
Journal of Parallel and Distributed Computing 57, 224�235 (1999)

Coarse-Grained Parallel Geometric Search1

Albert Chan,* Frank Dehne,* , 2 and Andrew Rau-Chaplin-

*School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6 ;
-Faculty of Computer Science, Dalhousie University, Halifax, Canada B3J 2X4

E-mail: [achan, dehne]�scs.carleton.ca, arc�cs.dal.ca

Received August 28, 1998; revised November 19, 1998; accepted December 18, 1998

We present a parallel algorithm for solving the next element search problem
on a set of line segments, using a BSP-like model referred to as the coarse
grained multicomputer (CGM). The algorithm requires O(1) communication
rounds (h-relations with h=O(n�p)), O((n�p) log n) local computation, and
O((n�p) log p) memory per processor, assuming n�p�p. Our result implies
solutions to the point location, trapezoidal decomposition, and polygon tri-
angulation problems. A simplified version for axis-parallel segments requires
only O(n�p) memory per processor, and we discuss an implementation of this
version. As in a previous paper by Develliers and Fabri (Int. J. Comput.
Geom. Appl. 6 (1996), 487�506), our algorithm is based on a distributed
implementation of segment trees which are of size O(n log n). This paper
improves on op. cit. in several ways: (1) It studies the more general next ele-
ment search problem which also solves, e.g., planar point location. (2) The
algorithms require only O((n�p) log n) local computation instead of
O(log p*(n�p) log n). (3) The algorithms require only O((n�p) log p) local
memory instead of O((n�p) log n). � 1999 Academic Press

Key Words: BSP; coarse-grained multicomputer; next element search;
planar subdivision search; scalable parallel algorithms; segment tree; simple
polygon triangulation; trapezoidal map.

1. INTRODUCTION

The next element search problem is a well-known problem in computational
geometry and has many applications [1]. Given a set of n nonintersecting line
segments s1 , ..., sn and a direction Dnext (without loss of generality we can assume
that Dnext is the direction of the positive Y-axis), the next element search problem
consists of finding for each query point qi of a set of m query points q1 , ..., qm the
line segment sji

first intersected by the ray starting at qi in direction Dnext

(m=O(n)); see Fig. 1. A sequential solution requires O(n log n) time and O(n)
space [19].

Article ID jpdc.1998.1527, available online at http:��www.idealibrary.com on

2240743-7315�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

1 Research partially supported by the Natural Sciences and Engineering Research Council of Canada.
2 Corresponding author.

FIG. 1. Illustration of next element search.

In this paper, we present a parallel algorithm for solving the next element search
problem on a coarse-grained multicomputer (CGM). Consult Section 2 for a dis-
cussion of the model. The algorithm requires O(1) communication rounds,
O((n�p) log n) local computation, and needs O((n�p) log p) memory per processor,
assuming n�p�p. A simplified version for axis-parallel segments requires only
O(n�p) memory per processor.

The next element search algorithm presented here implies immediate solutions for
the point location, trapezoidal decomposition and triangulation problems.

As in a previous paper by Develliers and Fabri [13], our algorithm is based on
a distributed implementation of segment trees which are of size O(n log n). This
paper improves on [13] in several ways:

v It studies the more general next element search problem which also solves,
e.g., planar point location.

v The algorithms require only O((n�p) log n) local computation instead of
O(log p V (n�p) log n).

v The algorithms require only O((n�p) log p) local memory instead of
O((n�p) log n).

Note that [13] also assumes that n�p�p. It is also interesting to observe that the
method presented in this paper needs less than O(n log n) total memory (over all
processors) because it eliminates some of the segment tree catalogs (while main-
taining the same next element search functionality).

The organization of this paper is as follows: Sections 2 and 3 define the coarse-
grained multicomputer model and segment tree data structure, respectively. The
algorithm is presented in Sections 4 and 5. In Section 6 we outline a simplified
version for axis-parallel segments and discuss an implementation of this version.
Section 7 concludes the paper and outlines some important applications.

2. THE COARSE-GRAINED MULTICOMPUTER MODEL

Speedup results for theoretical PRAM algorithms do not necessarily match the
speedups observed on real machines [2, 20]. Given sufficient slackness in the

225COARSE-GRAINED PARALLEL GEOMETRIC SEARCH

number of processors, Valiant's BSP approach [22] simulates PRAM algorithms
optimally on distributed memory parallel systems. Valiant points out, however, that
one may want to design algorithms that utilize local computations and minimize
global operations [21, 22]. The BSP approach requires that g (=local computa-
tion speed�router bandwidth) is low, or fixed, even for increasing number of pro-
cessors. Gerbessiotis and Valiant [15] describe circumstances where PRAM
simulations cannot be performed efficiently, among others if the factor g is high.
Unfortunately, this is true for most currently available multiprocessors. The algo-
rithms presented here consider this case for the next element search problem.
Furthermore, as pointed out in [22], the cost of a message also contains a constant
overhead cost s. The value of s can be fairly large and the total message overhead
cost can have a considerable impact on the speedup observed (see, e.g., [8]). We
are therefore using a variation of the BSP model, referred to as coarse-grained mul-
ticomputer (CGM).

A CGM is comprised of a set of p processors P1 , ..., Pp with O(N�p) local
memory per processor and an arbitrary communication network (or shared
memory). The term ``coarse-grained'' refers to the fact that we assume that the size
O(N�p) of each local memory is ``considerably larger'' than O(1). Our definition of
``considerably larger'' will be that N�p�p. All algorithms consist of alternating local
computation and global communication rounds. Each communication round con-
sists of routing a single h-relation with h=O(N�p); i.e., each processor sends
O(N�p) data and receives O(N�p) data. We require that all information sent from
a given processor to another processor in one communication round is packed into
one message. In the BSP model, a computation�communication round is equivalent
to a superstep with L=(N�p) g (plus the above ``packing'' requirement).

Finding an optimal algorithm in the coarse-grained multicomputer model is
equivalent to minimizing the number of communication rounds as well as the total
local computation time. This considers all parameters discussed above that are
affecting the final observed speedup, and it requires no assumption on g. Further-
more, it has been shown that minimizing the number of supersteps also leads to
improved portability across different parallel architectures [11, 21, 22]. The above
model has been used (explicitly or implicitly) in parallel algorithm design for
various problems ([4, 7�10, 12, 14, 17]) and has shown very good practical timing
results.

We now list some operations required by our algorithms. Each of these opera-
tions reduces to O(1) communication rounds for N�p�p:

v Global sort. Sort O(N) data items stored on a CGM, N�p data items per
processor, with respect to the CGM's processor numbering. As shown in [16], for
N�p�p it is possible to sort in O(1) communication rounds with O(N�p) memory
per processor and O((N�p) log N) local computation.

v Global integer sort. Sort O(N) integers in the range 1, ..., N c for fixed con-
stant c stored on a CGM, N�p data items per processor, with respect to the CGM's
processor numbering. The sort algorithm in [16] is based on Cole's merge sort [6].
The O((N�p) log N) local computation in [16] is due to a constant number of local
sorts. Hence, by applying radix sort for the integer case, we obtain O(N�p) local

226 CHAN, DEHNE, AND RAU-CHAPLIN

computation without increasing the number of communication rounds. For practi-
cal implementations, a much simpler CGM integer sorting algorithm with 9 com-
munication rounds, O(N�p) memory per processor and O(N�p) local computation
can be found in [5].

v All-to-all broadcast. Every processor sends one message to all other pro-
cessors [8]. This operation requires O((N�p)) local computation.

v Personalized all-to-all broadcast. Every processor (in parallel) sends a dif-
ferent message to every other processor [8]. This operation requires O((N�p)) local
computation.

v Partial sum (scan). Every processor stores one value, and all processors
compute the partial sums of these values with respect to some associative operator
[8] (O((N�p)) local computation).

3. SEGMENT TREE DEFINITION

A well-known method for solving the next element search problem is to apply a
segment tree [3, 18, 19]. Let s (x)

i [q (x)
i] be the projection of the line segment si

(query point qi , respectively) onto the x-axis, and let (x1 , x2 , ..., x2n) be the sorted
sequence of the projections of the 2n endpoints of s1 , ..., sn onto the x-axis. The seg-
ment tree T (S)=(Vs , Es) is a complete binary tree with leaves x1 , x2 , ..., x2n . For
every node v of T (S) an interval xrange(v) is defined as

v if v is a leaf xi , then xrange(v)=[xi , xi+1), where [x2n , x2n+1)=[x2n , x2n].

v if v is an internal node, then xrange(v) is the union of all intervals xrange(v$)
such that v$ is a leaf of the subtree of T (S) rooted at v.

With every node v of the segment tree T (S) there is associated a catalog C(v)�S
defined as

v C(v)=[s # S | xrange(v)�s(x) and not (xrange(parent of v)�s(x))].

Note that each line segment can occur in O(log n) catalogs. The size of the seg-
ment tree T (S), denoted |T (S)|, is equal to the number of nodes and edges of T (S)
plus the total size of all catalogs. Therefore |T (S)|=O(n log n). Hence, storing the
segment tree with all of its catalogs requires O(n log n) space. Also note that the
sum of the lengths of all catalogs of all nodes with the same level (height) is O(n)
[18]. For the remainder, define xrange(T (S))=xrange(r), where r is the root of
T (S). Also define xrange(s) and xrange(q) to be s (x)

i and q (x)
i , respectively.

4. PARALLEL SEGMENT TREE CONSTRUCTION

In this section we will show how to construct a distributed representation of a
segment tree T (S), called a parallel segment tree, for a set of n line segments on a
CGM such that the resulting data structure can be efficiently used to process next
element search queries in parallel. The approach will be to partition the segment
tree (without associated catalogs) into substructures of size O(n�p) such that no
processor stores more than O(1) such substructures; see Fig. 2. The catalogs for

227COARSE-GRAINED PARALLEL GEOMETRIC SEARCH

FIG. 2. Decomposition of the segment tree.

nodes in tree T0 will be partitioned into lists of size (n log p)�p and distributed such
that no processor stores more than O(1) such lists; see Fig. 3. The catalogs for
nodes in subtrees T1 } } } Tp will not be built explicitly. Instead, the algorithm will use
standard sequential plane sweep (using a standard binary search tree) [19]. We
first describe our distributed segment tree representation and then give an algo-
rithm that efficiently constructs such a segment tree on a CGM.

A parallel segment tree T (S) (without catalogs) is a complete tree with n leaves
which consists of log n levels, where the level of a node v is defined recursively as
follows: level(v)=1, if v is the root, and level(v)=level(parent(v))+1 otherwise. Let
rank(v) denote the rank of the vertex v in the left to right ordering of the vertices
with the same level as v. For v # V, let subtree(v) # 1 } } } p be defined as follows: sub-
tree(v)= p, if 1�level(v)�log p&1 and subtree(v)=rank(v$) otherwise, where v$ is
the ancestor of v such that level(v$)=log p. Let Vi=[v # V | subtree(v)=i]. Let Ti

denote the subtree of T with vertex set Vi and edge set Ei=[(v, v$) # E | subtree(v)
=subtree(v$)=i]. Let S(Ti) be the set of segments of S with an endpoint in
xrange(Ti).

In our distributed representation of a segment tree T (S), processor Pi (1�i� p)
stores S(Ti), the tree T0 without catalogs but with the values xrange(v) for each
v # V0 , and the list li which is a portion, or all, of the catalog of a node v of T0 .

FIG. 3. The tree T0 with catalogs partitioned into lists li , where list li is of size |li |�(n log p)�p.

228 CHAN, DEHNE, AND RAU-CHAPLIN

Observation 1. If a line segment contains xrange(Ti) then it is not contained in
any catalog of Ti (except for possibly the root).

Observation 2. S(Ti) is of size O(n�p).

A consequence of Observation is that each subset S(Ti), 1�i� p, can be stored
in the memory of a single processor. The tree T0 consists of O(p) nodes and
catalogs whose combined size is O(n log p). Therefore T0 is too big to be stored on
a single processor. Instead, each processor will store a copy of T0 (without
catalogs) and a list li which is a portion, or all, of the catalog of a node v of T0 .
Let L denote the list formed by concatenating the catalogs associated with nodes
of T0 , where catalogs are ordered by level and then rank in level and all catalogs
are padded to be of a length evenly divisible by (n log p)�p. The list li consisting of
elements in�p } } } ((i+1) n)�p from L will be stored on processor Pi ; see Fig. 3.

Observation 3. Since T0 has height log p and a line segment can appear in at
most two catalogs of T0 at the same level, the total size of list L is O(n log p).

Definition 1. Given two line segments s1 and s2 . We define a relation ``�'' as
follows. If xrange(s1) & xrange(s2)=< then s1�s2 if and only if the y-coordinate
of the left endpoint of s1 is smaller or equal than the y-coordinate of the left end-
point of s2 . If xrange(s1) & xrange(s2){< then s1�s2 if and only if s1 is below s2 .

Algorithm 1 (Parallel segment tree construction). Input: Processor Pi

(1�i� p) stores a subset Si of n�p elements of S. Output: Processor Pi (1�i� p)
stores S(Ti), the tree T0 without catalogs but with the values xrange(v) for each
v # V0 , and the list li which is a portion, or all, of the catalog of a node v of T0 .

(0) Sort S globally with respect to the relation ``�'' in Definition 1. For each
s # S calculate its rank y(s) in S with respect to this ordering and store it
with s.

(1) Create for each s # S two copies, one for each endpoint, and sort the set by
x-coordinate such that each processor Pi contains a subset S i of size O(n�p).
Now, processor Pi stores S(Ti) and xrange(Ti). From Observation 2,
|S(Ti)|=O(n�p).

(2) Use an all-to-all broadcast to distribute all xrange(Ti) (1�i� p) to all pro-
cessors. Each processor computes T0 without any catalogs but with
xrange(v) values for all v # V0 .

(3) Processor Pi computes the catalogs of T0 with respect to S i only. We refer
to this reduced version of T0 as T0, i . Note that |T0, i |=O((n�p) log p).

(4) Assume that all nodes of T0 have a unique index. Consider a line segment
s in the catalog of the node v in T0 with index j(s). For each such line seg-
ment s, define a key *(s) obtained by concatenating the bits of j(s) and y(s),
in that order. Using a global integer sort, all line segments in the catalogs
of all T0, i , 1�i� p, are sorted with respect to key *(s) in such a way that
no processor stores no two line segments with different j values. The latter
can be achieved by using 2p virtual processors.

End of algorithm.

229COARSE-GRAINED PARALLEL GEOMETRIC SEARCH

Theorem 2. Algorithm 1 constructs a parallel segment tree on a CGM using
O((n�p) log p) memory per processor, O(1) communication rounds, and
O((n�p) log n) local computation.

Proof. The memory bound follows from Observations 2 and 3. The algorithm
uses a constant number of the basic communication operations of Section 2 and,
hence, O(1) communication rounds. We now prove that the algorithm requires
O((n�p) log n) local computation. We observe that the local computation is
dominated by the sorting steps. There are two types of sorting operations used: (1)
global sort on O(n�p) data per processor in Steps 0 and 1 and (2) global integer
sort on O((n�p) log p) data per processor in Step 4. Since O((n�p) log n)+
O((n�p) log p)=O((n�p) log n), the claim follows. K

5. PARALLEL QUERY PROCESSING

Given a segment tree T (S) and a query point q # Q, the next element of q in S
can be determined by a simple search in T (S) from the root of T (S) to the leaf v
whose xrange contains q (see, e.g., [19] for details).

Recall that, at the end of Algorithm 1, processor Pi (1�i� p) stores S(Ti), the
tree T0 without catalogs but with the values xrange(v) for each v # V0 , and a list li

which is a portion, or all, of the catalog of a node v of T0 . Let firsti and lasti refer
to the first and last element of li , respectively (see Fig. 4).

The following algorithm uses the parallel segment tree to answer all queries in
parallel. Each individual query is first ``routed'' through T0 and then through the
respective Ti . In T0 , the tree structure is used to schedule the computation.
However, the catalog lookups are reduced to sequential next element search
problems. For the subtrees Ti , a load balancing scheme is used to ensure equal dis-
tribution of work. In each Ti , all search processes are reduced to a single sequential
next element search problem.

Algorithm 2 (Parallel query processing). Input: A parallel segment tree T (S)
as produced by Algorithm 1 and a set Q of n queries, where each processor Pi

stores a subset Qi of size n�p. Output: Each Processor Pi (1�i� p) stores for each
q # Qi its next element s # S.

FIG. 4. A set of line segments with order l3�l4�l5�l1�l2 .

230 CHAN, DEHNE, AND RAU-CHAPLIN

(1) Using an all-to-all broadcast, send all firsti and last i to all processors Pi .
Recall that every processor Pi (1�i� p) stores T0 without catalogs but
with values xrange(}).

(2) Using the O(p) line segments received in Step 1, processor Pi computes for
each q # Qi the sublists lj (1� j� p) that have to be searched in order to
process q on T0 . The problem reduces to solving for each node v of T0 a
next element search problem for a certain number Xv of line segments and
a certain number Yv of queries. Note that, each such problem requires
O((Xv+Yv) log(Xv+Yv)) computation. Since �v Xv= p and �v Yv=n�p,
it follows that the total local time is O((n log n)�p).

(3) Using global sort and partial sum operations, determine for each sublist
li the number of queries, g(li), that have to be located in li . Let k(li)=
W(g(li) p)�nX.

(4) Create k(li) copies of li (1�i� p). Note that, this requires 2p virtual pro-
cessors. Broadcast the new addresses of the sublists li .

(5) Each processor Pi makes log p copies of its query set Qi and routes the
queries to the respective sublists using integer sort.

(6) The queries are processed on the sublists to which they were sent in step
5, and the log p results for each query are collected in a single processor
by using global integer sort.

(7) Determine for each Ti the number, a(Ti), of queries whose search path
includes the root of Ti (1�i� p). This can be computed by using global
integer sort and partial sum operations. Let b(Ti)=Wa(Ti)�(n�p)X.

(8) Create b(Ti) copies of S(Ti). Note that, this requires 2p virtual processors.
Using integer sort, route n�p queries to each processor such that a pro-
cessor storing S(Ti) receives n�p queries whose search path contains the
root of Ti .

(9) Each processor processes the queries for its subtree Ti (1�i� p) by applying
plane sweep [19].

(10) Combine the results of Step 9 with those obtained in Step 6, using integer
sort (by query ID).

End of algorithm.

Theorem 2. Algorithm 2 solves the next element search problem for n line
segments on a CGM with O((n�p) log p) memory per processor using O(1) com-
munication rounds and O((n�p) log n) local computation.

Proof. The memory bound follows from Theorem 1. The algorithm uses a con-
stant number of the basic communication operations of Section 2 and, hence, O(1)
communication rounds. We now prove that the algorithm requires O((n�p) log n)
local computation. We observe that the local computation is dominated by sorting
and sequential plane sweep. There are two types of sorting operations used: (1)
global sort on O(n�p) data per processor in Step 3 and (2) global integer sort
on O((n�p) log p) data per processor in steps 5�8 and 10. Since sequential plane

231COARSE-GRAINED PARALLEL GEOMETRIC SEARCH

sweep requires O((n�p) log n)) steps [19], and O((n�p) log n)+O((n�p) log p)=
O((n�p) log n), the claim follows. K

6. A SIMPLIFIED ALGORITHM FOR AXIS-PARALLEL
LINE SEGMENTS

If we limit the segments to be axis-parallel (i.e., they are all horizontal), we can
reduce the space requirement to O(n�p) per processor by applying the lower
envelope algorithm presented in [8]. During the algorithm, queries will be handled
like line segments of zero length.

Algorithm 3 (Next element search for axis-parallel line segments). Input: A set
S of n axis-parallel line segments and a set Q of n queries, where each processor Pi

stores n�p line segments and queries, respectively. Output: The next element in S for
each query point q # Q, where each processor stores n�p next element results.

(1) Sort S _ Q by increasing y-coordinate. Each processor Pi solves both the
next element search problem and the lower envelope problem sequentially
for the set Si _ Qi it received in the sort. Let Q$ be the set of all queries
whose next element has not yet been found, and let S$ be the union of all
lower envelopes.

(2) Sort S$ _ Q$ by the x-coordinate of the right endpoints and the x-coor-
dinates of the queries, respectively.

(3) Let l1 , ..., lp&1 be the vertical lines that separate the sorted segments in the
p different processors. Perform an all-to-all broadcast, where processor Pi

sends li to all other processors.

(4) Perform a personalized all-to-all broadcast, where processor Pi sends seg-
ment s # S$ to processor Pj if and only if s intersects the vertical line lj .

(5) Each processor Pi solves locally the next element search problem for its sub-
set of Q$ and the line segments of S$ received in steps 2 and 4.

End of algorithm.

Theorem 3. Algorithm 3 solves the next element search problem for n axis-
parallel line segments on a GCM with O(n�p) memory per processor using O(1) com-
munication rounds and O((n�p) log n) local computation, assuming n�p�p.

Proof. The correctness follows from the fact that for each q # Qi , its next ele-
ment is either in Si or in the lower envelope of an Sj with j>i. The algorithm uses
a constant number of the basic communication operations of Section and duplicates
no data. K

Algorithm 3 was implemented on an Intel iPSC�860 hypercube and tested for
p=2, 4, and 8 processors. For each value of p, we ran tests for n=100, 200, 500,
1000, 2000, 5000, and 10,000. We used 10 sets of data on each combination of p
and n. In five of the sets, the line segments were evenly distributed in a unit square
and, in the other five, the line segments were evenly distributed in a unit circle. The

232 CHAN, DEHNE, AND RAU-CHAPLIN

FIG. 5. Running times for algorithm 3 on an Intel iPSC�860.

average length of the segments was 1�10 unit length. The result is summarized in the
Fig. 5. Observe the close to linear speedup obtained.

7. APPLICATIONS AND CONCLUSIONS

In this paper, we presented a BSP-like coarse-grained parallel algorithm for the
next element search problem which requires O(1) h-relations (h=O(n�p)),
O(n�p log p) memory per processor and O((n�p) log n) local computation, assum-
ing n�p�p. An important advantage of our model is that it gives a very good
indication of the running time observed in an actual implementation. Our
implementation on an Intel iPSC�860 hypercube obtained a very close to linear
speedup for the axis-parallel case. As demonstrated in [7�9], coarse-grained
parallel algorithms with O(1) communication rounds are also portable across very
different parallel platforms. Therefore, we expect that our algorithm presented here
will also run well on other parallel machines.

Next element search can be used to solve many other geometric problems. Some
of the more important examples include

1. Planar subdivision search problem. Given a plane graph G=(V, E) with
vertex coordinates, and a set of n query points qi (1�i�n), find for each query
point qi , the face of G containing qi .

2. Trapezoidal map problem. Given a set of segments in the plane, decom-
pose the plane into a set of trapezoids based on the arrangement of the segments.

3. Triangulation problem for a simple polygon. Partition the interior of a
simple polygon into a set of triangles.

233COARSE-GRAINED PARALLEL GEOMETRIC SEARCH

The above three problems can be reduced to O(1) next element search problems
(obvious for 1 and 2; see [23] for 3). Hence, Theorem 1 applies to these problems
as well and we obtain

Corollary 1. The planar subdivision search problem, trapezoidal map problem,
and triangulation problem for a simple polygon can be solved on a CGM with
O((n�p) log p) memory per processor in O(1) communication rounds and
O((n�p) log n) local computation, assuming n�p�p.

ACKNOWLEDGMENTS

We thank Franco Preparata and Roberto Tamassia for their helpful discussion on the next element
search problem for axis-parallel line segments. We thank the referees for their constructive comments.

REFERENCES

1. S. G. Akl and K. A. Lyons, ``Parallel Computational Geometry,'' Prentice�Hall, Englewood Cliffs,
NJ, 1996.

2. R. J. Anderson and L. Snyder, A comparison of shared and nonshared memory models of computa-
tion, Proc. IEEE 79, 4 (1979), 480�487.

3. J. L. Bentley and D. Wood, An optimal worst case algorithm for reporting intersections of rec-
tangles, IEEE Trans. Comput. 29, 7 (1980), 571�576.

4. G. E. Blelloch, C. E. Leiserson, B. M. Maggs, and C. G. Plaxton, A comparison of sorting algo-
rithms for the Connection Machine CM-2, in ``Proc. ACM Symp. on Parallel Algorithms and
Architectures, 1991,'' pp. 3�16.

5. A. Chan and F. Dehne, ``A Note on Coarse Grained Parallel Integer Sorting,'' Technical Report
TR-98-06, School of Computer Science, Carleton University, 1998. [http:��www.scs.carleton.ca�].

6. R. Cole, Parallel merge sort, SIAM J. Comput. 17, 4 (1988), 770�785.

7. F. Dehne, A. Fabri, and C. Kenyon, Scalable and architecture independent parallel geometric algo-
rithms with high probability optimal time, in ``Proc. 6th IEEE Symposium on Parallel and Dis-
tributed Processing, 1994,'' pp. 586�593.

8. F. Dehne, A. Fabri, and A. Rau-Chaplin, Scalable parallel computational geometry for coarse
grained multicomputers, in ``Proc. ACM Symp. Computational Geometry, 1993,'' pp. 298�307.

9. F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Kokhar, A randomized parallel 3D convex hull
algorithm for coarse-grained parallel multicomputers, in ``Proc. ACM Symp. on Parallel Algorithms
and Architectures, 1995,'' pp. 27�33.

10. X. Deng, A convex hull algorithm for coarse grained multiprocessors, in ``Proc. 5th International
Symposium on Algorithms and Computation, 1994,'' pp. 634�640.

11. X. Deng and P. Dymond, Efficient routing and message bounds for optimal parallel algorithms, in
``Proc. Int. Parallel Proc. Symp. (IPPS), 1995,'' pp. 556�563.

12. X. Deng and N. Gu, Good programming style on multiprocessors, in ``Proc. IEEE Symposium on
Parallel and Distributed Processing, 1994,'' pp. 538�543.

13. O. Devillers and A. Fabri, Scalable algorithms for bichromatic line segment intersection problems
on coarse grained multicomputers, Int. J. Comput. Geom. Appl. 6 (1996), 487�506.

14. A. Ferreira, A. Rau-Chaplin, and S. Ubeda, Scalable 2D convex hull and triangulation for coarse
grained multicomputers, in ``Proc. 6th IEEE Symp. on Parallel and Distributed Processing, San
Antonio, 1996,'' pp. 561�569.

234 CHAN, DEHNE, AND RAU-CHAPLIN

15. A. V. Gerbessiotis and L. G. Valiant, Direct bulk-synchronous parallel algorithms, in ``Proc. 3rd
Scandinavian Workshop on Algorithm Theory,'' Lecture Notes in Computer Science, Vol. 621
(1992), pp. 1�18.

16. M. T. Goodrich, Communication efficient parallel sorting, in ``Proc. 28th Annual ACM Symp. on
Theory of Computing (STOC'96), 1996,'' pp. 247�256.

17. H. Li and K. C. Sevcik, Parallel sorting by overpartitioning, in ``Proc. ACM Symp. on Parallel Algo-
rithms and Architectures, 1994,'' pp. 46�56.

18. K. Mehlhorn, ``Data Structures and Algorithms 3: Multi-dimensional Searching and Computational
Geometry,'' Springer-Verlag, New York�Berlin, 1984.

19. F. P. Preparata and M. I. Shamos, ``Computational Geometry��An Introduction,'' Springer-Verlag,
1985.

20. L. Snyder, Type architectures, shared memory and the corollary of modest potential, Annu. Rev.
Comput. Sci. 1 (1986), 289�317.

21. L. G. Valiant, A bridging model for parallel computation, Commun. ACM 33 (1990), 103�111.

22. L. G. Valiant, General purpose parallel architectures, ``Handbook of Theoretical Computer Science''
(J. van Leeuwen, Ed.), MIT Press�Elsevier, 1990, pp. 943�972.

23. C. K. Yap, Parallel triangulation of a polygon in two calls to the trapezoidal map, Algorithmica 3
(1988), 279�288.

235COARSE-GRAINED PARALLEL GEOMETRIC SEARCH

	1. INTRODUCTION
	FIG. 1

	2. THE COARSE-GRAINED MULTICOMPUTER MODEL
	3. SEGMENT TREE DEFINITION
	4. PARALLEL SEGMENT TREE CONSTRUCTION
	FIG. 2
	FIG. 3
	FIG. 4

	5. PARALLEL QUERY PROCESSING
	6. A SIMPLIFIED ALGORITHM FOR AXIS-PARALLEL LINE SEGMENTS
	FIG. 5

	7. APPLICATIONS AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

