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SUMMARY

This paper describes efficient coarse-grained parallel algorithms and implementations for a suite of interval
graph problems. Included are algorithms requiring only a constant number of communication rounds
for connected components, maximum weighted clique, and breadth-first-search and depth-first-search
trees, as well as O(log p) communication rounds algorithms for optimization problems such as minimum
interval covering, maximum independent set and minimum dominating set, where p is the number of
processors in the parallel system. This implies that the number of communication rounds is independent
of the problem size. Implementations of these algorithms are evaluated on parallel clusters, using both
Fast Ethernet and Myrinet interconnection networks, and on a CRAY T3E parallel multicomputer, with
extensive experimental results being presented and analyzed. Copyright  2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we describe coarse-grained parallel algorithms and implementations for a suite of standard
interval graph problems [1]. This suite includes solutions to fundamental interval graph problems
such as connected components [2], maximum weighted clique [3], breadth-first-search (BFS) trees and
depth-first-search (DFS) trees [4,5], as well as solutions for optimization problems such as minimum
interval covering, maximum independent set [3] and minimum dominating set [6]. These problems on
interval graphs have been shown to be important in a number of applications in scheduling, circuit
design, traffic control, genetics and other problem domains [1,7,8].
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Table I. Interval graph problems and the required time for PRAM
algorithms with n processors, unless stated otherwise. The sequential
complexity is �(n log n) in all cases. Note that for most of the PRAM
algorithms, the number of processors is the same as the problem size.

Problem Time

Maximum weighted clique [3] O(log (n))
Maximum independent set [3] O(log (n))
Minimum clique cover [3,6] O(log (n))
Minimum dominating set [3,6] O(log (n))
Depth-first spanning tree [4,5] O(log (n))
Breadth-first spanning tree [4,5] O(log (n))
Connected components (PRAM CRCW) [2] O(log (n))
(using {[[m + n]α(m, n)]/log n} processors,
where α(m, n) is the inverse of the Ackerman function)

The implementations described in this work are portable over a range of types of coarse grained
parallel machines, which is demonstrated via experimental results. Our primary focus here is on the use
of PC clusters which offer impressive computing and communication power at a reasonable price when
interconnected by high-performance local networks with raw throughput close to 1 Gb s−1 and latency
smaller than 10 µs. Clusters, henceforth called PCCs, based on off-the-shelf hardware (e.g. Myrinet
and Fast Ethernet) can yield effective parallel systems for a fraction of the price of machines using
special purpose hardware. For the sake of comparisons, we also experimentally analyze some of our
algorithms on the Cray T3E, whose implementation was straightforward because of the portability of
our codes.

Hereinafter, let n denote the number of vertices (or intervals) of our graphs; m be the number of their
edges; and p denote the number of computing elements in the parallel system.

1.1. Previous work

Interval graphs have several applications in different fields. Some of these applications, as in genetics
[9,10,11], often require the use of very large databases. Handling these databases on a single processor
can be very long and the use of parallel machines may drastically reduce processing time. Therefore,
interval graphs have been studied extensively in the parallel setting and a number of fine-grained PRAM
algorithms have been described [1], as shown in Table I. In particular, for the problems we investigated,
O(log (n)) time algorithms exist [2–6].

Whereas fine-grained PRAM algorithms are likely to be efficient on fine-grained shared memory
architectures, they tend to be impractical on PCCs due to their failure to exploit locality. Therefore,
there has been a growth of interest in coarse-grained computational models [12–15] and the design of
coarse-grained algorithms [13, 16–26].
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With respect to models, the ‘bulk synchronous’ processing (BSP), described by Valiant [15], uses
slackness in the number of processors and memory mapping via hash functions to hide communication
latency and provide for the efficient execution of fine grained PRAM algorithms on coarse-grained
hardware. Culler et al. introduced the LogP model [12] which, using Valiant’s BSP model as a starting
point, focuses on the technological trend from fine-grained parallel machines towards coarse-grained
systems and advocates portable parallel algorithm design. Other coarse-grained models focus more
on utilizing local computation and minimizing global operations. These include the coarse-grained
multicomputer (CGM) model [13] used in this paper. In this mixed sequential/parallel setting, there are
three important measures of any coarse-grained algorithm, namely, the amount of local computation
required, the number and type of global communication phases or rounds required and the scalability
of the algorithm, that is, the range of values for the ratio (n/p) for which the algorithm is efficient and
applicable.

Recently, Cáceres et al. [27] showed that many problems in general graphs, such as list ranking,
connected components and others, can be solved in O(log p) communication rounds in BSP and
CGM. Note that while this work is of significant theoretical interest, the proposed algorithms involve
simulation of their corresponding PRAM algorithm during log p communication phases, which is both
complex to implement and computationally expensive in practice. Hence, whereas in theory these
results yield algorithms for interval graphs on coarse-grained machines, in practice a different approach
is called for. Unlike general graphs, interval graphs can be more easily partitioned and treated in the
distributed memory setting. Since each interval is given by its two extreme points, they can be sorted
by left and/or right endpoints and distributed according to this ordering. This partitioning allows us to
design less complex parallel algorithms; moreover, the derived algorithms are faster both in theory and
in practice, and easier to implement (see evidence of this in Section 4.2 and in [28]).

1.2. Our work

We describe constant communication round coarse-grained parallel algorithms to solve a set of the
standard problems arising in the context of interval graphs [1], namely connected components [2],
maximum weighted clique [3] and breadth-first-search (BFS) and depth-first-search (DFS) trees [4,5].
We also propose O(log p) communication rounds algorithms for optimization problems such as
minimum interval covering, maximum independent set [3] and minimum dominating set [6]. Note
that the number of communication rounds is independent of n.

In order to demonstrate the practicability of our approach, we present the implementation results of
one of these algorithms on two PCCs, one of which is interconnected by a Fast Ethernet backbone and
the other interconnected by a Myrinet network, and on a CRAY T3E parallel multicomputer. Because
of the paradigms used, the programs were easy to develop and are portable. The results presented in
this paper show that high performance can be achieved with off-the-shelf PCCs along with the right
model for algorithm design‡. We can also draw a comparison of performances between the PCCs and
the T3E. Interestingly, super-linear speedups were observed in some cases due to memory swapping

‡A preliminary version of this paper was published in [29]. In the present paper, we provide all proofs omitted in [29].
Furthermore, we show through new experimental results on two other machines the portability and efficiency of the proposed
algorithms.
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effects in the PCCs. Indeed, using multiple processors allows us to effectively utilize more RAM and
therefore allows computation on data sets that are simply too large to be effectively processed on single
processor machines.

This paper is organized as follows. In Section 2 we review the coarse-grained model adopted in
this paper. In Section 3 the basic operations are described. Then, in Section 4, solutions for interval
graph problems are proposed, using the basic operations from Section 3. In Section 5, we describe
experiments on a Fast Ethernet based PCC, on a Myrinet based PCC and on a CRAY T3E parallel
multicomputer. We end the paper with some conclusions and directions for further research.

2. THE COARSE-GRAINED MODEL

In a BSP model, an input of size n is distributed evenly across a p-processors parallel computer.
In a single computation round or superstep each processor may send and receive h messages and
then perform an internal computation on its internal memory cells using the messages it has just
received. To avoid conflicts that might be caused by asynchronies in the network (whose topology is
left undefined) the messages sent out in a round t by some processor cannot depend upon any message
that the processor receives in round t .

In this paper we use the Coarse-Grained Multicomputer model, or CGM(n, p) for short, introduced
in [13]. The CGM(n, p) is a BSP model consisting of a set of p processors with O(n/p) local
memory each. The term ‘coarse grained’ refers to the fact that (as in practice) O(n/p) is defined
to be ‘considerably larger’ than O(1). The definition of ‘considerably larger’ is (n/p) ≥ pε , where ε

depends on the proposed algorithms; in this paper ε = 1. In a superstep, each processor may send or
receive O(n/p) data.

From both theoretical and practical viewpoints, it is important to show that the proposed algorithms
are independent of the parallel machines communication topology and that they use only a small,
preferably constant, number of communication rounds. The challenge is thus to design correct
algorithms which communicate only a few times, while taking into account the local memory
restriction. The good point is that one such algorithm will be portable and efficient over a large range
of multicomputers.

3. BASIC OPERATIONS

3.1. General operations

Sorting can be used as a fundamental data movement operation in the parallel setting. From a
theoretical perspective it has been shown that sorting can be done in the CGM model in a constant
number of communication rounds.

Theorem 1. [24] Given a set S of n items, O(n/p) items per processor on a CGM(n, p), n/p ≥ p,
sorting S takes a constant number of communication rounds, and O(tseq(n/p)/p) local time (where
tseq(n) is the time of sequential sorting of n items).
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a1 a2 a3 b1 a5

b2

a4 b3 b5 b4

5 intervals and their corresponding endpoints on a line

1

2

3

4

5

maxright(1)=3, maxright(2)=5, maxright(3)=maxright(5)=4, maxright(4)=nil

first({1,2,3,4,5})=1
next(1) = 5, next(2) = 4, next(3) = next(4) = next(5) = nil

minright(1)=2, minright(2)=3, minright(3)=5, mianright(4)=nil, minright(5)=4

Figure 1. An example of the maxright, minright, first and next functions.

In practice, which sorting algorithm is most efficient depends on the parallel machines
communication topology and other system specific features. Also the amount of data to be
communicated may affect the selection of a basic sort procedure. In the experimental results reported
in this paper we use a number of different sorting algorithms [30,31]. In the remainder, let TS(n, p)

denote the time complexity of a global sort in the CGM.
In the CGM model, parallel prefix operations for associative function to be performed in an array

of elements can be done in O(1) communication steps, since each processor can locally compute the
function, and then with a total exchange operation all the processors get to know the partial result of
all the other processors and can compute the final result for each element in the array.

We will also use the pointer-jump operation, to identify the elements in a linked list. This operation
can be done in O(log p) communication steps [27]: at each step each processor keeps track of the
pointers of its elements.

3.2. Interval operations

We consider a set of n intervals I = {I1, I2, . . . , In} on a line.
In the following, two functions will be widely used, the minright and maxright [7]. Given an

interval I , maxright(I) (minright(I)) denotes, among all intervals that intersect the right endpoint
of I , the one whose right endpoint is the furthest right (left) (see Figure 1). The formal definition is as
follows:

maxright(Ii ) =
{

Ij , if bj = max{bk|ak ≤ bi < bk}
nil, otherwise

Copyright  2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:885–910
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Input: n intervals Ii (1 ≤ i ≤ n) (n/p intervals on each processor)
Output: maxright(Ii) (1 ≤ i ≤ n)

1 Global sort of the endpoints of the intervals in ascending order
2 foreach i ∈ [1, 2n] do

assign to endpoint ci the value di defined by

di =
{

bj , if ci = aj , for some 1 ≤ j ≤ n

0, if ci = bj , for some 1 ≤ j ≤ n

3 foreach i ∈ [1, 2n] do
assign to endpoint ci the value numi defined by

numi =
{

−j, if ci = aj , for some 1 ≤ j ≤ n

j, if ci = bj , for some 1 ≤ j ≤ n

4 Compute the prefix maximum on the di , and let the result in e1, e2, . . . , e2n and in the same time
update the value numi according to the following rule: if ei �= di and i > 1 set

numi =
{

−|num(i−1)|, if ci = aj for some 1 ≤ j ≤ n

|num(i−1)|, if ci = bj for some 1 ≤ j ≤ n

5 foreach i ∈ [1, 2n] do
set maxright(Ik) = Ij , if ci = bk and numi = j and k �= j

set maxright(Ik) = nil, if ci = bk and numi = j and k = j

Algorithm 1. maxright.

One way to compute the function maxright (and minright with the appropriate variations) is given in
Algorithm 1.

After step 1 of Algorithm 1, we know that all the left endpoints of the intervals intersecting Ii

(1 ≤ i ≤ n) are on the left of its right endpoint bi . Due to the definition of di (1 ≤ i ≤ n) and of the
prefix maximum on di at step 4, we are sure that for all the right endpoints bi (1 ≤ i ≤ n), ei gives the
right endpoint the furthest right of the intervals which intersect Ii and that numi gives the number of
the associated interval, that is to say maxright(Ii). We keep negative values for numi (1 ≤ i ≤ 2n) for
left endpoints in order to be able at step 2 to distinguish the left endpoints from the right endpoints.

Step 1 requires O(TS(n, p)) time, whereas all the other steps require O(n/p) local computations.
Step 1 and step 4 use a constant number of communications rounds. Then, maxright (and minright
with the appropriate modifications) can be computed with time complexity O(TS(n, p)) and a constant
number of communications rounds.
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Input: n intervals Ii (1 ≤ i ≤ n) (n/p intervals on each processor)
Output: next(Ii) (1 ≤ i ≤ n)

1 Global sort of the endpoints of the intervals in ascending order
2 foreach i ∈ [1, 2n] do

assign to endpoint ci the value di defined by

di =
{

bj , if ci = aj , for some 1 ≤ j ≤ n

0, if ci = bj , for some 1 ≤ j ≤ n

3 foreach i ∈ [1, 2n] do
assign to endpoint ci the value numi defined by

numi =
{

−j, if ci = aj , for some 1 ≤ j ≤ n

j, if ci = bj , for some 1 ≤ j ≤ n

4 Compute the suffix minimum on the di , and let the result in e1, e2, . . . , e2n and in the same time
update the value numi according the following rule: if ei �= di and i > 1 set

numi =
{

−|num(i+1)|, if ci = aj for some 1 ≤ j ≤ n

|num(i+1)|, if ci = bj for some 1 ≤ j ≤ n

5 foreach i ∈ [1, 2n] do
set next(Ik) = Ij , if ci = bk and numi = j and k �= j

set next(Ik) = nil, if ci = bk and numi = j and k = j

Algorithm 2. next.

We define also the parameter first(I) as the segment I which ‘ends first’, that is, whose right endpoint
is the furthest left (see Figure 1):

first(I) = Ij , with bj = min{bi |1 ≤ i ≤ n}
To compute it, we need only to compute the minimum of the sequence of right endpoints of intervals

in the family I.
We will also use the function next(I) : I → I defined as

next(Ii ) =
{

Ij , if bj = min{bk|bi < ak}
nil, otherwise

That is, next(Ii) is the interval that ends farthest to the left among all the intervals beginning after
the end of Ii (see Figure 1). To compute next(Ii), 1 ≤ i ≤ n, we use the same algorithm used for
maxright(Ii) (Algorithm 1), with a new step 4. Algorithm 2 computes the function next.

It is easy to see that the given procedure implements the definition of next(Ii), with the same
complexity as for computing maxright(Ii).
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1

2 3

5 4

5 intervals

interval i translates into vertex i in the interval graph

i j there is an edge between vertices i and i because intervals i and j overlap

The associated interval graph

1

2

3

4

5

Figure 2. A set of five intervals and the corresponding interval graph.

4. INTERVAL GRAPH PROBLEMS AND ALGORITHMS

Formally, given a set n of intervals I = {I1, I2, . . . , In} on a line, the corresponding interval graph
G = (V ,E) has the set of nodes V = {v1, . . . , vn}, and there is an edge in E linking nodes vi, vj if
and only if Ii ∩ Ij �= ∅. See Figure 2 for an example.

In this section, solutions for some important problems in interval graphs are proposed for the CGM
model. Some of these algorithms use techniques derived from their corresponding PRAM algorithms,
while others require different methods, e.g. to compute the connected components, as now shown.

4.1. Maximum weighted clique

A clique is a set of nodes that are mutually adjacent. Usually, finding cliques in general graphs is
non-deterministic polynomial (NP)-hard. However, the properties of interval graphs make the problem
polynomially solvable. In the maximum weighted clique problem for an interval graph, we are given
weights p(Ii ) ≥ 0 on the intervals and we want to find a clique for which the sum of its nodes
weights is maximum among all cliques. Finally, the nodes composing such a maximum clique should
be identified.

In Figure 3, each interval has an associated weight (above the interval) and you can see the maximum
weighted clique of the example. Algorithm 3 computes a maximum weighted clique of an interval
graph in the CGM model.

Theorem 2. The maximum weighted clique problem in an interval graph of size n can be solved on a
CGM(n, p) in O(TS(n, p) + n/p) time, with a constant number of communication rounds.

Proof. Algorithm 3 uses techniques derived from the algorithm in [32]. After step 3, if ci = aj ,
for some 1 ≤ j ≤ n, then di gives the sum of the weights of all intervals containing the point ci

(the weights of all intervals on the left of ci not containing the point ci are not counted in di due to the
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interval 1 has a weight of 10

The maximum weighted clique of the 5 intervals (1, 2, 3, 4 and 5) 
are the intervals 3, 4 and 5

2

3

4

5

1
10

4

10

5

20

Figure 3. An example of the maximum weighted clique problem.

Input: n intervals Ii (1 ≤ i ≤ n) (n/p intervals on each processor)
Output: The intervals belonging to the maximum weighted clique are marked, the others are not

1 Global sort of the endpoints of the segments that each processor receives
2 foreach i ∈ [1, 2n] do

assign to endpoint ci a weight wi defined by

wi =
{

p(Ij ), if ci = aj , for some 1 ≤ j ≤ n

−p(Ij ), if ci = bj , for some 1 ≤ j ≤ n

3 Compute the prefix sum of the resulting weighted sequence; let d1, . . . , d2n denote the resulting
sequence

4 Consider the sequence e1, . . . , e2n obtained by replacing every dj corresponding to a right
endpoint of an interval with −1 and compute the rightmost maximum of the resulting sequence;
this occurs at ak

5 Broadcast ak. Every interval Iu such that au ≤ ak < bu is marked to be in the final maximum
weighted clique

Algorithm 3. Maximum weighted clique.

negative weight associated to the right endpoint of an interval). The set of all these intervals containing
ci with the interval Ij is a clique, and di is the weight of this clique.

After step 4, the rightmost maximum di corresponds to the weight of a maximum weighted clique.
The associated ci is equal to an ak (1 ≤ k ≤ n), because if it was a bj (1 ≤ j ≤ n), di would not
be a maximum. This ak is the furthest right left-endpoint in this maximum weighted clique, because
otherwise di would not be a maximum. Thus, we are sure that all intervals belonging to the maximum
weighted clique have a left endpoint lower than ak . This shows the correctness of Algorithm 3. �
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894 A. FERREIA ET AL.

Input: n intervals Ii (1 ≤ i ≤ n) (n/p intervals on each processor)
Output: Each interval has the number of the connected component it belongs to (given by val)

1 Global sort of the endpoints in ascending order. Assign to each endpoint the value of its interval
2 Assign the value 1 to each left endpoint and the value −1 to each right endpoint
3 Compute the prefix sum of the endpoints. The result is stored in an array L

4 foreach Processor Pi do
If there is a 0 in L then send your identification i to all processors

5 Let j1, j2, . . . , jq; q ≤ p be the list of identifications received.
counter = 0
foreach Processor Pi do

for j = 1 to 2n/p do
if L[j ] == 0 then

val[j ] = counter.i; counter = counter + 1

else
val[j ] = counter.i

j = 2n/p

while L[j ] > 0 do val[k] = jk.0, where jk ≤ i < jk+1; k = k − 1

Algorithm 4. Connected components.

Step 1 requires time O(TS(n, p)), step 2 requires time O(n/p) and steps 3, 4 and 5 require O(n/p)

local computations and a constant number of communication rounds. To summarize we have a running
time of O(TS(n, p) + n/p), with a constant number of communication rounds.

4.2. Connected components

The connected components of a graph G are the maximal connected subgraphs of G. The connected
components problem consists of assigning to each node the label of the connected component that
contains it.

Algorithm 4 solves this problem in the CGM model.

Theorem 3. The connected components problem in interval graphs can be solved on a CGM(n, p) in
O(TS(n, p) + n/p) time, with a constant number of communication rounds.

Proof. The sort at step 1 of Algorithm 4 ensures that there cannot be an endpoint of an interval
belonging to a connected component A between two endpoints of intervals belonging to a connected
component B, with A �= B. Therefore, the endpoints of intervals belonging to the same
connected component are stored in a continuous way. The prefix sum at step 4 ensures that a 0 in
L completes a connected component and that the following element belongs to a new connected
component. Step 6 labels the components: the for-loop labels the local components, whereas the
while-loop labels the components that are divided on several processors. This labelling ensures
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The results given by Algorithm 4 are:

2

3

1

4

5

connected component(1)=cc(2)=cc(3)=2.0

cc(4)=cc(5)= 3.0

processor 1 holds intervals 1 and 2

processor 2 holds interval 3 and 4

processor 3 holds interval 5

Figure 4. An example of the connected components problem.

that the computed connected components of the interval graph have different labels. At the end of
Algorithm 4, all connected components have a sole label.

With respect to the time complexity, Algorithm 4 requires O(TS(n, p)) in step 1, and O(n/p) in
steps 2, 4, 5 and 6. In total we have O(TS(n, p) + n/p), with a constant number of communication
steps. �

Figure 4 gives an example of the connected components problem. Each interval belongs to a
processor before the execution of Algorithm 4, as shown. After step 1, some endpoints may have
changed processor, which explains the values of the connected components for intervals 4 and 5.

4.3. BFS and DFS tree

Figure 5 gives an example of BFS and DFS trees of an interval graph. Algorithm 5 solves the problem
of finding a BFS tree in an interval graph.

Theorem 4. Given an interval graph G, BFS and DFS trees can be found using a CGM(n, p) in
O(TS(n, p) + n/p) time, with a constant number of communication rounds.

Proof. We adapt the techniques given in [5], ensuring that we use only functions that require a small
number of communication steps. The problem of finding a BFS tree in an interval graph reduces
to the problem of computing the function maxright described earlier. The tree given by the edges
(Ii , maxright(Ii )) is a BFS tree. Suppose we have a set of intervals S which have the same result Ik

(for some 1 ≤ k ≤ n) for maxright (and thus have the same father in the tree we construct). It may
exist some edges between some intervals of S in the interval graph different from the edges with Ik .
Choosing maxright for each interval as the father in the tree ensures that all these edges are eliminated
in the tree we construct and that all intervals of S are connected to the same interval. Thus, we are sure
that the constructed tree is a BFS tree.
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5 intervals

given by Algorithm 5

4

3 5

1 2

4

3 5

1 2

2

3

4

5

1

4

3 5

1 2

BFS treeAssociated interval graph DFS tree

Figure 5. Examples of BFS and DFS trees.

Input: n intervals Ii (1 ≤ i ≤ n) (n/p intervals on each processor)
Output: a BFS tree

1 foreach i ∈ [1, n] do
compute maxright(Ii)

2 foreach i ∈ [1, n] do
let father(Ii) = maxright(Ii )

3 The edges (Ii , father(Ii )) (1 ≤ i ≤ n) form a BFS tree

Algorithm 5. BFS tree.

The tree formed by the edges (Ii , minright(Ii )) is a DFS tree. Choosing minright for each interval as
its father in the tree, ensures that all the intervals belonging to a clique will have a different father and
thus the constructed tree is a DFS tree. With the appropriate modifications, Algorithm 5 may be used
to find a DFS tree.

The obtained BFS and DFS trees have their roots in the segments ending farthest to the right in each
connected component.

Given the complexity of maxright (or minright), Algorithm 5 takes a constant number of
communication steps and requires a total running time of O(TS(n, p) + n/p). �

4.4. Minimum interval covering

Given a family I of intervals and a special interval J = (Ja, Jb), the problem of the minimum interval
covering is to find a subset J ⊆ I such that J ⊆ ∪(J ), and |J | is minimum; i.e. to find the minimum
number of intervals in I needed to cover J . To solve this problem we may only consider the intervals
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2

3

4

5

1

minimum interval covering(3)={2,5}

Figure 6. An example of the minimum interval covering problem.

Input: all the intervals belonging to IJ and the interval J to be covered
Output: only the intervals belonging to a minimum interval covering J of J are marked

1 foreach i ∈ [1, n] do
compute maxright(I)

2 Find the interval Iinit such that binit = max{bk|ak ≤ Ja}
3 Mark all the intervals in the list given by maxright and beginning at Iinit

Algorithm 6. Minimum interval covering.

Ii = (ai, bi) ∈ (I) such that bi ≥ Ja and ai ≤ Jb. Let IJ be the family of the intervals in I satisfying
this condition.

Figure 6 gives an example of the minimum interval covering problem. Algorithm 6 solves this
problem in the CGM model.

Theorem 5. The minimum interval covering problem in interval graphs can be solved using a
CGM(n, p) in O(TS(n, p) + log p) time, with O(log p) communication rounds.

Proof. To confirm the correctness of Algorithm 6, suppose that there is another family J ′ ⊆ IJ

such that J ⊆ ∪(J ′), and |J ′| < |J |. Choose such a family J ′ where J ∩ J ′ is maximum.
Let J = {J1, . . . , Jm} and J ′ = { J ′

1, . . . , J
′
m′ }, m > m′.

Let Jk be the first interval in J which is not in J ′, i.e. k is such that

k = min{i|Jl = J ′
l , for all l such that 1 ≤ l < i}.

By definition, Jk ∩ Jk−1 �= ∅ and J ′
k ∩ Jk−1 �= ∅. Hence, since Omaxright(Jk−1) = Jk , the right-

endpoint of J ′
k is to the left of the right-endpoint of Jk (if k = 1, then by the definition of Iinit we get

the same conclusion). We can now replace J ′
k with Jk in J ′, which is a contradiction to the hypothesis

that |J ∩ J ′| is maximum.
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Figure 7. Examples of maximum independent set and minimum dominating set problems.

Input: n intervals Ii (1 ≤ i ≤ n) (n/p intervals on each processor)
Output: only the intervals belonging to a maximum independent set are marked

1 Compute first(I)

2 foreach i ∈ [1, n] do
compute next(Ii)

3 foreach i ∈ [1, n] do
Let father(Ii) = next(Ii )

4 Using the pointer-jump operation, mark all the intervals in the linked list given by father
and beginning at first(I)

Algorithm 7. Maximum independent set.

Note that step 1 requires O(Ts(n, p)) time, step 2 requires O(TS(n, p)) time and step 3 uses pointer-
jump and therefore O(log p) communication rounds. The total time is thus O(Ts(N, p) + log p) with
O(log p) communication rounds. �

4.5. Maximum independent set and minimum dominating set

The first problem consists of finding a largest set of mutually non-overlapping intervals in the family I,
called the maximum independent set. The second problem consists of finding a minimum dominating
set, i.e. a minimum set of intervals which are adjacent to all remaining intervals in the family I.
As in the case of cliques, these problems are in general NP-hard, but polynomial in interval graphs.
To solve these problems, we give a coarse-grained implementation of the algorithms proposed in [6].
Both problems are based on first(I) from which a convenient linked list is built.

Figure 7 gives an example of maximum independent set and minimum dominating set problems.
Algorithm 7 solves the maximum independent set problem, while Algorithm 8 solves the minimum
dominating set problem in the CGM model.
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Input: n intervals Ii (1 ≤ i ≤ n) (n/p intervals on each processor)
Output: only the intervals belonging to a minimum dominating set are marked

1 Compute first(I)

2 foreach i ∈ [1, n] do
compute maxright(Ii)

3 foreach i ∈ [1, n] do
compute next(Ii)

4 foreach i ∈ [1, n] do
Let father(Ii) = maxright(next(Ii ))

5 Using the pointer-jump operation, mark all the intervals in the linked list given by father
and beginning at maxright(first(I))

Algorithm 8. Minimum dominating set.

Theorem 6. The maximum independent set problem and the minimum dominating set in interval
graphs can be solved using a CGM(n, p) in O(TS(n, p) + log p) time, with O(log p) communication
rounds.

Proof. The correctness of Algorithm 7 stems from a result in [33] that shows that there exists a
maximum size independent set S in I such that first(I) ∈ S and for every Ii belonging to S, next(Ii)

also belongs to S.
For the complexity of Algorithm 7, step 1 requires O(n/p) time, steps 2 and 3 require O(TS(n, p))

time, whereas step 3 uses pointer-jump and therefore O(log p) communication rounds, giving us a
total time complexity of O(TS(n, p) + log p) and O(log p) communication rounds.

The correctness of Algorithm 8 stems from the arguments in [6]. For the complexity of Algorithm 8,
step 1 requires O(n/p) time, step 2 and step 3 require O(TS(n, p)) time, step 4 requires O(n/p)

time and only one communication round, and step 5 uses pointer jumping and therefore O(log p)

communication rounds. So, the total time complexity is O(TS(n, p) + log p) and there are O(log p)

communication rounds. �

5. EXPERIMENTAL RESULTS

Our aim here is to demonstrate that these algorithms are not only theoretically efficient but that they
lead to simple fast codes in practice.

We implemented our connected components, maximal weighted clique and BFS algorithms.
Their portability is witnessed by their easy implementation on three different multicomputer systems,
with different architectures as explained later. For the three algorithms, the implementations behave
as expected. In order to compute the experimental speedup, we compare the parallel algorithms
with the usual sequential algorithm for each problem. We obtained efficient results for the three
implementations: the connected components and maximal weighted clique algorithms have a speedup
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of around p/1.6, whereas the BFS algorithm has a speedup of around p/2. The speedups are an average
on p and n. Actually, the speedups are a little larger for small p and a little smaller for large p. Note that
it was also possible to handle very large data sets with the three algorithms.

In the following we decided to explore the results of one of the algorithms. We describe and analyze
in detail the implementation of the maximal weighted clique algorithm (Algorithm 3) for interval
graphs. It was implemented on two PCC platforms and a parallel multicomputer. The first PCC ([34])
consisted of a set of eight Pentium Pro 200 MHz processors each with 64 M of RAM that were linked
by a fast Myrinet network. We refer to it as POPC in the following. The second PCC ([35]) consisted
of a set of 12 Pentium Pro 200 MHz processors each with 128 M of RAM that were linked by a
100 Mb s−1 Fast Ethernet network. Henceforth, it is called PF. The processors of the two platforms
ran the Linux operating system. The parallel multicomputer used was a Cray T3E with 32 DEC Alpha
processors running at 300 MHz [36]. The programs were written in C++ utilizing the portable PVM
communication library [37] for all interprocessor communications. The use of three different machines
helped us explore portability issues over a range of architectures and interconnection networks.

All the tests were carried out ten times for each input of the same size. The given results are
an average of the ten tests. All the execution times reported are given in seconds. The times have
been measured by the system function gettimeofday, which we have found to be the most reliable.
The communication time corresponds to the time required for the complete communication rounds.
We do not only measure the time for data to be communicated, but also all the time required supporting
operations (e.g. buffer management or rearranging data, etc.). For this measure, we have added a
synchronization barrier (which is not necessary for the correct execution of the code) just before the
starting of the processors’ chronometer, and thus we are sure that all the processors have finished their
local computation round before entering the communication round.

In all of the figures, the x-axis represents the number n of elements in the input (the number of
intervals), and the y-axis represents the execution time in seconds (except for the speedup). The handled
elements are integers.

Since Algorithm 3 relies on sorting, the choice of the sorting method was critical. In the following
we first present the implemented sort and its performance before describing the implementation and
performance of our algorithm.

5.1. Global sort

The sorting algorithm implemented is described in [31]. It was selected due to its excellent
communications properties and for the ease with which it can be implemented. The algorithm requires
a constant number of communication steps and its single drawback is that data may not be equally
distributed at the end of the sort. Nevertheless, a partial sum procedure and a routing can be used to
redistribute the data with a constant number of communication rounds so that each processor stores
n/p data in its memory. The sequential algorithm used is the classical counting sort [30]. We give the
results of this sequential algorithm to give a baseline against which to evaluate the performance of our
parallel sort.

Figure 8 shows the execution time for the global sort on an array of integers with one, two, four and
eight PCs for POPC and PF and for 12 PCs for PF compared with the performance of the sequential
sort. Each curve stops before the PCs’ swap limit. The measures begin with 1 million elements in order
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Figure 8. Sorting on the PCCs (POPC and PF).

to satisfy the constraints of the algorithm given in [31]. This bound on the number of elements is not
really a drawback because the sort of less than 1 million elements is done very quickly sequentially
and does not require a parallel sort.

PF can handle twice as many elements as POPC because it has twice the memory. Thus, POPC can
sort a bit more than 20 million elements with eight PCs, whereas PF can sort 40 million elements.

The execution times decrease when two, four, eight and 12 PCs are used. The obtained speedup is
around 1.75 with four PCs, 3 with eight PCs and 3.75 with 12 PCs. Note that it is easy to show that
the theoretical speedup cannot be larger than (3/4)p. There are 3n local computations in the sequential
sort and the parallel sorting algorithm requires at least 4(n/p) local computations. Moreover, a local
log p factor that appears in one step of this parallel sorting algorithm reduces the speedup when p

increases.
The memory swapping effects significantly increase the execution time. On the PF, one can

reasonably sort 7 million elements sequentially, whereas two PCs can sort 12 million elements, four
PCs 23 million elements, eight PCs 44 million elements and 12 PCs 60 million elements. The sort on
60 million elements is done in less than 40 s. POPC has the same behavior except it can handle half
the data due to its memory size.

Figure 9 gives the execution times for one, 12 and 32 processors of the T3E. It is exactly the
same code on the T3E and on the PCCs. Each curve stops before the memory becomes saturated.
To satisfy the constraints given by the algorithm of [31], the measures begin with 1 million elements
for 12 processors and with 8 million elements for 32 processors.

As for the PCC platforms, the more processors we have, the lower the execution times. A speedup
of about 3.5 is obtained with 12 processors. We cannot compare the sequential execution time and
the execution time of 32 processors because the processor’s memory is saturated after 4 million
elements. Twelve processors can sort 25 million elements whereas 32 processors can sort 110 million
elements.
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Figure 9. Sorting on the T3E.

5.2. Maximum weighted clique

The intervals encoding is done with an array of structures with two fields, the first field corresponding
to the left-endpoint and the second one to the right-endpoint. Each processor owns an array of size n/p

which contains a part of intervals.
We used random permutations to generate inputs. For each test, we generated a permutation of

size 2n and the endpoints of intervals are the elements of this permutation. The elements are unsigned
long integers. The intervals’ weights were chosen randomly. Quicksort was used for the sequential
sorting rather than counting sort due to the large key ranges involved.

5.2.1. PCC platforms

We give in parallel the results obtained on POPC and PF. The left figure corresponds to POPC and the
right one to PF.

Influence of p. Figure 10 gives the execution times on one, four and eight PCs of POPC and on one,
four and 12 PCs of PF. For POPC, n ranges from 500 000 to 6 million intervals, whereas for PF n

ranges from 500 000 to 20 million. Each curve begins at 500 000 intervals because the sort is done on
the two endpoints of intervals, that is to say on 1 million data, which is one of the constraints of the
chosen sorting algorithm. Each curve stops before the swap limit of the PCs.

First, we can see that the curves are almost linear in n, which is not surprising because all the steps
require only O(n/p) operations except for the sequential quicksort. Moreover, the more PCs we have,
the faster the program is, which is as expected.

Table II shows the different speedups obtained for a problem with 1 million intervals in relation to the
number of processors used. For this problem, the speedups are good (larger than p/2). Table III shows
the speedups obtained with four processors with n varying (from 500 000 to 1 million). They increase
with the input size. We can note that these speedups are better than those presented for the parallel
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Figure 10. Maximum weighted clique: execution time on the PCCs (POPC and PF).

Table II. Maximum weighted clique: speedups on the
PCCs (POPC and PF) for n = 1 million.

p Speedup p Speedup
(n = 1 million) POPC (n = 1 million) PF

4 2.94 4 2.85
8 5.26 12 6.98

Table III. Maximum weighted clique:
speedups on the PCCs (POPC and PF)

for p = 4 and n varying.

n Speedup Speedup
(p = 4) POPC PF

500 000 2.65 2.65
750 000 2.86 2.86

1 000 000 2.94 2.85

sort. It seems that this comes from the fact that we used the quicksort as sequential sort and therefore
the gain between the quicksort and the parallel sort is larger than the gain between the counting sort
and the parallel sort. Moreover, the speedup drops away from the theoretical speedup when we use
more processors. These results come from communication overhead, and not from local computations.
If the time for local computations is decreased by a factor p compared to the sequential time when
p processors are used, it is not the case with communications. Indeed, when we use p processors for
the execution of the algorithm on one input, and then p′ on the same input size with p < p′ (then
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Figure 11. Maximum weighted clique: swap effects on the PCCs (POPC and PF).

there are less data per processor with p′ than with p) the communication time is not decreased by a
factor p/p′, because even if each of the p′ processors communicates p/p′ less data than with the p

processors, globally the same number of elements are communicated on the network. Note also that, as
shown in Table III, the speedups are a little larger with POPC than with PF, especially for large values
of n. This can be explained by routing conflicts that may be more frequent in the Fast Ethernet network
than in the Myrinet network.

Swap effects. Figure 11 shows it is possible to handle very large data with this algorithm. On PF, one
PC begins to swap with 2 million intervals sequentially, whereas four PCs can solve the problem on 5
million intervals before the swap limit and 12 PCs on 20 million intervals. POPC has the same behavior
but begins to swap on data of half the size due to the PCs’ memory size. If the sequential program runs
on n intervals before the swap limit, the CGM program is able to reasonably solve the problem on a
little less than (p/2)n data. The factor p/2 comes from the fact that the algorithm needs not only the
array of intervals as input, but also a buffer of the same size to communicate data.

We may note that for the counting sort one PC begins to swap for 7 million elements on PF,
whereas for the maximum weighted clique problem it begins to swap before 2 million intervals. This is
consistent because the counting sort does not sort in place and requires a memory space of size 2n

to sort n data, whereas the quicksort is done in place. Since we sort 2n endpoints when we have n

intervals we need 6n extra memory space to run Algorithm 3. This corresponds to a memory space of
size 8n to solve the problem on n intervals. It is an algorithm greedy in memory because it does not
work directly on intervals.

Communications–local computations. Figure 12 compares the communication times and the local
computation times for four and eight PCs of POPC and for four and 12 PCs of PF. The local
computations are predominant compared with communications. We note that we have only one
large communication during the sort (exactly 4n data are communicated if we have n intervals: the
endpoints and the associated weights), whereas there are essentially (8(n/p) + 2(n/p) log2(2(n/p)))
local operations. This behavior is the inverse of the sort where communications are predominant.

Copyright  2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:885–910



PARALLEL COMPUTATION ON INTERVAL GRAPHS 905

0

5

10

15

20

25

30

35

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

co
m

m
un

ic
at

io
n/

co
m

pu
ta

tio
n 

tim
e 

in
 s

ec
on

ds

number of elements

communication time for 4 PCs
local computation time for 4 PCs

communication time for 8 PCs
local computation time for 8 PCs

0

10

20

30

40

50

60

70

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

co
m

m
un

ic
at

io
n/

co
m

pu
ta

tio
n 

tim
e 

in
 s

ec
on

ds

number of elements

communication time for 4 PCs
local computation time for 4 PCs
communication time for 12 PCs

local computation time for 12 PCs

Figure 12. Maximum weighted clique: communications–local computations on the PCCs (POPC and PF).
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Figure 13. Maximum weighted clique: execution time on the T3E.

Moreover, this gap decreases when we use more processors, most probably due to the communications,
as explained in the paragraph Influence of p.

Note that the results are similar between the two PCCs. Moreover, the PCs begin to swap before the
interconnection networks are saturated.

5.2.2. T3E

We present the outcomes on the T3E. The code is the same as the one used on the PCCs.

Influence of p. Figure 13 shows the execution times on one, eight and 16 processors of the T3E.
We will give the results with 32 processors in the paragraph Handling of large data because the curve
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Table IV. Maximum weighted clique: speedups on
the T3E for a problem with 1 million intervals.

p
(n = 1 million) Speedup

8 6.7
16 12.05

Table V. Maximum weighted clique: speedups on
the T3E with eight processors and n varying.

n
(p = 8 million) Speedup

500 000 6.73
750 000 6.7

1 000 000 6.8

begins with 4 million elements and we cannot draw a comparison with the sequential. n ranges from
500 000 to 8 million. All the curves begin for n = 500 000 because the constraints of the chosen sort
algorithms are respected. Each curve stops before the memory of the processors becomes saturated.

The curves have the expected features and they are almost linear in n as for the PCCs. Moreover, the
CGM program decreases the execution times, as expected.

Table IV gives the obtained speedup according to the number of processors used for a fixed problem
size (1 million intervals). Table V gives the speedups obtained on eight processors for varying input
size. As for the PCCs, these speedups are good. They are also better than those given for the parallel
sort. For the same reasons as for the PCCs, it should come from the use of the quicksort. They are
also better than those of the PCCs for large data. We think it is due to the fact that the communication
of large data is faster on the T3E than on the PCCs, since local computations are more or less alike
(see the paragraph Communications–local computations).

Handling of large data. Figure 14 shows it is possible to compute the maximum weighted clique with a
lot of intervals using several processors. The curve with 32 processors begins with 4 million intervals,
which implies a sort of 8 million data as required by the constraints of the parallel sort algorithm.
In sequential, the processor’s memory of the T3E saturates with a little more than 1.5 million intervals.
Before memory saturation, eight processors can handle 6 million intervals, whereas 16 processors can
handle 8 million intervals and 32 processors can handle 16 million intervals. If the problem can be
solved sequentially on n intervals before memory saturation, then the CGM program can solve the
problem in a little less than (p/2)n intervals, as for the PCCs.
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Figure 14. Maximum weighted clique: handling of large data on the T3E.
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Figure 15. Maximum weighted clique: communications–local computations on the T3E.

Note that we can solve this problem on 16 million intervals in less than 30 s with 32 processors.

Communications–local computations. Figure 15 compares the communication times and the local
computation times for eight and 16 processors of the T3E. As for the PCCs and for the same reasons,
local computations are predominant and this gap decreases when more processors are used. This gap
is larger on the T3E than on the PCCs because the communication of large data is faster on the T3E
whereas the local computations are almost the same.

5.2.3. Conclusion on the maximum weighted clique problem

According to the outcomes, we can say that Algorithm 3 is portable and efficient. The execution times
are always shorter when more processors are used. Moreover, it is possible to compute a maximum
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Figure 16. Maximum weighted clique: comparison between POPC and the T3E.

weighted clique on a great number of intervals, and the scalable aspect of our algorithm should allow
the processing of larger data sets with more processors.

We think that this implementation is efficient because we have an efficient sort. When the endpoints
of intervals are sorted, the other operations carried out on the intervals, like the prefix maximum, are
simple and efficient. We observed exactly the same kind of results with the two other implemented
algorithms (e.g. connected components and BFS).

To conclude, Figure 16 compares execution times on eight PCs of POPC and on eight, 16 and 32
processors of the T3E. The time on the eight processors of the T3E is shorter than on the eight PCs.
It comes from the communication time which is less on the T3E than on POPC as previously explained.
Nevertheless, the gap between these two curves is small compared with the performances of the two
machines (the speed of the interconnection network of the T3E, like one of the processors, is larger than
on POPC) and compared with their respective cost. Even if this comparison has to be drawn carefully
because the C++ compilers are different between the T3E and POPC, such clusters of PCs with few
processors can lead to efficient parallel executions for a relatively cheap price.

6. CONCLUSION

In this paper we have shown how to solve many important problems on interval graphs using a
coarse-grained parallel computer such as a cluster of PCs. The proposed algorithms were shown to be
theoretically efficient, straightforward to implement, portable and fast in practice on different parallel
platforms. We believe this can largely be attributed to the use of the CGM model which accounts for
distributed memory effects, mixes sequential and parallel coding, and encourages the use of a constant
or very small number of communication rounds.

Note that the use of the CGM model, which was primarily developed for algorithm design in the
context of interconnection networks, has led to efficient implementations even in the context of a
bus-based network like Ethernet. We speculate that this is due to several factors including: (i) the
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model focuses on sending a small number of large messages rather than a large number of small ones;
(ii) it relies on standard, and typically well optimized, communications operations; and (iii) it focuses
on reducing the number of communication rounds and therefore the number of interdependencies
between rounds. Evidently, at some point such bus-based networks always become saturated and more
attention must be paid to bandwidth and broadcast conflict concerns, particularly as one scales up.
We are currently exploring how such concerns can best be dealt with within the context of a CGM-like
model.

An interesting way forward for further research would be to compare larger PCCs (with up to 50 or
100 PCs for instance) with large parallel computers, like the Cray T3E.
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34. MATRA Systèmes & Information LIP. Pile of PC—POPC. http://www.ens-lyon.fr/LHPC/ANGLAIS/popc.html.
35. INRIA Sophia-Antipolis. Pc cluster. http://www.inria.fr/sophia/parallel.
36. T3E IDRIS. Cray t3e. http://www.idris.fr.
37. Geist A, Beguelin A, Dongarra J, Jiang W, Manchek R, Sunderman V. PVM: Parallel Virtual Machine—A Users’ Guide

and Tutorial for Networked Parallel Computing. MIT Press: Cambridge, 1994.

Copyright  2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:885–910


	1 INTRODUCTION
	1.1 Previous work
	1.2 Our work

	2 THE COARSE-GRAINED MODEL
	3 BASIC OPERATIONS
	3.1 General operations
	3.2 Interval operations

	4 INTERVAL GRAPH PROBLEMS AND ALGORITHMS
	4.1 Maximum weighted clique
	4.2 Connected components
	4.3 BFS and DFS tree
	4.4 Minimum interval covering
	4.5 Maximum independent set and minimum dominating set

	5 EXPERIMENTAL RESULTS
	5.1 Global sort
	5.2 Maximum weighted clique
	5.2.1 PCC platforms
	5.2.2 T3E
	5.2.3 Conclusion on the maximum weighted clique problem


	6 CONCLUSION

