at regular maintenance in-
tervals, based on an observed or expected change in query probabilities. During
these intervals, updates are applied to the views and so we do not expect up-
dates to be applied between intervals, hence update cost is not our concern in
online view selection. Hence we can define the online view selection problem as
follows: Given a materialized view set M and new query frequencies f ′, find a
M ′ which minimizes Q(M ′) with respect to the new query frequencies, and such
that ∑

v∈M∩M ′

rv ≥ (1 − h) · Smax,

for some h which represents a percentage of M (in terms of size) for which the
system has enough resources to materialize new views for. Our dynamic view
selection involves an initial startup phase consisting of a static selection of views
M1, and multiple online phases where M1 is updated to M2, M2 to M3 and
so on. The decision of when to select an Mi+1 by updating Mi can be made
in many ways, for example during a pre-allocated maintenance window, when
average query time degrades past an unacceptable level, or based on measuring
the difference between the current query distribution and the distribution at the
last online phase.

Our formulation of dynamic view selection is different from that of other
studies [9,8,14]. In [9,8], Theodoratos et al. consider what they call dynamic or
incremental data warehouse design. In the static phase, they are given a fixed set
of queries Q, and views must be selected from multiquery AND/OR-DAGs which
answer the queries with minimum cost. In the online phase, additional queries
are added to the set Q, and new materialized views are added so that the new
queries can be answered. In practice there may not be extra space available
for materializing new views, and some previously materialized views must be

Dynamic View Selection for OLAP 37

discarded based on the fact that some queries are no longer of interest. In the
dynamic view selection considered here, our materialized view set M is able to
answer any possible aggregate query, and its size never increases beyond Smax

over time. It may be the case that additional space is available for materialized
views over time, which can easily be handled by our implementation of the
algorithms.

In [14], Kotidis and Roussopoulos approach dynamic view selection by caching
fragments of views. A view fragment is a portion of a whole view which results
from a range selection on its dimensions. Their approach is fundamentally differ-
ent from ours in that it can only choose to store aggregate data which has been
requested from the user, where as pre-materializing a set of views is more flexible
in that any aggregate data which can be produced is considered for storage. Also,
their approach is in reaction to user’s queries, where as a materialized view set
approach aims to prepare the system for future queries. We believe ours to be a
more valuable approach to dynamic view selection for the following reasons:

1. As argued in [16], the ad-hoc nature of OLAP queries reduces the chance that
stored fragments will be able to fully answer future queries. Storing whole
views guarantees that any queries on the same or more highly aggregated
views can be answered.

2. Knowledge giving an expectation of future query loads (e.g. daily reports)
may be available, allowing advance preparations to be made by choosing an
appropriate pre-materialized view set.

3. Multiple unrelated and popular aggregate queries may have a common an-
cestor which can answer all of them at a slightly higher cost. In DynaMat,
this ancestor will never be considered for storage unless it is queried, where
as a good approach to view selection will store this ancestor instead of the
individual aggregates below it, resulting in significant space savings which
can be put to better use.

3 Randomized Algorithms for Dynamic View Selection

In order to apply randomized search to a problem, transitions between feasible
solutions are required. Each search process moves stochastically through the
graph of feasible solutions called the search space, which can be pictured as
a topographical space where elevation represents objective value and locality
represents connectivity of the solutions through the transitions defined. Since
we are minimizing, the “lower” solutions in this space are the ones we desire.
The effectiveness of a randomized search strategy depends on the shape of the
search space and in what manner the search moves through it.

For the static phase we define two transitions, based on those in [3]:

1. Add a random view which is not in the current solution and randomly remove
selected views as necessary to satisfy the space constraint.

2. Remove a randomly selected view.

38 M. Lawrence and A. Rau-Chaplin

The second transition is different from that of [3], which, after removing a view
fills the rest of the available space with views. This is because our algorithms
minimize both query and maintenance cost, as opposed to just maintenance cost.
Under these conditions it is no longer safe to assume that the optimal view set
is a “full” one, and the randomized algorithms must adapt to the tradeoff be-
tween query and maintenance cost. We similarly modify Kalnis et al.’s method of
generating a random solution, by repeatedly adding views to an initially empty
view set until the addition of some view v causes a decrease in overall cost, and
removing v. This method gave us better results in terms of generating solutions
nearer to the favourable ones than another technique of generating random so-
lutions, which was to randomly pick a size S0 from a uniform distribution on
[0, Smax], and creating a view set no larger than S0 by adding as many random
views as possible.

The three randomized search algorithms considered here are iterative im-
provement (II), simulated annealing (SA) and two-phase optimization (2PO), as
described in [3].

– II makes a number of transitions, only accepting ones which lead to a better
solution. When a number of unsuccessful transitions from a state are made
(local minimum), II starts again from a random initial state. The search
terminates after some maximum time or number of local minima.

– SA is an analogy to the process of cooling a physical system It works like II,
except that uphill transitions may be accepted with some probability that is
proportional to a “temperature” which decreases with time. The algorithm
halts when the temperature reaches a fixed “freezing point”, returning the
best solution found during the process.

– 2PO combines II with SA. II is first applied to find a good local minimum,
from which SA is applied with a small initial temperature to do a more
thorough search of the surrounding area.

II tends to work well if the problem has structure so that good solutions
are near each other in the search space. SA is more robust than II in that
it can overcome the problem that good solutions may be near each other in
search space, but separated by a small number of relatively worse solutions.
2PO attempts to combine the best of both II, which proceeds in a more direct
manner towards a solution, and SA, which is able to more thoroughly explore
an area.

We modify the transitions for online view selection as follows: If, while re-
moving views to satisfy the space constraint, transition 1 violates the online
constraint, then we add the previously removed view back to the solution, and
continue only removing views in M ′ − M from M ′ until the space constraint
is satisfied. If transition 2 violates the online constraint, the removed view is
re-added and a randomly selected view in M ′ − M is removed instead.

Dynamic View Selection for OLAP 39

4 Greedy Algorithm for Dynamic View Selection

For the static phase, the BPUS heuristic [1] begins with an initially empty view
set, and greedily adds views which maximize a benefit heuristic. If the currently
selected view set is M , then the benefit per unit space of adding an unselected
view v is defined as

(Q(M) + U(M)) − (Q(M ∪ {v}) + U(M ∪ {v}))
rv

,

i.e., the reduction in overall cost achieved by adding v, scaled by size. The BPUS
algorithm adds the view v with maximum benefit per unit space until either
there is no more space for materialized views, or v has negative benefit (when
U(M ∪ {v}) − U(M) > Q(M) − Q(M ∪ {v})). To apply BPUS to online view
selection, the same heuristic is “reversed”, and the objective cost only considers
query time of the materialized view set. When deciding which views to remove
from M , we choose the view v which minimizes

Q(M − {v}) − Q(M)
rv

,

the increase in average overall cost scaled to the size of v. Once a set of views
totalling no more than h · Smax in size has been removed from M , we apply the
BPUS heuristic (without update cost) to greedily select which views to replace
them with, arriving at our solution M ′.

5 Experimental Results

In our evaluation we use a variety of synthetic data sets which we can control the
properties of in terms of size, dimensionality, skew, etc. In particular we focus
on two classes of data sets: 1) uniform, where the cardinality of all dimensions
are equal, representing data cube lattices with highly uniform view sizes, and 2)
2pow, where the cardinality of the i-th dimension is 2i, representing data cube
lattices with highly skewed view sizes. In all cases the number of rows in the data
sets was set to 1 billion and Smax was set to be 10 times this number of rows. We
use two different types of query distributions: 1) uniform random, where query
probabilities are assigned from a uniform random distribution, and 2) hot regions
[17], where 90% of the queries are distributed amongst a set of views (the “hot
region”) selected from the bottom 1/3 of the lattice and containing 10% of the
total views. The remaining 10% of the queries are distributed uniformly amongst
the other views. We believe this to be a realistic but very challenging scenario,
due to the underlying semantics of the dimensions of the data warehouse in
which some combinations of dimensions may not provide useful information,
while others do, hence there may be a large number of views which are simply
not interesting at all.

We apply the randomized algorithms to view selection similarly as in [3],
although our parameter selection is slightly different due to the different nature

40 M. Lawrence and A. Rau-Chaplin

of the problem which now involves update costs. The selected parameters are
shown in Table 1. Readers are referred to [3] for a description of the meaning of
these parameters.

Table 1. Selected parameters for the randomized algorithms applied to both the static
and online phases of dynamic view selection

Static Online
cyclesII 50 · 2d−10 40 · h · 23(d−10)/4

min.dII 7d 3d
cyclesSA 2d/20 h/30% · 2d/20

TSA 107 103

ΔtSA 0.9 0.8
cycles2PO cyclesII/4 cyclesII/2
min.d2PO min.dII 2d

T2PO 105 102

Δt2PO 0.9 0.64

5.1 The Startup Phase: Static View Selection

In static view selection we are primarily concerned with 1) Quality: the solu-
tion values achieved by the randomized algorithms vs. that of BPUS, and 2)
Efficiency: the amount of time it takes to converge on a solution. To maintain
consistency with the literature [3] and since randomized algorithms are being
considered as an alternative to BPUS, we express their solution quality as a
factor of the solution quality of BPUS, called the scaled solution value.

Figure 1 shows the running time of BPUS, and the time to convergence for all
randomized algorithms as the number of dimensions is varied. As the plot shows,
the randomized algorithms converge much faster than the BPUS heuristic for
both uniform and highly skewed data, especially in larger dimensions.

Now we aim to establish scalability of the randomized techniques in terms of
solution quality. Figure 2 shows the scaled cost of the solutions found by the
randomized algorithms as the number of dimensions is increased. As the fig-
ure shows, the randomized algorithms perform competitively against the BPUS
heuristic, with their solutions falling typically within a few percent of it and be-
ing especially close with uniform data. Surprisingly, there are classes of problem
instances where some of the randomized algorithms outperform the heuristic by
as much as 15%. These problem instances are ones for which the update cost is
sufficiently prohibitive that the better solutions are ones which contain a small
number of views. BPUS finds a maximal solution with respect to size, in that
no more views can be added without increasing the overall cost. As a result the
randomized algorithms are able to find solutions with a much better update cost,
at the expense of a slightly higher query cost.

Although the results from Figure 2 may suggest the randomized algorithms
are more favourable for static view selection, we note that this performance is
only observed for such problem instances where the query and update cost are
relatively balanced. When query cost is the dominant factor, BPUS significantly

Dynamic View Selection for OLAP 41

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 11 12 13 14 15

T
im

e
(s

ec
)

d

BPUS
II

SA
2PO

(a) Uniform Data/Uniform Queries

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 11 12 13 14 15

T
im

e
(s

ec
)

d

BPUS
II

SA
2PO

(b) Skewed Data/Hot Regions

Fig. 1. Running time vs dimensionality for static view selection with 109 rows and
Smax = 1010. The mean of 20 independent trials is shown.

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 1.04

 10 11 12 13 14 15

S
ca

le
d

S
ol

ut
io

n

d

II
SA

2PO

(a) Uniform Data/Uniform Queries

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 10 11 12 13 14 15

S
ca

le
d

S
ol

ut
io

n

d

II
SA

2PO

(b) Skewed Data/Hot Regions

Fig. 2. Scaled solution vs d for static view selection with 109 rows and Smax = 1010.
The mean of 20 independent trials is shown.

outperforms the randomized algorithms. This is because, when update cost is
not optimized as in [3], the randomized transitions can be designed knowing
that the optimal view set will be a “full” one. However with the addition of
update cost as an objective, the transitions must guide the randomized algo-
rithms to the region of search space having view sets of the best size, as well as
to a good choice of views in sets of that size. This adds another dimension of
difficulty to the problem. The poor performance of the randomized algorithms
when query cost is dominant is an indication that the randomized transitions
have difficulty in guiding the search towards more full view sets. It is suggested
that the randomized transitions of [3] be used if update cost is not expected to
be prohibitive.

5.2 The Online Phase: Online View Selection

In the following tests each algorithm begins with the same initial view set M ,
which is selected using BPUS. d = 12 dimensions are used, with the parameters
of the randomized algorithms summarized in Table 1. Unless otherwise indi-
cated, h = 30% was chosen for the tests. For the uniform query distribution, the

42 M. Lawrence and A. Rau-Chaplin

drift in query probabilities for a single iteration was achieved by scaling each
view’s probability by a random factor chosen uniformly between 0 and 1, and
re-normalizing them so that they sum to 1. Using this query drift model the
area between distribution curves on an iteration is generally in the range of 0.9
to 1.0 (with the maximum possible difference being 2). For the hot region query
distribution, query drift was achieved by selecting both a beginning and ending
hot region, and interpolating between the two over the iterations.

For performance on a single iteration, we are concerned with the improvement
in query time. We measure the percent improvement of an online iteration from
M to M ′ as

Imp(M, M ′) = 100
Q(M) − Q(M ′)

Q(M)
.

Note that the percent improvement not only depends on algorithm performance
but also the amount that query distribution shifts.

First we examine the scalability of the algorithms in terms of running time.
Figure 3 shows the results as we increase the dimensionality of the data sets. As
in the case of static view selection, the randomized techniques are significantly
faster than BPUS, especially with higher dimensions.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 11 12 13 14 15

T
im

e
(s

ec
)

d

BPUS
II

SA
2PO

(a) Uniform Data/Uniform Queries

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 10 11 12 13 14 15

T
im

e
(s

ec
)

d

BPUS
II

SA
2PO

(b) Skewed Data/Hot Regions

Fig. 3. Running time vs. dimensionality for online view selection with 109 rows, Smax =
1010 and h = 30%. The mean of 20 independent trials is shown.

One question which is pertinent to online view selection is how much can
we improve the current materialized view set given that we only have time to
replace h% of it, or how much of the view set must be replaced to achieve a
given improvement in query time. Figure 4 shows the relative improvement in
query time as h is increased. The relative improvement is the percent improve-
ment Imp(M, M ′) achieved relative to the percent improvement Imp(M, Mnew)
which can be achieved if an entirely new set of views Mnew were selected
with BPUS. 0% means that Q(M ′) = Q(M) (no improvement), 100% means
Q(M ′) = Q(Mnew), and < 0% means that Q(M ′) > Q(M) (negative improve-
ment). From the figure we can see that the online version of BPUS is a very
strong performer for both uniform and skewed data, able to make 95% of the
improvement of a newly chosen view set by replacing as little as 30% of it. A

Dynamic View Selection for OLAP 43

-150

-100

-50

 0

 50

 100

 0 10 20 30 40 50 60 70 80 90

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

h

BPUS
II

SA
2PO

(a) Uniform Data/Uniform Queries

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

h

BPUS
II

SA
2PO

(b) Skewed Data/Hot Regions

Fig. 4. Percent improvement (relative to that of a newly selected view set) as h is
increased. A 12-dimensional data cube is used. The mean of 20 independent trials is
shown.

larger improvement with smaller h is possible for the hot regions instance, since
replacing the views in the hot region is sufficient for considerable improvement.

6 Conclusions and Future Work

In this paper we have described a new approach to dynamic view selection which
recognizes that in practice OLAP systems are restarted from scratch only infre-
quently and must be able to tune their performance to changing conditions
on-the-fly. We have described a greedy and three randomized methods for dy-
namic view selection and implemented and evaluated them in the context of a
large-scale OLAP system. Overall, in terms of solution quality, our BPUS-online
adaptation appears to outperform the three randomized methods studied. How-
ever, as the number of dimensions grows the computational cost of BPUS-online
may become impractically large and in this case the randomized methods pre-
sented here offer an attractive alternative. One important area of future work is
to consider how best the dynamic view selection method proposed here can be
combined with established caching and batch query optimization approaches.

References

1. V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Implementing data cubes effi-
ciently,” in proc. SIGMOD ’96, pp. 205–216, ACM, 1996.

2. A. Shukla, P. Deshpande, and J. F. Naughton, “Materialized view selection for
multidimensional datasets,” in proc. VLDB ’98, pp. 488–499, Morgan Kaufmann,
1998.

3. P. Kalnis, N. Mamoulis, and D. Papadias, “View selection using randomized
search,” Data Knowl. Eng., vol. 42, no. 1, pp. 89–111, 2002.

4. T. P. Nadeau and T. J. Teorey, “Achieving scalability in OLAP materialized view
selection,” in proc. DOLAP ’02, pp. 28–34, ACM, 2002.

5. H. Gupta and I. S. Mumick, “Selection of views to materialize in a data warehouse,”
Data Knowl. Eng., vol. 17, pp. 24–43, Jan. 2005.

44 M. Lawrence and A. Rau-Chaplin

6. H. Uchiyama, K. Runapongsa, and T. J. Teorey, “A progressive view materializa-
tion algorithm,” in proc. DOLAP ’99, pp. 36–41, ACM, 1999.

7. E. Baralis, S. Paraboschi, and E. Teniente, “Materialized views selection in a multi-
dimensional database,” in proc. VLDB ’97, pp. 156–165, Morgan Kaufmann, 1997.

8. D. Theodoratos, T. Dalamagas, A. Simitsis, and M. Stavropoulos, “A randomized
approach for the incremental design of an evolving data warehouse,” in proc. ER
’01, pp. 325–338, Springer, 2001.

9. D. Theodoratos and T. Sellis, “Incremental design of a data warehouse,” J. Intell.
Inf. Syst., vol. 15, no. 1, pp. 7–27, 2000.

10. W. Liang, H. Wang, and M. E. Orlowska, “Materialized view selection under the
maintenance time constraint,” Data Knowl. Eng., vol. 37, no. 2, pp. 203–216, 2001.

11. J. X. Yu, X. Yao, C.-H. Choi, and G. Gou, “Materialized view selection as con-
strained evolutionary optimization,” in IEEE Trans. on Syst., Man and Cybernet-
ics, Part C, vol. 33, pp. 458–467, IEEE, Nov. 2003.

12. M. Lee and J. Hammer, “Speeding up materialized view selection in data ware-
houses using a randomized algorithm,” J. Coop. Info. Syst., vol. 10, no. 3, pp. 327–
353, 2001.

13. H. Gupta and I. S. Mumick, “Selection of views to materialize under a maintenance
cost constraint,” in proc. ICDT ’99, pp. 453–470, Springer, 1999.

14. Y. Kotidis and N. Roussopoulos, “A case for dynamic view management,” J. Trans.
Database Syst., vol. 26, no. 4, pp. 388–423, 2001.

15. S. Agrawal, S. Chaudhuri, and V. R. Narasayya, “Automated selection of material-
ized views and indexes in sql databases,” in proc. VLDB ’00, pp. 496–505, Morgan
Kaufmann, 2000.

16. T. Loukopoulos, P. Kalnis, I. Ahmad, and D. Papadias, “Active caching of on-line-
analytical-processing queries in www proxies,” in proc. ICPP ’01, pp. 419–426,
IEEE, 2001.

17. P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L. Tan, “An adaptive peer-
to-peer network for distributed caching of olap results,” in proc. SIGMOD ’02,
pp. 25–36, ACM, 2002.

	Introduction
	Problem Definition and Related Work
	Static View Selection
	Online View Selection

	Randomized Algorithms for Dynamic View Selection
	Greedy Algorithm for Dynamic View Selection
	Experimental Results
	The Startup Phase: Static View Selection
	The Online Phase: Online View Selection

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

