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Abstract

The range tree is a fundamental data structure for multi-dimensional point sets, and as such,
is central in a wide range of geometric and database applications. In this paper, we describe the
�rst non-trivial adaptation of range trees to the parallel distributed memory setting (BSP-like
models). Given a set of n points in d-dimensional Cartesian space, we show how to construct
a distributed range tree T on a coarse grained multicomputer in time O(s=p + Tc(s; p)), where
s = n logd�1 n is the size of the sequential data structure and Tc(s; p) is the time to perform
an h-relation with h = �(s=p). We then show how T can be used to answer a given set Q of
m = O(n) range queries in time O((s logm)=p + Tc(s; p)) and O((s logm)=p + Tc(s; p) + k=p),
for the associative-function and report modes respectively, where k is the number of results to
be reported. These parallel construction and search algorithms are both highly e�cient, in that
their running times are the sequential time divided by the number of processors, plus a constant
number of parallel communication rounds.

1 Introduction

The range tree is a fundamental data structure for multi-dimensional point sets, and as such, is
central in a wide range of geometric and database applications [21]. The design and implementation
of e�cient parallel versions of this important data structure was one of the primary goals of the
DIMACS Implementation Challenge in 1996 [1]. In this paper, we describe an adaptation of range
trees in the parallel distributed memory setting.

Our approach is to describe a set of e�cient scalable algorithms for the construction and ma-
nipulation of a distributed analog of the sequential range tree data structure [4]. We then show how
to perform O(n) independent range searches on a distributed range tree T , in parallel. Note that
the path traced by an individual search traversing T is not known ahead of time, and must instead
be determined \on-line". That is, only when a search query is at a node of T can it determine
which node(s) of T it should visit next. Also note that the paths of the search queries can overlap
arbitrarily, so that at any time any node of T may be visited by an arbitrary number of search
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queries.

The Model

Recently, there has been much interest in \more realistic" parallel models (e.g. BSP, LogP, C3,
CGM) that can better predict the performance of parallel algorithms on existing, typically coarse
or medium grained, parallel computers [24, 8, 18, 13]. In Valiant's BSP model, each communication
round consists of routing a single arbitrary h-relation (i.e. each processor send and receives O(h)
data). Slackness in the number of processors is used to optimally simulate PRAM algorithms on
distributed memory multicomputers. However, as Valiant points out, one may want to design
\implementations of the BSP model that incorporate features for communications, computation or
sychronization that are clearly additional to the ones in the de�nition" [24].

In this paper, we use the Coarse Grained Multicomputer model (CGM(s; p)), also sometimes
referred to as the weak-CREW BSP model [17]. This model has been used (explicitly or implicitly)
in parallel algorithm design for a variety of problems [13, 17, 9, 12, 20, 10, 16] and has led to parallel
codes exhibiting good time results [13, 10, 16]. It consists of a set of p processors with O(s=p) local
memory each, connected via some arbitrary interconnection network or a shared memory. The term
\coarse grained" refers to the fact that the size of each local memory will typically be \considerably
larger" than O(1). We will assume s=p � p as it was assumed in [13], which is true for all existing
parallel machines. All algorithms consist of supersteps (see [24]) alternating local computation with
global communication operations, in which each processor can receive at most O(s=p) data.

In the CGM(s; p) model, all global communications are performed by a small set of standard
operations - Segmented broadcast, Segmented gather, All-to-All broadcast, Personalized All-to-All
broadcast, Partial sum and Sort, which are typically e�ciently realized in hardware. If a parallel
machine does not provide these operations, each of them can be implemented in terms of a constant
number of sorting operations [13].

In addition, it was shown in [17] that, given p < n1�
1

c (with c � 1), sorting O(n) elements
distributed evenly over p processors in the BSP (or LogP) model can be achieved in O(logn= log(h+
1)) communication rounds and O(n logn=p) local computation time, for h = �(n=p), i.e. with
optimal local computation and O(1) h-relations, when n=p � p. Therefore, using this sort, the
communication operations of the CGM(s; p) can be realized in the BSP (or LogP) model in a
constant number of h-relations, where h = �(s=p). Hence, in the remainder, any of the

above global communication operations on the CGM(s; p) will be denoted Tc(s; p).
Finally, designing e�cient algorithms in the CGMmodel is equivalent to minimizing the number

of global communication rounds as well as the local computation time. We remark that minimizing
the number of supersteps also results in improved portability across di�erent parallel architectures
[24, 25].

The Multidimensional Range Search Problem

Consider a collection of n records, where each record has a key-value and is identi�ed by an ordered
d-tuple in the d-dimensional Cartesian space. In the orthogonal range search problem, the query
speci�es a rectangular domain in the d-dimensional space, and the outcome of the search, depending
on the application, may be either the subset of the points contained in the speci�ed domain (report
mode), or the number of such points, or more generally a function computed on a commutative
semigroup ( associative-function mode) [19].

There are many sequential data-structures and algorithms for range searching, each o�ering
a di�erent trade-o� between storage and time complexity. These structures include k-D trees,
multidimensional trees, Super-B trees, range trees, and layered range trees [21].
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Multidimensional binary trees, commonly known as k-D trees are an optimal space solution,
requiring �(dn) space, but having a discouraging worst-case search performance of O(dn1�1=d) time
[21]. Parallel algorithms for the range-search problem based on k-D trees have been studied for the
scan computation model [5].

The Range Tree data-structure presents a particularly good tradeo� between storage space and
search time. The structure requires O(n logd�1 n) space and construction time, and supports an
O(logd n) time search algorithm. An improved version of this structure, known as the layered range
tree, saves a factor of logn in the search time[21]. A parallel version of the range tree data structure
was introduced for the SIMD hypercube model of computation [22]. It requires O(d logn) search
time per query using O(logd n) processors. But the parallelization scheme is based on copying the
data structure onto each processor, therefore requiring O(pn logd n) memory space in total which
is, in most situations, quite unrealistic. In [23], a derivative of the range tree data structure for
secondary memory was described while the one-dimensional range search problem (segment search
problem) was solved in [6, 14].

Our Results

Given a set of n points in the d-dimensional Cartesian space, where d is considered constant,
we show how to construct a distributed range tree T on a CGM(s; p) in time O(s=p + Tc(s)),
where s = n logd�1 n is the size of the sequential data structure. We then show how T can be
used to answer a given set Q of m = O(n) range queries in time O((s logn)=p + Tc(s; p)) and
O((s logn)=p+ Tc(s; p) + k=p), for the associative-function1 and report modes respectively, where
k is the number of results to be reported.

These parallel construction and search algorithms are both optimal, in the sense that their
running times are the sequential time divided by the number of coarse-grained multicomputer
processors, plus a constant number of parallel communication rounds (i.e., h-relations with h =
�(s=p)).

Our solution is, in part, based on the Multisearch paradigm �rst introduced in [11] and later
used to solve a variety of problems [2, 3, 11, 13]. It represents a signi�cant advancement over the
multisearch method described in [13] in that the lower dimensional substructures pointed to by
each node of T are of non-constant size and queries that must visit several neighbors of a node of
T can split into several subqueries.

In very broad terms, our techniques for solving the range search problem are a judicious com-
bination of the following ideas:

� Partition T into a hat composed of its top few levels and a forest of sub-trees which are hooked
to the hat (see Fig. 3). These sub-trees have a range tree structure.

� Make p copies of the hat and distribute them, one to each processor.
� Concurrently in all processors and for the entire set of queries, perform a sequential range
search on the hat. The queries will end up in its leaves, each of which corresponds to a speci�c
pendant.

� Create multiple copies of those pendants in T for which too many queries need access, and
distribute the copies to processors, along with the queries that need access to that pendant.
Again, each processor is responsible for advancing its subset of the \congested" queries by
performing a sequential range search. It should be noted that the straightforward strategy

1In the special case of associative functions with inverses, the problem can be solved using weighted dominant
counting [13].
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of making multiple copies of T , and using one copy for each group of n=p queries, does not
work. This is due to the fact that it would not only take too much time to create the p copies,
but there is not enough space to store all of these copies of T .

Of course, the parameters needed to e�ciently perform these partitioning, duplication and map-
ping strategies cannot be precomputed, since the full search paths are computed on-line. Therefore,
these parameters must also be determined on-line, as the queries advance through T . The above
description is necessarily an over simpli�cation and only a careful look at the details can reveal the
exact interplay between the above ideas, as well as the exact nature of each of them.

The contribution of this paper is therefore twofold. First, we explicitly give the exact tuning
of the parameters needed for e�ciently constructing a distributed range tree and implementing a
parallel range search. Second, our algorithms use only standard communication operations and
sequential range search, implying that existing sequential code for this problem can be re-used.

The organization of the paper is as follows. Section 2 describes the classical range tree and our
distribution scheme on p processors. A coarse grained parallel algorithm to build this distributed
data structure is then described in Section 3. Section 4 gives a coarse grained parallel algorithm to
solve n queries in parallel with the distributed range tree.

2 The Distributed Range Tree Data Structure

In this section we �rst de�ne the range search problem and we present the classsical segment tree
and range tree data structures. Then, we de�ne a labeling of the nodes of the range tree, in order
to be able to store it e�ciently in a distributed memory setting. Finally, we de�ne the distributed
range tree data structure.

2.1 The Range Search Problem

Consider a collection L of n records, where each record l has a value key(l) and is identi�ed by an
ordered d-tuple (x1(l); :::; xd(l)) 2 Ed, the d-dimensional Cartesian space. In the orthogonal range
search problem, the query speci�es a rectangular domain q in Ed, and the outcome of the search,
depending on the application, may be either the subset R(q) of the points of L contained in q
(report mode), or the number of such points, or more generally a function

N
l2R(q) f(l), where f(l)

is an element of a commutative semigroup with operation 
 (associative-function mode) [19].

2.2 The Classical Range Tree Data Structure

Let a (1; n) segment tree [4] be a complete rooted binary tree with n leaves. To each node is
associated a segment. The segments associated to the leaves are [x1; x2), [x2; x3),: : : ,[xn�1; xn) and
[xn; xn] (the last segment is reduced to a point). To each internal node is associated the segment
formed by the union of the two segments associated to its children. Thus, the segment associated
to the root is [x1; xn] (see Fig. 1). A segment tree is said to be in dimension i if the segments
associated to its leaves are obtained by a projection of a subset of L onto dimension i. Notice that,
as presented in [21], the range tree structure is a d-dimensional generalization of the segment tree.

De�nition 1 The d-dimensional range tree T for a set Ld of points of Ed is recursively de�ned as
follows.

i) A primary segment tree T � in dimension d corresponding to the set fx1(l)jl 2 Ldg.
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[x1,x2) [x2,x3) [x3,x4) [x5,x6) [x6,x7) [x8,x8][x4,x5) [x7,x8)

[x1,x3) [x3,x5) [x5,x7)

[x1,x5) [x5,x8]

[x7,x8]

[x1,x8]

Figure 1: The segment tree structure for (1,8).

Dimension iDimension i-1 Dimension i+1

U

V

Index = 2x+1
Level = 1

Index = 4x+1
Level = 0

Index = 4x
Level = 0

Index = 4x+2
Level = 0

Index = 4x+3
Level = 0

Index(V)=Index(U)=x
Level(V)=2
Ancestor(V)=U

Index(U)=x

Level = 1
Index = 2x

leaves

Figure 2: Illustration of Index and Level of a node of T .

ii) For each node v of T �, we de�ne the (d� 1)-dimensional set
Ld�1(v) = f(x2(l); :::; xd(l))jx1(l) lies in the interval associated to vg.
Each node v has a pointer to a range tree for Ld�1(v) which is called descendent(v). For

each node w in the primary segment tree of descendent(v), we de�ne ancestor(w) = v.

2.3 Labeling

To each node v of the range tree, we associate a unique label denoted path(v) which enables us to
refer to nodes and to subtrees of T , which is de�ned as follows.

De�nition 2 For any node v of a range tree we de�ne the following quantities (see Fig. 2).

i) Level(v) is the length of the shortest path from v to a leaf in the segment tree containing v
(or 0 if v is a leaf).
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ii)

Index(v) =

8>>><
>>>:

0 if v is the root of T �

Index(ancestor(v)) if v is a root of any segment tree except T �

2� Index(parent(v)) if v is a left child in a segment tree
2� Index(parent(v)) + 1 if v is a right child in a segment tree.

iii) Path-index(v) = hlevel(v),index(v)i
iv)

Path(v) =

(
path-index(v) if v is a node of T �

hpath(ancestor(v)),path-index(v)i otherwise.

Lemma 1 For every segment tree t 2 F and every node v 2 t, path(ancestor(v)) uniquely identi�es
the tree t to which v belongs, and path(v) uniquely identi�es v in t.

Proof: It is easy to see that for all nodes v 2 T , path(v) is unique. Furthermore, by De�-
nition 1, for every segment tree t 2 T and each pair of nodes u; v 2 t, it holds that ancestor(u)
= ancestor(v). Hence, path(ancestor(u)) = path(ancestor(v)) and this can be interpreted as the
name of the segment tree t. Moreover, it is easy to see that all nodes on the same level of t have
distinct indices, and so hlevel(v); index(v)i uniquely determines v within t. �

2.4 The Distributed Range Tree

Our range search algorithm is based on a distributed representation of a range tree. A range tree T
for a set of n points is of size s, which is as large as the total memory available on our CGM(s; p),
i.e. a p processor coarse grained multicomputer with O((n logd�1 n)=p) memory per processor.
Therefore, the range tree must be partitioned into substructures where each substructure is of size
O(s=p). To support an e�cient search strategy, some of these substructures will be stored on a
single processor while others will be copied on to all processors in such a way that each processor
stores no more than O(1) such structures. This requires preliminary de�nitions.

De�nition 3 Given a range tree T ,

i) Let the \hat" H denote the subtree of T induced by all nodes v of T which are either in the
top log p levels of T , i.e. with level(v) � logn� log p+1, or such that level(v)= logn� log p
and the parent of v lies in the same dimension as v.

ii) Let F denote the forest of subtrees of T induced by all nodes v of T with level(v) � logn�
log p.

iii) For each range tree t in F with root r, let location(t)= index(r).

Note that each element of this forest F is a range-tree on n=p points and has dimension j 2 [1; d]
(see Fig. 3)2. The roots of the trees of F are the nodes v of the hat H with level(v) = logn� log p.

Note that the locations are in the range [0; p� 1]. Let Fi = ft 2 F jlocation(t) = ig.

Theorem 1 The following holds for H and Fi as de�ned above.

i) The hat H has size O(p logd�1 p) = O(s=p).

2In the one-dimensional case, where the range tree is just a segment tree, the hat consists of the top log p + 1
levels of the tree and the forest consists of the p subtrees rooted at level log n� log p (See [14]).
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hat H in
dimension 1

Forest F
in 
dimension 1

n/p points n/p points n/p points n/p points

d−1 dim Range tree
with n points

d−1 dim Range tree
with n/2 points

d−1 dim Range tree
with n/2 points

F
0 F

1
F
2 F

3

1+log p
levels

Figure 3: The hat of T in dimension 1, along with the associated part of F , for p = 4.

ii) For every i, Fi has size O(s=p).

Proof:

i) Immediate from the fact that the hat can be seen as a range-tree on p items with a few
missing pointers on the bottom level.

ii) For each i 2 [0; p � 1], Fi consists of a set of range trees of various dimensions (from 1
to d) of n=p points. By de�nition, the sets Fi are disjoint and have equal size, yielding
jFij = O(s=p), since the total data size is O(s). Notice that the path associated to the
nodes do not asymptotically increase the size of the structure since each path is just the
concatenation of at most d addresses.

�

In the following, our distributed range tree will be stored on a CGM(s; p) as follows.

� A copy of the hat H will be stored on every processor and used as an index structure for the
forest F .

� Each range tree t in Fi will be stored on processor Pi.

As seen in Theorem 1, both H and the Fi �t in a single processor's memory.

3 Constructing a Distributed Range Tree

In this section we describe a parallel algorithm for constructing the distributed range tree de�ned
in subsection 2.4.

In [21], a sequential algorithm is presented to build a d-dimensional range tree of size
O(n logd�1 n) in optimal time O(n logd�1 n). The algorithm works in d phases, in a bottom-up
fashion in which segment trees are built up from their leaves one dimension after another.

The distributed range tree is also constructed in d phases j = 1; 2; : : : ; d. At the start of phase
j, we have a set Sj of records representing the leaves of the j-dimensional range trees of F . These
range trees must now be constructed. More precisely, a record in Sj contains two informations: the
coordinates of a point l = (x1(l); : : : ; xd(l)) from the original point set L, and a label path(l). Each
label \x=path(l)" corresponds to a unique j-dimensional range tree of F , and conversely each such
range tree will be constructed from the subset of points of Sj which have label x.
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In phase j we �rst distribute the data: Sj is sorted according to (path,xj-coordinates) so that
records which need to go to the same j-dimensional tree of F are consecutive and stored on the
same processor. Thus a tree of F corresponds to a block of n=p consecutive values of Sj, and
its location can be computed by a global rank of the blocks. The blocks are then routed to their
location.

The j-dimensional range trees of F are then locally constructed. Each tree t of F knows the
minimum min(t) xj-coordinate of its records.

Since the roots of the range trees of F are also the leaves of H , it su�ces to perform an all-to-all
broadcast of these minima in order to complete the construction of the hat in dimension j.

Then, the set Sj+1 is constructed by appropriate duplication of elements of Sj. (The location
of the j-dimensional trees of F ensures that the workload is balanced).

The algorithm is detailed below.

Algorithm Construct

Input: Each processor Pi stores a set of n=p points of L.
Output: Each processor Pi stores

i) A copy of H
ii) The set Fi.

0 Creation of S1. Each processor creates for each point l a record of S1 with two �elds: (x1(l); :::; xd(l))
and path = nil. Let j  1.

1 Global sort. Globally sort Sj by primary key path and secondary key xj.
2 Routing to locations. Each processor Pi divides its set into blocks of n=p consecutive records, computes

the global rank of each block and routes the kth block to processor Pkmodp.
3 Local range tree construction. Each processor Pi sequentially constructs the j-dimensional range

trees of Fi.
4 Broadcast tree intervals All processors perform an all-to-all broadcast of min(t) of each tree t built in

step 3.
5 Local hat completion. Each processor receives O(p logd�1 p) min values and locally completes its own

copy of H in dimension j.
6 If j = d then exit.

7 Local construction of Sj+1. Each record z 2 Sj stored in processor Pi belongs to a j dimensional range
tree hooked to a leaf y of H. For all z, walk in H from y's parent to the root of y's segment tree and
for each node u visited create a new element s of Sj+1 as follows: x1(s); : : : ; xd(s) = x1(z); : : : ; xd(z)
and path(s)=path(u).

8 End of loop. j  j + 1. Goto step 1.

Theorem 2 A distributed range tree T can be constructed on a CGM(s; p) in time O(s=p+Tc(s; p)).

Proof: The correctness of Algorithm Construct follows from the sequential construction algo-
rithm in [21], De�nitions 1 and 3, Lemma 1, and Theorem 1. Step 0 takes parallel time O(n=p).
Steps 1 through 8 are executed d times. In each phase, steps 1,2 and 4 involve global communica-
tions and take time O(Tc(s; p)). Steps 3,5,6,7,8 involve local computations only. Step 3 takes time
O(s=p) from [21]. Step 5 takes time O(p). Step 7 takes time O(s=p). Steps 6 and 8 take time O(1).
The overall time complexity is O(s=p+ Tc(s; p)). �

This theorem and the weak-CREW BSP sorting algorithm from [17] imply the following.

Corollary 1 A distributed range tree T can be constructed on a weak-CREW BSP in a constant
number of h-relations (h = �(s=p)) and O(s=p) local computation time.
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4 Parallel Range Search

As presented in the Introduction, the parallel range search problem consists of answering the set Q
of m = O(n) range queries in parallel. In [21], an O(logd n) sequential algorithm to solve the single
query problem is given. The sequential algorithm for a query q on a range tree T runs as follows.
Initially, q visits the root of T . When a query visits a node v in dimension j of T , it compares the

query in the jth dimension to the interval associated with v. There are four cases.

1. If the two segments are equal and j < d then proceed to the next dimension, and the next
node to be visited is the root of descendent(v).

2. If the two segments are equal and j = d then v is the last node on q's search path and the
segment tree rooted at v should be selected by q (i.e, all of its leaves are in the range of q).

3. If the two segments overlap (but are not equal), then the query q should be split into two
queries: q0, which is to visit the left child of v, and q00, which is to visit the right child of v.

4. If the two segments do not overlap the query q is deleted.

Note that each query q will visit at most O(logn) nodes in each dimension of T and O(logd n)
nodes will be selected in the �nal dimension d.

4.1 Identifying the Results

The parallel algorithm for solving m = O(n) queries takes the same basic approach. Initially, each
processor Pi stores a set Qi of n=p queries drawn from Q arbitrarily, and a distributed range tree
T as described in Section 2. Note that a query is ready to report its result only when it visits a
segment tree in dimension d of a range tree.

Thus, each processor Pi advances its queries through its copy of the hat H . This set dealt with,
some of these queries select segment trees in dimension d of H , while others need to continue in F .
The queries that have not completed their search paths and the required elements of F are then
evenly balanced such that each processor stores O( s

p
) queries along with the range trees from F

they require. Finally, the queries are sequentially advanced through elements of F until they select
segment trees in dimension d.

In the following algorithm, let �Q denote the queries which have selected a segment tree in
dimension d.

Algorithm Search

Input: Each processor Pi stores a set Qi of n=p queries drawn arbitrarily from Q and a distributed
range tree T .

Output: For each query q 2 Q, a set of selected segment trees in dimension d of T and whose
leaves correspond to the points of L in q's domain. Each such selected segment tree is given
by an element of �Q.

0 Each processor Pi, advances its queries Qi through the hatH . The queries which have already
selected a segment tree in dimension d ofH are put in �Q. Let Q̂ denote the remaining queries,
which need to visit a node in F .

1 Let Q̂Fj
denote those queries wanting to visit a tree t 2 Fj. Globally, compute c(Fj) =

djQ̂Fj
j=(jQ̂j=p)e.

2 Make c(Fj) copies of Fj and distribute them evenly such that each processor stores at most
two forests.
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3 Redistribute Q̂ evenly so that every query q 2 Q̂ is stored on a processor that also stores a
copy of the element of F which q is visiting.

4 Each processor Pj thus receives a set of queries and performs the sequential algorithm to select
the appropriate segment trees, and puts the corresponding queries in �Q, thus completing �Q.

Note that this algorithm depends on a load balancing phase, implemented in Steps 1 through
3, which evenly distributes queries and forests Fi, such that each processor has O(1) copies of each.
This approach to load balancing, which is used here and in Algorithm Report given below, is based
on a CGM technique described and analyzed in [13].

Theorem 3 Given a set Q of m = O(n) range queries and a distributed range tree T for a set L
of O(n) points in Ed, stored on a CGM(s; p). Each element of Q can identify the subset of points
from L in its domain, in time O( s logn

p
+ Tsort(s; p)).

Proof: The correctness of Algorithm Search follows from the sequential construction algo-
rithm [21] and the following three observations. First, all forests F0; F1; : : : ; Fp�1 have size O(s=p)
(Theorem 1). Then, the total number

Pp�1
j=0 c(Fj) of all forest copies created in Step 1 is O(p).

Finally, in Step 3, the number of queries moved to each processor is O(s=p). The space require-
ment is O( s

p
+ p) = O(p). In each step, the local computation time is at most O( s

p
log n). The

global communication in each step reduces to a constant number of global sorts and communication
operations (see [13]). Hence, the time complexity of Algorithm Search is O( s logn

p
+ Tsort(s; p)).

�

As in the previous section, combining this result with the weak-CREW BSP sort presented in
[17] we get:

Corollary 2 Given a set Q of m = O(n) range queries and a distributed range tree T for a set L
of O(n) points in Ed, stored on a weak-CREW, BSP. Each element of Q can identify the subset of
points from L in its domain, in a constant number of h-relations (h = �(s=p)) and O( s logn

p
) local

computation time.

4.2 Reporting the results

In the range search problem, the query speci�es a domain q in Ed, and the outcome of the search
depends on the application. It may be either the subset Lq of the points of L contained in q (the
report mode), or the number of such points, or more generally a function

N
l2Lq f(l), where f(l) is

an element of a commutative semigroup with operation 
 (the associative-function mode).
In this section we describe algorithms for both the associative-function and report modes run-

ning in time O( s logn
p

+Tsort(s; p)) and O( s logn
p

+Tsort(s; p)+
k
p
), respectively, where k is the number

of results to be reported.

Algorithm Associative-Function

Input: A distributed range tree T , an associative function f , and a set Q of n queries.
Output: f(q) for each query q 2 Q.

0 Compute f(v) bottom-up for each node v in dimension d of T as follows:
- Compute f(v) for each node in trees of F in dimension d sequentially.
- All-to-all broadcast the values of f(v) for each root of trees of F in dimension d.
- Compute f(v) for each node v of the hat H in dimension d.

1 Perform Algorithm Search.
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2 For each q0 2 �Q, we create the pair (q; f(root of selected segment tree)).
3 Sort the pairs according to their �rst coordinate q.
4 For each block of pairs sharing a common q, compute f over the whole block (using a segmented

partial sum).

Once we have the output of the Algorithm Search, it only remains to report the leaves of each
selected segment tree. In order to do this in a balanced manner, we weigh the selected segment
trees according to their sizes and redistribute them evenly, using again the load balancing procedure
from [13].

Algorithm Report

Input: A distributed range tree T and a set Q of n queries.
Output: For each q 2 Q and each l 2 L in q's range, the pair (q; l) is on some processor.

0 Perform Algorithm Search to obtain a set of queries q0 2 �Qi which have, each, selected segment trees
in dimension d of T .

1 Compute for all q 2 �Q having selected a segment tree t 2 T , the weight w(q) = 2level(root(t)) =
number of leaves of t.

2 Sort the elements of �Q by weight.
3 Compute the partial sum psw(q) for the element q of �Q with respect to the weight w(:), and let

dest(q) = pbpsw(q)=
P

�Qw(q)c. Perform a segmented broadcast with destination dest(:).

4 Make w(q) copies of each query q and add it to �Q, associating with each copy a path to a leaf of the
selected segment tree t. Each such copy corresponds to a pair (query of Q; point of L in q's range).

It is clear that algorithms Associative-Function and Report use only sequential procedures and
the load balancing technique from [13]. Therefore,

Theorem 4 Given a set Q of m = O(n) range queries and a distributed range tree T for a set L
of O(n) points in Ed, stored on a CGM(s; p). All queries can be answered in both the associative-
function and report modes in times O( s logn

p
+Tsort(s; p)) and O(

s logn
p

+Tsort(s; p)+
k
p
), respectively,

where k is the number of results to be reported.

Again, considering the weak-CREW BSP sort presented in [17] we get:

Corollary 3 Given a set Q of m = O(n) range queries and a distributed range tree T for a set L
of O(n) points in Ed, stored on a weak-CREW BSP. Each element of Q can identify the subset of
points from L in its domain, in a constant number of h-relations (h = �(s=p)) and O( s logn

p
+ k

p
)

internal computation time.

5 Conclusion

In this paper, we de�ned a distributed range tree, an adaptation of range trees in the parallel
distributed memory setting. This data structure allows optimal batched range search operations,
in associative-function or in report mode. Our algorithms for constructing and searching the dis-
tributed range tree are a combination of standard communication primitives (such as parallel sort,
used as a black box) and of standard sequential range tree operations. Not only should the imple-
mentation on any variety of multicomputer should be relatively easy for a range tree expert, but
also existing optimized sequential code can be re-used.

With respect to further research in this area, many avenues may be explored. For instance, the
construction algorithm uses parallel sort operations on sets of size n logd�1 p, the number of leaves
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of the range tree, while ideally we would only wish to sort sets of size at most n, the number of
input points. In addition, answering queries in batches of size n may be unsatisfactory in some
applications, where n is very large. The question of using parallelism to speed up just one single
query (or a few queries) is open, even in the much simpler case of segment trees, and would be
worth studying.
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