
Some Scaleable Parallel Algorithms for Geometric Problems

Laurence Boxer 1 Russ Miller 2 Andrew Rau-Chaplin 3

1Department of Computer and Information Sciences, Niagara University, NY 14109, USA. E-mail:

boxer@niagara.edu. Research partially supported by a grant from the Niagara University Research Council.
2Department of Computer Science, State University of New York at Bu�alo, Bu�alo, New York 14260,

USA. E-mail: miller@cs.bu�alo.edu. Research partially supported by NSF grant IRI9412415.
3Faculty of Computer Science, Dalhousie University, P.O. Box 1000, Halifax, Nova Scotia, Canada B3J

2X4. E-mail: arc@tuns.ca. Research partially supported by Natural Sciences and Engineering Research

Council of Canada.

Abstract

This paper considers a variety of geometric problems on input sets of size n using a coarse grained

multicomputer model consisting of p processors with
(np) local memory each (i.e.,
(np) memory

cells of �(logn) bits apiece), where the processors are connected to an arbitrary interconnection

network. It introduces e�cient scaleable parallel algorithms for a number of geometric problems

including the rectangle �nding problem, a variety of lower envelope problems, the maximal equally-

spaced collinear points problem, and the point set pattern matching problem. All of the algorithms

presented are scaleable in that they are applicable and e�cient over a very wide range of ratios of

problem size to number of processors. In addition to the practicality imparted by scaleability, these

algorithms are easy to implement in that all required communications can be achieved by a small

number of calls to standard global routing operations.

Key words and phrases: parallel algorithms, computational geometry, scaleable algorithms, coarse

grained multicomputer, lower envelope

1 Introduction

Computational geometry is an important area of research with applications in computer image pro-

cessing, pattern matching, manufacturing, robotics, VLSI design, and so forth. A typical problem

in parallel computational geometry calls for an e�cient solution to a query involving n geometric

objects on a parallel computer with p processors. Most previous theoretical work in parallel com-

putational geometry has assumed �ne grained parallelism, i.e., n
p = �(1), for machine models

including the PRAM, mesh, hypercube, and pyramid computer [A&L93, M&S96]. However, since

most commercial parallel computers are coarse grained, it is desirable that parallel algorithms be

scaleable, i.e., implementable and e�cient over a wide range of ratios of n
p . Recently, there has been

growing interest in developing scaleable parallel algorithms for solving geometric problems on coarse

grained machines (see [Boxe97, De&Dy95, DFR93, FRU95, DDDFK95]). This paper continues this

e�ort by describing new scaleable algorithms for a variety of problems in pattern recognition, a

variety of lower envelope problems (including a nearly-optimal algorithm for determining the lower

envelope of polynomials), and other problems in computational geometry.

The paper is organized as follows.

� Section 2: We de�ne the model of computation and discuss fundamental data movement

operations.

� Section 3: We give a scaleable parallel algorithm to �nd all rectangles determined by a set of

planar points, and we discuss straightforward solutions to related problems.

� Section 4: We give a nearly-optimal scaleable algorithm that yields a description of the lower

envelope of polynomials of bounded degree, and we discuss a variety of scaleable parallel

algorithms for problems whose solutions depend on such descriptions.

� Section 5: We give a scaleable parallel algorithm to �nd all maximal equally spaced collinear

subsets of a �nite point set in a Euclidean space.

� Section 6: We give scaleable parallel algorithms to �nd all subsets of a �nite set in a Euclidean

space that match, in the sense of geometric congruence, a given pattern.

� Section 7: We give some concluding remarks.

1

Some researchers feel that a \good" parallel algorithm is one with work (product of running

time and number of processors) the same as, or perhaps only slightly more than, that of the best

serial algorithm for the same problem. We note this goal is often impossible on certain parallel

architectures; e.g., on a �ne grained mesh of n processors, optimal semigroup operations and sort-

ing of evenly distributed data take �(n3=2) work [M&S96]; while, for problems of size n, serial

semigroup operations require �(n) work and sorting requires �(n logn). We feel that in the world

of applications, users of parallel computers are often more interested in speed than in conservation

of work e�ciency. We feel that all algorithms presented in this paper are e�cient, in that their

running times are typically bounded above by an expression no larger than the sorting time for the

volume of output (or, in some cases, the sorting time of a slightly larger volume of seemingly crucial

intermediate data, e.g., in our lower envelope problems). In section 2.3, we comment further on why

we feel this is an appropriate standard of e�ciency. All our algorithms show signi�cant speedup as

compared with the best serial solutions to their respective problems.

Preliminary versions of this paper appear in [BMR96a, BMR96b]. Some of the results presented

in the current paper improve (in some cases, by correcting errors; in others, by demonstrating faster

running times) results of [BMR96a, BMR96b].

2 Preliminaries

2.1 Model of Computation

The Coarse Grained Multicomputer model, or CGM(n; p) for short, considered in this paper consists

of a set of p processors with
(np) local memory each (i.e.,
(np) memory cells of �(logn) bits

apiece in every processor), either connected to some arbitrary interconnection network or sharing

global memory. Commonly used interconnection networks for a CGM include the 2D-mesh (e.g.,

Intel Paragon), 3D-mesh (e.g., Cray T30), hypercube (e.g., Intel iPSC/860) and the fat tree (e.g.,

Thinking Machines CM-5). Each processor may exchange messages of O(logn) bits with any one

of its immediate neighbors in constant time. For determining time complexities, we will consider

both local computation time and interprocessor communication time, in the standard way. The

term \coarse grained" refers to the fact that the size
(np) of each local memory is assumed to be

\considerably larger" than �(1). Our de�nition of \considerably larger" will be that n
p � p. This

2

implies that each processor has at least enough local memory to store the ID number of every other

processor. Typically, commercial Coarse Grained Multicomputers like the IBM SP2, Cray T30, Intel

Paragon, or TMC CM-5 have local memories � 32 Mbytes. For a more detailed description of the

model and its associated operations, see [DFR93].

Recently, there has been a growing interest in coarse grained computational models [Vali90,

CKPSSSSE, H&K93] and the design of coarse grained geometric algorithms [DFR93, FRU95,

DDDFK95]. The work on computational models has tended to be motivated by the observation

that \fast algorithms" for �ne-grained models rarely translate into fast code running on coarse

grained machines. The BSP model, described by Valiant [Vali90], uses slackness in the number of

processors and memory mapping via hash functions to hide communication latency and provide

for the e�cient execution of �ne grained PRAM algorithms on coarse grained hardware. Culler et

al. [CKPSSSSE] introduced the LogP model which, using Valiant's BSP model as a starting point,

focuses on the technological trend from �ne grained parallel machines towards coarse grained sys-

tems and advocates portable parallel algorithm design. Other coarse grained models, including the

C3 [H&K93] and the Coarse Grained Multicomputer (CGM) model used in this paper [DFR93],

focus more on utilizing local computation and minimizing global operations.

The assumption n
p � p (equivalently, n � p2) implies, for example, that for a machine to process

100,000 data items over 100 processors, each processor must have a capacity of at least 1,000 data

items. This is in contrast to the �ne-grained model, in which each processor is expected to store

only a small (e.g., less than 10) number of data items.

2.2 Terminology, Notation, Assumptions

Throughout the paper, we use Rd to denote Euclidean d�dimensional space.

Sorting is used in most of the algorithms presented in this paper. We therefore assume that our

data sets may be linearly ordered in some fashion that should be clear from context.

A set of k�tuples X = f(x1; x2; : : : ; xk)g is in lexicographic order if (x1; : : : ; xk) < (x01; : : : ; x
0

k)

means

� x1 < x01; or

� for some integer j, 1 � j < k, x1 = x01 and x2 = x02 and : : : and xj = x0j and xj+1 < x0j+1.

3

2.3 Fundamental Operations

For a given problem, suppose Tseq and Tpar are, respectively, the running times of the problem's best

sequential and best parallel solutions. If Tpar = �(
Tseq
p), then the parallel algorithm is optimal,

to within a constant factor. In practice, analysis of a CGM algorithm usually must account for

the time necessary for interprocessor communications and/or data exchanges (e.g., in global sorting

operations) in order to evaluate Tpar. The time for these communications may be asymptotically

greater than �(
Tseq
p).

We denote by Tsort(n; p) the time required by the most e�cient algorithm to sort �(n) data

on a CGM(n; p). Sorting is a fundamental operation that has been implemented e�ciently on all

models of parallel machines (theoretical and existing). Sorting is important not only in its own right,

but also as a basis for a variety of parallel communications operations. In particular, each of the

following data movement operations can be implemented via sorting.

� Multinode broadcast: Every processor sends the same �(1) data to every other processor.

� Total exchange: Every processor sends (not necessarily the same) �(1) data to every other

processor.

� Permutation exchange: Let � : f1; 2; : : : ; pg ! f1; 2; : : : ; pg be a permutation (a function that

is one-to-one and onto). Every processor Pi sends a list of n
p data items to processor P�(i)

(e.g., this operation could be used to rotate data circularly among sets of processors).

� Semigroup operation: Let X = fx1; : : : ; xng be data distributed evenly among the processors

and let � be a binary operation on X that is associative and that may be computed in �(1)

serial time. Compute x1 � x2 � : : : � xn. Examples of such operations include total, product,

minimum, maximum, and, and or.

� Parallel pre�x: Let X = fx1; : : : ; xng be data distributed evenly among the processors and

let � be a binary operation on X that is associative and that may be computed in �(1) serial

time. Compute all n members of fx1; x1 � x2; : : : ; x1 � x2 � : : : � xng.

� Merge: Let X and Y be lists of ordered data, each evenly distributed among the processors,

4

with jX j+ jY j = �(n). Combine these lists so that X [Y is ordered and evenly distributed

among the processors.

� Parallel search: Let X = fx1; : : : ; xng and Y = fy1; : : : ; yng be ordered lists (if necessary,

we sort X and Y separately), each distributed evenly among the processors. Each xi 2 X

searches Y for a value y0i or a range of values (in the latter case, we mean xi \learns" the �rst

and last indices of those members of Y with sort key in a given interval Ii).

� Formation of combinations: Let X = fx1; : : : ; xng and let k be a �xed positive integer,

1 < k < n. Form the set of �(nk) combinations of members of X that have exactly k

members, ffxi1 ; : : : ; xikg j 1 � i1 < i2 < : : : < ik � ng.

� Formation of pairs from lists: Let X = fx1; : : : ; xkg and let Y = fy1; : : : ; yng. Form all

pairs (xi; yj), where xi 2 X , yj 2 Y .

The following result will be useful in comparing the resources required by problems of di�erent

sizes.

Lemma 2.1 For positive integers k; n; p, we have

k � Tsort(n; p) = O(Tsort(kn; p)) on a CGM(kn; p):

Proof: This follows from the fact that the work in sorting is superlinear in the amount of data

being sorted. �

Since p2 � n, the running times in the next result improve the Tsort(n; p) times of [DFR93] for

the same operations.

Proposition 2.2 The following operations may be performed on a CGM(n; p) in Tsort(p
2; p) time.

� Multinode broadcast;

� Total exchange.

Proof: We give a proof for multinode broadcast. A proof for total exchange is similar and is left

to the reader. We give the following algorithm.

5

1. Let xi be the data value to be sent by processor Pi, i 2 f1; : : : ; pg, to all processors. In parallel,

every processor Pi creates records (xi; 1); (xi; 2); : : : ; (xi; p). This takes �(p) time.

2. Sort the p2 records created above by the second component, so that (xi; j) ends up in Pj . This

takes Tsort(p
2; p) time.

The assertion follows. �

Proposition 2.3 A permutation exchange operation may be implemented in time Tsort(n; p) on a

CGM(n; p).

Proof: The following algorithm su�ces.

1. Let � be the permutation function of the operation. In parallel, each processor Pi sequentially

assigns the tag value �(i) to each of its n
p data items. This takes �(np) time.

2. Sort the data by the tag values. This takes Tsort(n; p) time.

Since the algorithm's running time is dominated by the sort step, the assertion follows. �

The following improves the Tsort(n; p) running time of [BMR96a].

Proposition 2.4 A semigroup operation on evenly distributed data x1; : : : ; xn may be implemented

in time �(np) + Tsort(p
2; p) on a CGM(n; p). At the end of this operation, all processors have the

value of X = x1 � : : : � xn.

Proof: We give the following algorithm.

1. Without loss of generality, processor Pk, k 2 f1; : : : ; pg, has the data values

x (k�1)n
p +1

; x (k�1)n
p +2

; : : : ; x kn
p
:

In parallel, each processor Pk computes its partial product

gk = x (k�1)n
p +1

� x (k�1)n
p +2

� : : : � x kn
p
:

This takes �(np) time.

6

2. Perform a multinode broadcast, in which processor Pk sends gk to all processors. By Proposi-

tion 2.2, this takes Tsort(p
2; p) time.

3. Each processor computes g1 � g2 � : : : � gp in �(p) time.

Since p � n=p, the assertion follows. �

The following improves the Tsort(n; p) running time of [BMR96a].

Proposition 2.5 A parallel pre�x operation may be implemented in time �(np) + Tsort(p
2; p) on

a CGM(n; p). At the end of the operation, the pre�x x1 � x2 � : : : � xi is in the same processor as

xi, i 2 f1; 2; : : : ; ng.

Proof: We give the following algorithm.

1. Without loss of generality, processor Pk, k 2 f1; : : : ; pg, has the data values

x (k�1)n
p +1

; x (k�1)n
p +2

; : : : ; x kn
p
:

In parallel, each processor Pk computes its pre�xes r (k�1)n
p +i

, i 2 f1; 2; : : : ; np g, de�ned by

r (k�1)n
p +1

= x (k�1)n
p +1

;

r (k�1)n
p +i

= r (k�1)n
p +i�1

� x (k�1)p
n +i

; i 2 f2; : : : ;
n

p
g:

This takes �(np) time. Observe processor P1 now has its desired pre�xes, r1; r2; : : : ; rn
p
.

2. Perform a multinode broadcast operation in which processor Pk sends r kn
p

to all processors.

By Proposition 2.2, this takes Tsort(p
2; p) time.

3. In parallel, each processor Pk, 2 � k � p, computes the pre�xes sk and tk;i, i 2 f1; 2; : : : ;
n
p g

given by

sk = rn
p
� r 2n

p
� : : : � r (k�1)n

p

;

tk;i = sk � r (k�1)n
p +i

; i 2 f1; 2; : : : ;
n

p
g:

This is done in �(np) time. The pre�xes tk;i are the results desired of the algorithm that

weren't already computed in the �rst step.

7

The assertion follows. �

Proposition 2.6 Let X and Y each be lists of ordered data, evenly distributed among the processors

of a CGM(n; p), where jX j+ jY j = �(n). Then X and Y may be merged in Tsort(n; p) time.

Proof: Sort the list Z = X [Y in Tsort(n; p) time. �

Proposition 2.7 Let X and Y each be lists of data, evenly distributed among the processors of a

CGM(k + n; p), where jX j = k and jY j = n. Then a parallel search, in which each member of X

searches Y for a value or range of values, may be performed in Tsort(k + n; p) time.

Proof: We give the following algorithm for a search in which every member of X searches Y for

a single value. Minor modi�cations give an algorithm in which every member of X searches Y for a

range of values.

1. Sort X in Tsort(k; p) time.

2. Let x0i be the value sought by xi. Let X
0 = fx01; : : : ; x

0

kg: For each xi, create a record ri with

components xi; x
0

i, and report. Let R = fr1; : : : ; rkg. This takes �(
k
p) time.

3. Sort R[Y , using the x0i component of members of R as the key �eld. This takes Tsort(k+n; p)

time.

4. Use parallel pre�x and post�x operations so every member of R learns whether or not its

nearest member of Y in the sorted R [Y has the desired x0i value. If so, set the report �eld

equal to the corresponding member of Y ; otherwise, set the report �eld to fail. This takes

�(k+np) + Tsort(p
2; p) time.

5. Sort the members of R (found in R [Y) by the xi component. This takes O(Tsort(k + n; p))

time.

6. Each member of R is now in the processor in which it was created, and \reports" its report

component to the corresponding xi. This takes �(
k
p) time.

Thus, the algorithm takes Tsort(k + n; p) time. �

8

Proposition 2.8 Let X = fx1; : : : ; xng. Let k > 1 be a �xed integer. Then the set of all

combinations of members of X with k members apiece, ffxi1 ; : : : ; xikg j 1 � i1 < i2 < : : : < ik � ng

can be formed in

�(
nk

p
) + p � Tsort(n; p) = O(Tsort(n

k; p))

time on a CGM(nk ; p). If p2 = O(n
k�1

log n) (which must happen when k > 2), the running time is

�(n
k

p), which is optimal.

Proof: The algorithm follows.

1. Use p � 1 circular rotation operations of �(np) data per processor so that each processor has

the entire list X . This takes p � Tsort(n; p) time.

2. In parallel, each processor Pi computes one-p
th of all the �(nk) combinations of k members of

X . This takes �(n
k

p) time.

Thus, the time required is �(n
k

p) + p � Tsort(n; p). From Lemma 2.1, we have p � Tsort(n; p) =

O(Tsort(np; p)), which is (since p < n and k � 2) O(Tsort(n
k; p)). Thus, the running time is

O(Tsort(n
k; p)).

If we consider the sorting term in the running time, we have, since parallel sorting is faster than

serial,

p � Tsort(n; p) = O(np logn) = O(
np2 logn

p
): (1)

If p2 = O(n
k�1

logn) (which must happen if k > 2 since p2 � n), it follows from statement (1) that

p � Tsort(n; p) = O(
nk

p
):

Thus, if p2 = O(n
k�1

logn), the running time is �(
nk

p), which is optimal, since there is �(nk) output. �

Proposition 2.9 Let X = fx1; : : : ; xkg and Y = fy1; : : : ; yng be two lists evenly distributed

among the processors of a CGM(kn; p), with p1=2 � k � n. Then the set

X � Y = f(xi; yj) j 1 � i � k; 1 � j � ng

9

may be computed in

�(
kn

p
) + p � Tsort(k; p) = O(Tsort(kn; p))

time. If p2 log k = O(n), the running time reduces to �(knp), which is optimal.

Proof: Let zij = (xi; yj), 1 � i � k, 1 � j � n. The following algorithm su�ces.

1. Allocate space for the array

Z = fzij j 1 � i � k; 1 � j � ng;

its entries uninitialized, in O(knp) time.

2. Use p� 1 circular rotations of X so that every processor has a copy of the entire list X . This

takes p � Tsort(k; p) time, which, by Lemma 2.1 is O(Tsort(kp; p)) = O(Tsort(kn; p)).

3. Now every processor has all of X and its original share of Y . In parallel, every processor

computes its share of X � Y corresponding to its share of Y in �(knp) time.

Thus, the algorithm requires

�(
kn

p
) + p � Tsort(k; p) = O(Tsort(kn; p))

time.

Since parallel sorting is faster than serial, the sorting term in the running time is

p � Tsort(k; p) = O(kp log k) = O(
kp2 log k

p
):

If p2 log k = O(n), it follows that this sorting term is

p � Tsort(k; p) = O(
kn

p
);

and the running time is therefore �(knp), which is optimal, since there is �(kn) output. �

10

3 Rectangle Problems

In this section, we give a scaleable parallel algorithm to solve the rectangle �nding or all rectangles

(AR) problem. We say a polygon P is from S � R2 if all vertices of P belong to S. The AR problem

is to �nd all rectangles from S. A serial solution to this problem is given in [VK&D91].

Proposition 3.1 [VK&D91] Let S � R2, jSj = n. Then a solution to the AR problem has

�(n2 logn) output in the worst case. Therefore,
(n2 logn) time is required for any serial algo-

rithm that solves the AR problem. �

We have the following.

Theorem 3.2 Let S = fv0; v1; : : : ; vn�1g be given as input. Then the AR problem can be solved in

Tsort(n
2 logn; p) time on a CGM(n2 logn; p).

Proof: Note that a rectangle in R2 may be determined by a pair of opposite sides with nonnegative

slope. This observation allows us to avoid duplicate construction of rectangles. We give an algorithm

with the following steps.

1. Form the set L of all line segments with endpoints in S and with nonnegative slopes, where each

member of L is represented as a pair (vi; vj) of members of S such that vi < vj with respect

to lexicographic order. This may be done in O(Tsort(n
2; p)) time by a trivial modi�cation to

the algorithm associated with Proposition 2.8.

2. De�ne the order of the elements ` of L, in decreasing order of signi�cance, by

(a) slope;

(b) length;

(c) equation ax+by+c = 0 (with �rst non-zero coe�cient equal to 1) of the line perpendicular

to ` at its �rst endpoint (the order of equations is the lexicographic order of triples

(a; b; c)); and

(d) the �rst endpoint of `.

11

Note that in this order, if `0 < `1 < `2 and (`0; `2) is a pair of opposite sides of a rectangle,

then (`0; `1) and (`1; `2) are pairs of opposite sides of rectangles. Sort the members ` of L.

This takes Tsort(n
2; p) time.

3. Use parallel pre�x operations to do the following. For each ` 2 L, determine the unique (if

they exist) `0; `1 2 L such that

� `0 � ` � `1, and

� if `0 � `0 � `1 and `0 6= ` then ` and `0 are opposite sides of a rectangle.

Also determine, for each ` 2 L,

r` = ord(`1)� ord(`);

the number of rectangles for which ` is the �rst side, and

P` = �`0<` r`0 ;

the number of rectangles whose �rst sides precede `. By Proposition 2.5, these operations

require �(n
2

p) + Tsort(p
2; p) time.

4. Assign the �rst side of each of the O(n2 logn) rectangles as follows. The ith rectangle, P` <

i � P`+r`, gets ` as its �rst side. Since the values of the P` and r` may be assumed associated

with the corresponding ` in the ordered set L, the �rst side of every rectangle can be found

via parallel search operations in Tsort(n
2 logn; p) time.

5. Assign the second side (the one opposite the �rst side) of each of the O(n2 logn) rectangles as

follows. The ith rectangle, P` < i � P` + r`, has for its second side the member of L whose

index in L is ord(`) + (i� P`). Thus, the second side of all rectangles may be determined via

parallel search operations in Tsort(n
2 logn; p) time.

Thus, the running time of the algorithm is Tsort(n
2 logn; p). �

Straightforward modi�cations to the algorithm of Theorem 3.2 yield the following (the output

estimates are in [VK&D91, P&Sh92]):

12

Problem Worst Case Output Tpar
All Isonormal Rectangles �(n2) Tsort(n

2; p) on CGM(n2; p)
All Squares �(n2) Tsort(n

2; p) on CGM(n2; p)

4 Lower Envelope Problems

4.1 Describing the Lower Envelope of Polynomials

Let S be a set of polynomial functions. Finding the lower envelope or minimum of S (equivalently,

the upper envelope or maximum) is fundamental to the solution of a variety of interesting problems.

The lower envelope of S = ffi : R
1 ! R1 j i = 1; : : : ; ng is the function LE : R1 ! R1 de�ned by

LE(x) = minffi(x) j i = 1; : : : ; ng:

We will abuse notation and refer to this function as LE(S). We say a piece of LE(S) is a pair (fi; I),

where fi 2 S and I is a maximal interval on which LE(x) = fi(x) identically. Thus, the problem

of describing LE(x) is that of determining an ordered (by intervals) list of the pieces of LE(x).

Let k be a �xed positive integer. Suppose the members of S are all polynomial functions of

degree at most k. Then the maximal number of pieces of LE(S) is denoted by �(n; k). It was shown

in [Atal85a] that �(n; s) is the maximal length of a Davenport-Schinzel sequence [D&S65] de�ned

by parameters n and s as follows.

De�nition 4.1 [Atal85a] Let n and s be positive integers. Let Cn = fc1; : : : ; cng be an alphabet of n

distinct symbols. Let Ln;s be the set of strings over Cn that do not contain any cici as a substring and

that do not contain as a subsequence of their characters any of the following \forbidden sequences"

Es
ij ; i 6= j, de�ned for positive integer p by

Es
ij =

8<
:

cicjci if s = 1
Es�1
ij cj if s = 2p

Es�1
ij ci if s = 2p+ 1:

The strings in Ln;s are called Davenport-Schinzel sequences. �

Notice that the presence of some Es
ij as a subsequence of the characters of a string z, not nec-

essarily as a substring of z, is su�cient to disqualify z from membership in Ln;s. For example,

13

z = c1c2c3c1c2 62 L3;2, since z contains as a subsequence of its characters the sequenceE
2
12 = c1c2c1c2,

which is forbidden to members of L3;2.

The following is a generalization of Lemma 2.4 of [B&M89a].

Lemma 4.2 For all positive integers k; n; p, if p is a factor of n then

p�(n=p; k) � �(n; k):

Proof: The lemma is stated in the form in which it will be used later in the paper. We note it

su�ces to prove the equivalent statement,

p�(n; k) � �(np; k); for all positive integers k; n; p: (2)

The proof of statement (2) is given by induction on p. For p = 1, the truth of statement (2) is

obvious.

Now suppose statement (2) is true for p � u, for some positive integer u. Recall the alphabet of

Ln;k is Cn = fc1; : : : ; cng. Let m = �(nu; k). Let a 2 Lnu;k be such that jaj = m. Let a = a1 : : : am

where ai 2 Cnu; 1 � i � m. Let m0 = �(n; k). Let z 2 Ln;k be such that jzj = m0. Let z = z1 : : : zm0

where zi 2 Cn; 1 � i � m0. Let z0 = z01 : : : z
0

m0 where

z0i = cnu+j if zi = cj ; 1 � i � m0:

Then z0 2 Ln;k is de�ned over the alphabet C 0n = fcnu+1; cnu+2; : : : ; cn(u+1)g, which is disjoint

from the alphabet Cnu on which z is de�ned, and jz0j = m0. Hence z00 = az0 2 Ln(u+1);k and

�(n(u+ 1); k) � jz00j = jaj+ jz0j = m+m0 = �(nu; k) + �(n; k)

� (by inductive hypothesis) u�(n; k) + �(n; k) = (u+ 1)�(n; k);

as desired. This completes the proof. �

The function �(n; k) is, at worst, slightly more than linear in n. In the following, �(n) is the

extremely slowly growing inverse Ackermann function (c.f., [H&Sh86]). We have the following.

Theorem 4.3 The following results concerning the function �(n; k) are known.

14

� �(n; 1) = n and �(n; 2) = 2n� 1 [D&S65].

� �(n; 3) = �(n�(n)) [H&Sh86].

� �(n; 4) = �(n 2�(n)) [Agar91].

� For s > 4;

�(n; s) =

(
O(n � 2O([�(n)](s�2)=2)) if s is even;

O(n � 2O([�(n)](s�3)=2 log(�(n)))) if s is odd

[AShSh89]. �

In the following, we assume that k is a positive integer and that S is a set of functions, polynomials

of degree at most k (or more generally, k-intersecting [Hersh89], i.e., each pair of members of S has

graphs that intersect in at most k points). As was done in [Atal85a, B&M89a, B&M89b, Hersh89],

we also assume that for ffi; fjg � S, i 6= j, all solutions of the equation

fi(x) = fj(x)

may be determined in �(1) serial time. We note that somewhat di�erent resources are required for

the case of functions with a common interval domain than for the more general case.

Theorem 4.4 [Atal85a] Let k be a �xed positive integer and let S be a set of polynomial functions,

each of degree at most k. If all members of S are de�ned on the same interval, then the lower envelope

of S has at most �(n; k) pieces generated by members of S and may be described in O(�(n; k) log n)

serial time. �

Theorem 4.5 [H&Sh86, Wi&Sh88] Let k be a �xed positive integer and let S be a set of polynomial

functions, each of degree at most k. If the domain of each member of S is an interval of R1 (not

necessarily the same interval for each member of S), then the lower envelope of S has at most

�(n; k + 2) pieces generated by members of S. �

15

Theorem 4.6 [Hersh89] Let k be a �xed positive integer and let S be a set of polynomial functions,

each of degree at most k. If the domain of each member of S is an interval of R1 (not necessarily the

same interval for each member of S), then a description of the lower envelope of S may be computed

in O(�(n; k + 1) logn) serial time. �

Theorem 4.6 is perhaps surprising, in light of Theorem 4.5. One might expect that the serial

time needed to produce the ordered list of O(�(n; k + 2)) pieces that describe the lower envelope

would be O(�(n; k + 2) logn). However, the algorithm of [Hersh89] uses a clever insight to reduce,

slightly, the running time to O(�(n; k + 1) logn).

For the following, it is useful to observe that 1 < p � n1=2 implies log np = �(logn). We therefore

will use the simpler logn in asymptotic expressions. We have the following (compare [DFR93]).

Theorem 4.7 Let k be a �xed positive integer and let S be a set of polynomial functions, each of

degree at most k. Assume that, initially, descriptions of the members of S are stored O(np) per

processor. Then the lower envelope of S may be described using the following resources.

� O[�(�(np ; k); k+1) logn + Tsort(p�(
n
p ; k); p)] time on a CGM(p �(�(np ; k); k+2); p), if there

is an interval J � R1 such that J is the domain of each member of S.

� O[�(�(np ; k+2); k+1) logn + Tsort(p�(
n
p ; k+2); p)] time on a CGM(p �(�(np ; k+2); k+2); p)),

if the domain of each member of S is an interval in R1 (not necessarily the same interval for

each member of S).

Proof: The following algorithm solves the problem for both cases. We analyze the cases sepa-

rately.

1. Let Sj be the subset of S whose members are stored initially in processor Pj . In parallel, each

processor Pj computes sequentially LE(Sj).

� If all members of S have the same interval domain, there are O(�(np ; k)) pieces of LE(Sj)

stored in Pj . The time required is O(�(np ; k) logn), by Theorem 4.4.

� If all members of S have some (not necessarily the same) interval for domain, there are

O(�(np ; k+2)) pieces of LE(Sj) stored in Pj . The time required is O(�(
n
p ; k+1) logn),

by Theorem 4.6.

16

2. Globally sort the collection of pieces of [pj=1LE(Sj) by the left endpoints of their intervals. In

the case of a common interval domain for members of S, each processor Pj now has a new set

Vj of O(�(
n
p ; k)) pairs (fi; I) as described above, where each pair is a piece of some LE(Sj0);

in the more general case under consideration, O(�(np ; k + 2)) such pairs. As a result of the

sort, if j < j0, (fi; Ij) 2 Vj and (fi0 ; Ij0) 2 Vj0 , then the left endpoint of Ij is less than or equal

to the left endpoint of Ij0 .

� For members of S having common interval domain, this step requires Tsort(p �(
n
p ; k); p)

time.

� For the more general case, this step requires Tsort(p �(
n
p ; k + 2); p) time.

3. In parallel, each processor Pj computes sequentially LE(Vj). Since the members of Vj need not

have the same domain, we use the algorithm of Theorem 4.6 for both cases under consideration.

� If the members of S have a common interval domain, the time required for this step is

O(�(�(np ; k); k + 1) logn), and LE(Vj) has O(�(�(
n
p ; k); k + 2)) pieces.

� In the more general case, this step takes O(�(�(np ; k+2); k+1) logn) time, and LE(Vj)

has O(�(�(np ; k + 2); k + 2)) pieces.

4. Let Rj = (fij ; Ij) be the rightmost piece of LE(Vj). This is the only piece of LE(Vj) whose

interval can intersect with the interval of a piece of LE(Vj0) for j
0 > j. Perform a multinode

broadcast so that processor Pj sends Rj to all other processors. Hence, each processor now

stores all of R1; : : : ; Rp. By Proposition 2.2, this step requires Tsort(p
2; p) time.

5. In parallel, each processor describes LE(fR1; : : : ; Rpg) in O(�(p; k + 1) log p) time, using the

algorithm of Theorem 4.6. The number of pieces of LE(fR1; : : : ; Rpg) is O(�(p; k + 2)).

6. By our choice of the Rj , we can describe pieces of LE(S) as follows. In parallel, each processor

Pj merges the pieces of LE(Vj) with those of LE(fR1; : : : ; Rpg).

� If the members of S have a common interval domain, this step takes O(�(�(np ; k); k+2))

time, which, by Theorem 4.3, is O(�(�(np ; k); k + 1) logn).

17

� In the more general case we consider, this step takes O(�(�(np ; k+2); k+2)) time, which,

by Theorem 4.3, is O(�(�(np ; k + 2); k + 1) logn).

7. There may be adjacent pieces with the same function, i.e., the previous step may have created

pieces (fi; I) and (fj ; I
0) such that i = j and the right endpoint of I coincides with the left

endpoint of I 0. Wherever this happens, we wish to combine the pairs into a single piece

(fi; I [I
0). This can be done via a parallel pre�x operation.

� If the members of S have a common interval domain, the time required for this step is

O(
p �(�(np ; k); k + 2)

p
) + Tsort(p

2; p) = O(�(�(
n

p
; k); k + 2)) + Tsort(p

2; p)

= (as above) O[�(�(
n

p
; k); k + 1) logn + Tsort(p�(

n

p
; k); p)]:

� In the more general case we consider, the time required for this step is

O(
p �(�(np ; k + 2); k + 2)

p
) + Tsort(p

2; p) = O(�(�(
n

p
; k + 2); k + 2)) + Tsort(p

2; p)

= (as above) O[�(�(
n

p
; k + 2); k + 1) logn + Tsort(p�(

n

p
; k + 2); p)]:

Thus, the required resources are as follows.

� For the case in which the members of S have the same interval domain, the algorithm uses

O[�(�(np ; k); k + 1) logn + Tsort(p�(
n
p ; k); p)] time on a CGM(p�(�(np ; k); k + 2); p).

� For the case in which we assume that the members of S have (not necessarily the same) interval

domains, the algorithm uses O[�(�(np ; k + 2); k + 1) logn + Tsort(p�(
n
p ; k + 2); p)] time on a

CGM(p�(�(np ; k + 2); k + 2); p).

�

In the algorithm of Theorem 4.7, we produce a sorted (by intervals) list of

� O(�(n; k)) pieces in the case of all members of S having the same interval domain;

� O(�(n; k+2)) pieces in the case of all members of S having (not necessarily the same) interval

domains.

18

It follows by Theorem 4.3 and Lemma 4.2 that the time and memory resources required by our

algorithm are very close to optimal.

In the following, we discuss several applications of Theorem 4.7. We will use the following

abbreviations.

Tenv(n; k; p) = �(�(
n

p
; k); k + 1) logn + Tsort(p�(

n

p
; k); p);

CGMenv(n; k; p) = CGM(p �(�(
n

p
; k); k + 2); p);

T g
env(n; k; p) = �(�(

n

p
; k + 2); k + 1) logn + Tsort(p�(

n

p
; k + 2); p);

CGMg
env(n; k; p) = CGM(p �(�(

n

p
; k + 2); k + 2); p):

Following [Atal85a], we say the function f(t) has a jump discontinuity at u if both limt!u+ f(t)

and limt!u� f(t) exist, and limt!u+ f(t) 6= limt!u� f(t); and the function f(t) has a transition at

t0 if f(t) switches between being de�ned and unde�ned on either side of t0.

The next result is a generalization of the complexity bound for lower envelope functions to

functions with transitions and jump discontinuities.

Lemma 4.8 [B&M89a] Let k be a positive integer. Let f1; : : : ; fn be real-valued functions of time,

such that (a) every fi is continuous except for at most pi jump discontinuities, (b) every fi has at

most qi transitions, where (c) pi + qi � k, and (d) no pair of distinct functions fi and fj intersect

more than s times. Then h(t) = minff1(t); : : : ; fn(t)g has no more than �(n; s+2k) pieces generated

by ff1; : : : ; fng. �

Theorem 4.9 Let s and k be positive integers. Let f1; : : : ; fn be as in Lemma 4.8. Assume also

that the fi satisfy

� each fi has a �(1) storage description;

� each value fi(t) may be computed in �(1) time by a single processor; and

� for i 6= j, there are at most s distinct real solutions to the equation fi(t) = fj(t), all of which

can be found by a single processor in �(1) time.

19

Then the function h(t) = minff1(t); : : : ; fn(t)g can be constructed in Tenv(n; s + 2k; p) time by a

CGMenv(n; s+ 2k; p).

Proof: The assertion may be proved by an argument that is virtually identical to that given for

Theorem 4.7. �

The next two lemmas will be useful when we combine piecewise de�ned functions.

Lemma 4.10 [B&M89a] Let f(t) and g(t) be functions from R1 to R1. Let m and n be positive

integers. Suppose f(t) has m pieces and g(t) has n pieces. Then the intervals of pieces of f(t) have,

altogether, at most m+ n nondegenerate intersections with the intervals of pieces of g(t). �

Lemma 4.11 [B&M89a] Let m and k be positive integers. Let f(t) and g(t) be functions from R1

to R1. Suppose that for every piece of both f(t) and g(t), the function of the piece is a polynomial

whose degree is at most k. Assume that the intervals of the pieces of f(t) have m nondegenerate

intersections with the intervals of the pieces of g(t). Then the function minff(t); g(t)g has at most

m(k + 1) pieces. �

4.2 Minimization of Hausdor� Distance

The Hausdor� distance [Nadl78] is a measure of how well two sets A and B resemble each other with

respect to their locations; if A and B are nonempty �nite subsets of a Euclidean space, regarded as

statistical populations, this measure is an alternative to more common statistical measures of popu-

lation similarity. When A is subjected to a translation T so that h = H(T (A); B) is minimized, h

may be regarded as a measure of how well an image A matches a template B.

In this section, we let d(a; b) = ja� bj be the Euclidean metric for R1. We abuse notation and

write

d(z; A) = minfd(z; a) j a 2 Ag:

The \nonsymmetric" or \one-way" Hausdor� measure is

H�(A;B) = max
a2A

d(a;B):

Thus, we have the following.

20

Proposition 4.12 Let A [B � R1, jAj = m, and jBj = n. Then

H�(A;B) = maxfH�(fag; B) j a 2 Ag: �

The Hausdor� metric H(A;B) is de�ned [Nadl78] by

H(A;B) = maxfH�(A;B); H�(B;A)g:

For A � R1, t 2 R1, let

A+ t = fa+ t j a 2 Ag:

In [R�ote91], a serial algorithm is given to solve the following problem: Let A and B be �nite subsets

of the real line. Find a translation t of A so that the Hausdor� distance H(A+ t; B) is minimized.

The algorithm of [R�ote91] is dominated by the description of the function H(A+ t; B), which is an

upper envelope problem. We give in Theorem 4.18 an e�cient algorithm to solve this problem on a

coarse grained multicomputer.

It will be useful to assume the members of A and those of B are ordered:

a1 < a2 < : : : < am; b1 < b2 < : : : < bn:

There is no loss of generality in making such an assumption, since if not initially known to be true,

this state can be achieved in Tsort(m; p) + Tsort(n; p) time on a CGM(m + n; p). In order to prove

Theorem 4.18, we use the following.

Lemma 4.13 [R�ote91] Let A [B � R1, jAj = m, and jBj = n. Suppose a1 = b1. Then, for

all t 2 R1, H(A+ t; B) � jtj. �

For each a 2 A, let fa : R
1 ! R1 be the function

fa(t) = H�(fa+ tg; B):

The assertions of the following Lemma are found in [R�ote91]. We give a proof to clarify our

methods.

Lemma 4.14 Let a 2 A. Then fa is a continuous, piecewise linear function for which the graph of

each linear piece has slope in f�1; 1g.

21

Proof: First, we show fa is piecewise linear, with slopes in f�1; 1g. We consider the following

cases.

1. Suppose a+ t0 � b1. Then t0 belongs to an interval I0 on which fa(t) = b1 � (a+ t). Thus,

on I0, fa has slope �1.

2. Similarly, if a+ t1 � bn, then t1 belongs to an interval I1 on which fa has slope 1.

3. The only remaining possibility is that there are consecutive members bi; bi+1 of B such that

bi � a+ t � bi+1. This requires consideration of two subcases.

� If t3 is such that bi � a + t3 � (bi + bi+1)=2, then t3 belongs to an interval I3 on which

fa(t) = a+ t� bi. Hence, on I3, fa has slope 1.

� If t4 is such that (bi+ bi+1)=2 � a+ t4 � bi+1, then t4 belongs to an interval I4 on which

fa(t) = bi+1 � (a+ t). Hence, on I4, fa has slope �1.

Thus, for all t 2 R1, t belongs to an interval on which the graph of fa has slope �1 or 1.

That fa is continuous follows from the fact that common endpoints of intervals discussed above

must belong to one of the following cases.

� a + t = bi 2 B. Then the formulas for both of the pieces of fa whose intervals intersect at

such a value of t give fa(t) = 0.

� a+t = (bi+bi+1)=2 for some pair bi; bi+1 of consecutive members of B. Then the formulas for

both of the pieces of fa whose intervals intersect at such a value of t give fa(t) = (bi+1�bi)=2.

�

Lemma 4.15 Let a 2 A.

� Suppose there exists t0 � 0 such that fa(t0) � t0. Then, for all t � t0, fa(t) � t.

� Suppose there exists T0 � 0 such that fa(T0) � jT0j. Then, for all t � T0, fa(t) � jtj.

Proof: Let t0 � 0 be such that fa(t0) � t0. Let I be the interval of the linear piece of fa such

that t0 2 I . First, we claim that

for all t 2 I such that t � t0; fa(t) � t: (3)

22

This claim follows from Lemma 4.14.

Suppose there is a t1 > t0 such that fa(t1) > t1. It follows from statement (3) that t0 and t1

belong to intervals of distinct pieces of fa. Let t2 be the left endpoint of the interval of fa containing

t1. Without loss of generality, we may assume t2 is minimal among endpoints t of intervals I of

pieces of fa such that t > t0 and such that I has a point t� satisfying fa(t�) > t�.

Then t2 is a right endpoint of a piece of fa on whose interval fa(t) � t, by (3). On the interval

[t2; t1], fa is continuous and di�erentiable, and fa(t1)�fa(t2)
t1�t2

> 1. It follows from the Mean Value

Theorem of calculus that there exists t3 such that t2 < t3 < t1 and f 0a(t3) > 1. This contradicts

Lemma 4.14. It follows that t > t0 implies fa(t) � t.

The proof of the second assertion is similar and is omitted. �

Let F : R1 ! R1 be a piecewise-de�ned function and let (f; I) be a piece of F . Let H : R1 ! R1

be a piecewise-de�ned function. We say (f; I) contributes to H if there is a subinterval J of I such

that H(t) = f(t) for all t 2 J .

We de�ne the following functions:

� id : R1 ! R1 is de�ned by id(t) = t for all t 2 R1.

� �id : R1 ! R1 is de�ned by �id(t) = � t for all t 2 R1.

� For a �xed a 2 R1, �a;i : R
1 ! R1 is de�ned by �a;i(t) = a+ t� bi, for all t 2 R1.

� For a �xed a 2 R1, �a;i : R
1 ! R1 is de�ned by �a;i(t) = bi+1 � (a+ t), for all t 2 R1.

The following Proposition is essentially found in [R�ote91], where it is stated in somewhat lesser

detail than is given below.

Proposition 4.16 Let A [B � R1, jAj = m, and jBj = n. Suppose a1 = b1. Then we have

the following.

� If a < b1, the piece of fa that may contribute to H(A+ t; B) is (�a;0; (�1; b1 � a]).

� If a = b1, the pieces of fa that may contribute to H(A+ t; B) are

(�id; (�1; 0]) and (id; [0;
b2 � b1

2
]):

23

� If a = bi for i 2 f2; : : : ; n� 1g, the pieces of fa that may contribute to H(A+ t; B) are

(�id; [�
bi � bi�1

2
; 0]) and (id; [0;

bi+1 � bi
2

]):

� If a = bn, the pieces of fa that may contribute to H(A+ t; B) are

(�id; [�
bn � bn�1

2
; 0]) and (id; [0;1)):

� If bi < a < bi+1, the pieces of fa that may contribute to H(A+ t; B) are

(�a;i; [�(a� bi);
bi + bi+1

2
� a]) and (�a;i; [

bi + bi+1

2
� a; bi+1 � a]):

� If a > bn, the piece of fa that may contribute to H(a+ t; B) is

(�a;n; [�(a� bn);1)):

Proof: That the pieces claimed indeed are pieces of fa may easily be checked by the reader. That

no other pieces of fa may contribute to H(a+ t; B) follows from Lemma 4.13 and Lemma 4.15. �

Proposition 4.17 Let A [B � R1, jAj = m, and jBj = n. Suppose a1 = b1. Then a

description of the function H(A+ t; B) may be computed in

O[�(�(
m

p
; 3); 2) logm + �(�(

n

p
; 3); 2) logn + Tsort(�(m; 3) + �(n; 3); p)]

time on a CGMg
env(m+ n; 1; p), and this function has O(�(m; 3) + �(n; 3)) pieces.

Proof: We give the following algorithm.

1. For each a 2 A, compute the (at most) two pieces of fa that can contribute to H(A + t; B)

described in Lemma 4.16. Let us denote these pieces by fa;1 and fa;2. This is done via a

parallel search step in which each a 2 A �nds the corresponding bi and bi+1 discussed in

Proposition 4.16, followed by sequential (within processors executing in parallel) construction

of the pieces, in Tsort(m+ n; p) time.

24

2. Compute a description of the function HA : R1 ! R1, de�ned as the upper envelope of

ffai;1; fai;2g
m
i=1. By Theorem 4.7, this requires T g

env(m; 1; p) time, and HA has O(�(m; 3))

pieces. Note HA(t) may not be identically equal to H�(A + t; B); however, it follows from

Proposition 4.12 and Proposition 4.16 that any piece of H(A+ t; B) that is contributed by a

piece of H�(A+ t; B) is contributed by a piece of HA(t).

3. Note that the function H�(B;A + t) is identical to the function H�(B � t; A). Therefore, we

may similarly execute analogs of the previous steps to compute a description of the function

HB : R1 ! R1, analogous to HA, from the (at most) two pieces of fb;1 and fb;2, for all b 2 B,

that may contribute to the function H(A+ t; B). This requires Tsort(m+n; p) + T g
env(n; 1; p)

time, and the function HB has O(�(n; 3)) pieces. The function HB(t) has a similar relationship

with H�(B;A+ t) as that between HA and H�(A+ t; B).

4. Compute the function H(A+ t; B), which is the upper envelope of the functions HA and HB .

This step can be performed by a merge-like operation of the pieces of HA and those of HB in

Tsort(�(m; 3) + �(n; 3); p) time, followed by a parallel pre�x operation to combine adjacent

pieces with the same function description into a single piece, in

O(
�(m; 3) + �(n; 3)

p
) + Tsort(p

2; p) = (by Theorem 4.3)

O(T g
env(m; 1; p) + T g

env(n; 1; p))

time. By Lemma 4.10, the function H(A+ t; B) has O(�(m; 3) + �(n; 3)) pieces.

It follows from our de�nition of T g
env(n; k; p) that the time required by our algorithm is

O[�(�(
m

p
; 3); 2) logm + �(�(

n

p
; 3); 2) logn + Tsort(�(m; 3) + �(n; 3); p)]: �

We now prove the main result of this section.

Theorem 4.18 Let A[B � R1, jAj = m, and jBj = n. Then a translation t of A that minimizes

the Hausdor� distance H(A+ t; B) may be described on a CGMg
env(m+ n; 1; p) in

O[�(�(
m

p
; 3); 2) logm + �(�(

n

p
; 3); 2) logn + Tsort(�(m; 3) + �(n; 3); p)]:

time.

25

Proof: We give the following algorithm.

1. Translate A by

t0 = b1 � a1

to A0 = A + t0 = fai + t0 j i = 1; : : : ;mg. Let a0i = ai + t0, i = 1; : : : ;m. Note that

a01 = b1. This is done as follows.

� Broadcast the values of a1 and b1 to all processors. This requires O(p) time.

� In parallel, all processors compute t0. This takes �(1) time.

� In parallel, every processor adds t0 to each of its members of A to obtain the corresponding

members of A0. This requires �(mp) time.

2. Compute a description of the function H(A0+t; B) via the algorithm of Proposition 4.17. This

takes

O[�(�(
m

p
; 3); 2) logm + �(�(

n

p
; 3); 2) logn + Tsort(�(m; 3) + �(n; 3); p)]:

time, and there are O(�(m; 3) + �(n; 3)) pieces.

3. In parallel, every processor computes the minimum value attained by each of its pieces of

H(A0+ t; B) and notes the value of t that yields the minimum value for the piece. Since every

piece is a linear function on an interval, it takes �(1) time to determine the minimum value

of a piece of H(A0 + t; B). Hence, this step requires O(�(m;3)+�(n;3)
p) time.

4. Let t1 be a value of t that yields a minimum value for the function H(A0 + t; B). The value

of t1 is determined by performing a minimum operation on the piecewise minima determined

in the previous step. By Proposition 2.4, this takes O(�(m;3)+�(n;3)
p) + Tsort(p

2; p)) time.

5. A translation parameter t2 such that

H(A+ t2; B) = minfH(A+ t; B) j t 2 R1g

is now obtained via t2 = t0+t1. Since all processors have the values of t0 and t1, all processors

computes t2 in �(1) time.

26

Thus, the time required by our algorithm is

O[�(�(
m

p
; 3); 2) logm + �(�(

n

p
; 3); 2) logn + Tsort(�(m; 3) + �(n; 3); p)]:

�

4.3 Common Intersections of Polygons

In [Reic88, B&M90], serial and �ne-grained parallel algorithms are given to solve the Common

Intersection Problem for vertically convex polygons (a polygon P is vertically convex if for every pair

of points fx; yg 2 P , if x and y are on the same vertical line segment s, then s � P). The Common

Intersection Problem is that of determining whether a collection of subsets of the Euclidean plane

R2 has a common intersection, and, if so, describing the intersection. We have the following.

Theorem 4.19 Let S be a set of vertically convex polygons in R2 whose boundaries have a total of n

line segments. Then the Common Intersection Problem for S can be solved on a CGMg
env(n; 1; p) in

O[�(�(
n

p
; 3); 2) logn + Tsort(�(n; 3); p)] time.

Proof: We assume input to the problem consists of a description of n line segments representing

the boundaries of k vertically convex polygons, F1; : : : ; Fk, where 1 � k < n, with each line segment

labeled by the polygon to which it belongs, such that the line segments of the same polygon are

consecutive in the input and are given in circular order. Our algorithm follows.

1. For each Fi, determine a leftmost and a rightmost vertex, li and ri, respectively. Since the

edges are given in circular order within polygons, associate with each edge of Fi the values of

li and ri. This is done via parallel pre�x operations in �(np) + Tsort(p
2; p) time.

2. Use li and ri to determine the upper and lower boundaries Ui and Li of Fi. Each of Ui and Li

is a connected union of edges of Fi that forms a path from li to ri. Since the edges of Fi are

in circular order, this may be done in �(np) + Tsort(p
2; p) time via parallel pre�x operations.

3. Compute a description of the lower envelope function f(t) of the edges in [ki=1Ui and a de-

scription of the upper envelope function g(t) of the edges in [ki=1Lk. By Theorem 4.7, this

27

takes T g
env(n; 1; p) time, and by Theorem 4.5, each of these envelope functions has O(�(n; 3))

pieces.

4. A point (t0; y) 2 \
k
i=1Fi if and only if (t0; y) is below (or on) the graph of f(t) and above (or

on) the graph of g(t), with

B � t0 � C; (4)

where B and C are the abscissas of the rightmost of flig
k
i=1 and the leftmost of frig

k
i=1,

respectively. We determine whether such a point exists, as follows.

� Compute a description of the function f(t) � g(t). This may be done by a merge-like

operation on the pieces of f and the pieces of g, in Tsort(�(n; 3); p) time. By Lemma 4.10,

f(t)� g(t) has O(�(n; 3)) pieces.

� Compute each of B and C. This may be done in O(np) + Tsort(p
2; p) time via semigroup

operations. At the end of this step, every processor has the values of B and C.

� Examine the O(�(n; 3)) pieces of f(t) � g(t) to see if there is a piece that attains a

nonnegative value at some t0 satisfying inequalities (4). Since f(t)�g(t) has linear pieces,

it takes �(1) time for a processor to examine one piece. Hence, each processor examines

its share of the pieces in O(�(n;3)p) time. A description of the common intersection points

may be obtained by noting, on each piece of f(t) � g(t), the subinterval J of the piece

satisfying

(a) t 2 J implies B � t � C, and

(b) t 2 J implies f(t)� g(t) � 0.

It follows from Lemma 4.2 and our de�nition of T g
env(n; k; p) that the time our algorithm requires is

O[�(�(
n

p
; 3); 2) logn + Tsort(�(n; 3); p)]:

�

Next, we give a slight generalization of Theorem 4.19 that may be used to solve the Common

Intersection Problem for planar �gures with curved boundaries, e.g., circular disks or �gures whose

boundaries are graphs of polynomial functions. The proof is not given, as it is virtually identical

with that given for Theorem 4.19.

28

Theorem 4.20 Let k;m; n be integers, 0 < k < n. Let f1; : : : ; fm be real-valued functions of a real

variable such that

� each fi has a �(1) storage description;

� each value fi(x) may be computed in �(1) time by a single processor; and

� for i 6= j, there are at most k distinct real solutions to the equation fi(x) = fj(x), all of which

can be found by a single processor in �(1) time.

Let S be a set of vertically convex subsets of R2 such that the union of the boundaries of members

of S is the union of n pieces of the graphs y = fi(x), i 2 f1; : : : ;mg. Then the intersection of the

members of S may be described on a CGMg
env(n; k; p) in

O[�(�(
n

p
; k + 2); k + 1) logn + Tsort(�(n; k + 2); p)]:

time. �

4.4 Dynamic Computational Geometry

Problems concerning geometric properties of moving point-objects were considered in [Atal85a,

B&M89a, B&M89b]. Sequential algorithms are presented in [Atal85a], while �ne-grained parallel

algorithms are presented in [B&M89a, B&M89b].

We have obtained e�cient scaleable parallel algorithms for many of the problems discussed in the

papers cited above. All have running times dominated by description of lower or upper envelopes

and data movements of an envelope's pieces. In this section, we assume that k is a �xed positive

integer, and that S = fs0; s1; : : : ; sn�1g is a set of point-objects moving in the Euclidean space Rd

so that for each si 2 S, the location of si at time t is described by a vector-valued function

fi(t) = [f1i (t); : : : ; f
d
i (t)];

such that each Cartesian coordinate function f ji is a polynomial in t of degree at most k. We refer

to such motion as k�motion [B&M89a].

29

4.4.1 Nearest Neighbor

We have the following.

Theorem 4.21 Let d and k be �xed positive integers. Let S be a system of n point-objects, each of

which is in k�motion in Rd. Then, as a function of t, a nearest member of S n fs0g to s0 may be

described in Tenv(n; 2k; p) time on a CGMenv(n; 2k; p).

Proof: For j 2 f1; 2; : : : ; n� 1g, let

dj(t) = d(f0(t); fj(t));

where d indicates the Euclidean distance function. Note [dj(t)]
2 is a polynomial of degree at most 2k.

Since

dj(t) = minfd1(t); : : : ; dn�1(t)g if and only if [dj(t)]
2 = minf[d1(t)]

2; : : : ; [dn�1(t)]
2g;

it follows that the problem reduces to describing LE(f[d1(t)]
2; : : : ; [dn�1(t)]

2g). The assertion follows

from Theorem 4.7. �

4.4.2 Containment in an Iso-Oriented Hyperrectangle

We have the following.

Theorem 4.22 Let d and k be �xed positive integers. Let X1; : : : ; Xd be �xed positive numbers.

Let S be a system of point-objects, each of which is in k�motion in Rd. Then, as a function of t,

the time intervals when an iso-oriented hyperrectangle of dimensions X1; : : : ; Xd contains S may be

determined in O[�(�(np ; k); k + 1) logn + Tsort(�(n; k); p)] time on a CGMenv(n; k; p).

Proof: We give the following algorithm.

1. For j = 1; : : : ; d, let f ji (t) be the j
th coordinate function of fi(t). Compute descriptions of all

the functions

mj(t) = minff j0 (t); : : : ; f
j
n�1(t)g;

and

Mj(t) = maxff j0 (t); : : : ; f
j
n�1(t)g;

j = 1; : : : ; d. It follows from Theorem 4.7 that all can be described in Tenv(n; k; p) time.

30

2. For j = 1; : : : ; d, describe all the functions

Dj(t) = Mj(t)�mj(t); j = 1; : : : ; d:

Since each of the functions Mj and mj has O(�(n; k)) pieces, this step can be done by merging

the pieces of Mj and those of mj in Tsort(�(n; k); p) time (Proposition 2.6). Note Dj has

O(�(n; k)) pieces, by Lemma 4.10.

3. For j = 1; : : : ; d, describe all the functions

wj(t) = Dj(t)�Xj ;

as follows. Broadcast the values of X1; : : : ; Xd to all processors in O(p) time. Then, in

O(�(n;k)p) time, each processor sequentially computes the appropriate di�erence in each of its

pieces of the members of fD1(t); : : : ; Dd(t)g.

4. For j = 1; : : : ; d, describe all the functions

Wj(t) =

�
1 if wj(t) � 0;
0 otherwise.

Each piece of wj generates at most k + 1 constant-valued pieces of Wj in �(1) serial time;

hence Wj has O(�(n; k)) constant-valued pieces. This step requires O(�(n;k)p) time.

5. Now describe the product function �(t) of fW1; : : :Wdg. As above, this function has O(�(n; k))

pieces and may be described in Tsort(�(n; k); p) time via dlog de = �(1) merge-like steps,

starting at the lowest level with the pieces of pairs of fW1; : : : ;Wdg. We note that S is

contained in an iso-oriented hyperrectangle of the speci�ed dimensions precisely during those

intervals of time corresponding to pieces of � when �(t) = 1.

The assertion follows from Lemma 4.2 and the de�nition of Tenv(n; k; p). �

4.4.3 Smallest Containing Hypercube

A problem related to that discussed in Section 4.4.2 is the description, as a function of time, of the

edgelength of the smallest rectilinear, iso-oriented hypercube that contains S at time t. Here, by

\hypercube" we mean a hyperrectangle in which all edges have the same size. We have the following.

31

Theorem 4.23 Let d and k be �xed positive integers. Let S be a system of point-objects, each of

which is in k�motion in Rd. Then the function E(t), the edgelength of the smallest rectilinear,

iso-oriented hypercube that contains S at time t, can be described in

O[�(�(
n

p
; k); k + 1) logn + Tsort(�(n; k); p)]

time on a CGMenv(n; k; p).

Proof: We give the following algorithm.

1. Compute descriptions of all the functions D1(t); : : : ; Dd(t) that represent the edgelengths of

the smallest iso-oriented hyperrectangle that contains S. As described in the proof of Theo-

rem 4.22, the union of the pieces of these functions has a cardinality of O(�(n; k)), and this step

may be performed in O[�(�(np ; k); k+1) logn + Tsort(�(n; k); p)] time on a CGMenv(n; k; p).

2. Note E(t) = maxfD1(t); : : : ; Dd(t)g: Therefore, a description of E(t) may now be computed

by dlog de = �(1) merge-like steps, starting at the lowest level with the pieces of pairs of

fD1; : : : ; Ddg. This step may be performed in Tsort(�(n; k); p) time.

The assertion follows. �

4.4.4 Vertex of Convex Hull

The convex hull of a set of points S = fP0; : : : ; Png, denoted hull(S), is the smallest convex set

containing S. A point Pi 2 S is an extreme point or vertex of hull(S) if Pi 62 hull(S n fPig). In

this section, we develop a CGM algorithm for determining when a given point Pi 2 S is an extreme

point of hull(S), where S is a set of point objects in k�motion in R2. In doing so, we use some

results of [Atal85a, B&M89a].

Let Tij(t) be the angle made by rotating the positively oriented horizontal ray with endpoint

Pi about Pi until the ray contains the line segment from Pi to Pj at time t. By convention,

�� < Tij(t) � �. Formally, if xi(t); xj(t); yi(t); and yj(t) are the x and y coordinates of the points

Pi and Pj , respectively, at time t, then

32

Tij(t) =

8>>>>>>>>><
>>>>>>>>>:

�=2 if xi(t) = xj(t) and yi(t) < yj(t);
��=2 if xi(t) = xj(t) and yi(t) > yj(t);

arctan
�
yj(t)�yi(t)
xj(t)�xi(t)

�
if xi(t) < xj(t);

arctan
�
yj(t)�yi(t)
xj(t)�xi(t)

�
+ � if xi(t) > xj(t) and yi(t) < yj(t);

arctan
�
yj(t)�yi(t)
xj(t)�xi(t)

�
� � if xi(t) > xj(t) and yi(t) > yj(t);

unde�ned if xi(t) = xj(t) and yi(t) = yj(t).

De�ne Gij(t) =

�
Tij(t) if Tij(t) � 0;
unde�ned otherwise.

De�ne Bij(t) =

�
Tij(t) if Tij(t) < 0;
unde�ned otherwise.

De�ne the functions ai; bi; ci; and di as follows.

ai(t) = minfGij(t) j 0 � j < n; i 6= j; Gij(t) is de�nedg:

bi(t) = maxfGij(t) j 0 � j < n; i 6= j; Gij(t) is de�nedg:

ci(t) = minfBij(t) j 0 � j < n; i 6= j; Bij(t) is de�nedg:

di(t) = maxfBij(t) j 0 � j < n; i 6= j; Bij(t) is de�nedg:

If at time t, Gij(t) is unde�ned (respectively, Bij(t) is unde�ned) for all j, then ai(t) and bi(t)

(respectively, ci(t) and di(t)) are unde�ned.

Lemma 4.24 [B&M89a], proof of Lemma 4.4: Let S be a set of n point-objects that are in k�motion,

for some positive integer k, and let H : R1 ! R1 be any of the functions in

fGij ; Hij j 0 � i < n; 0 � j < n; i 6= jg

described above. Let q be the number of jump discontinuities of H and let r be the number of

transitions of H. Then q + r � k. �

De�ne T = fTij j j 6= i; 0 � j < ng:

33

Lemma 4.25 [Atal85a, B&M89a] For a system of n point-objects in the Euclidean plane with k-

motion, each of the functions ai; bi; ci, and di has at most �(n; 4k) pieces generated by T . �

Lemma 4.26 [Atal85a] Given a set S of n point-objects in the plane with k�motion, a point Pi is

an extreme point of hull(S) at time t if and only if

1. ai(t)� di(t) > �, or

2. bi(t)� ci(t) < �, or

3. ai(t) and bi(t) are unde�ned, or

4. ci(t) and di(t) are unde�ned. �

The reader may �nd Figure 1 helpful in understanding Lemma 4.26.

In the following theorem, we give an algorithm to determine the intervals of time over which a

given point Pi 2 S = fP0; : : : ; Pn�1g is an extreme point of hull(S). We will again assume that the

roots of a polynomial of bounded degree can be determined in �(1) time.

Theorem 4.27 Let S = fP0; : : : ; Pn�1g be a set of points in the plane with k-motion. Then the or-

dered intervals of time during which a given point Pi is an extreme point of hull(S) can be determined

in O[�(�(np ; 4k); 4k + 1) logn+ Tsort(�(n; 4k); p)] time on a CGMenv(n; 4k; p).

Proof: Observe that solving Tij(t) = Tim(t) means �nding instants at which the directed line

segment from Pi to Pj and the directed line segment from Pi to Pm are parallel and similarly

oriented. Finding instants when the line segments are parallel requires solving the equation

[yj(t)� yi(t)] [xm(t)� xi(t)] = [ym(t)� yi(t)] [xj(t)� xi(t)] (5)

which is a polynomial equation of degree at most 2k. We assume such equations can be solved in

�(1) time by a single PE. Further, determining whether or not two parallel directed line segments

are similarly oriented can be accomplished in �(1) serial time. It follows that Tij(t) = Tim(t) can

be solved by a single processor in �(1) time.

34

Figure 1: Extreme points of the convex hull.

35

By Lemma 4.24, eachGij (similarly, eachBij) has at most k values of t that yield jump discontinu-

ities or transitions. It follows from Theorem 4.9 that we can construct the functions ai(t); bi(t); ci(t),

and di(t) in Tenv(n; 4k; p) time. It follows from Lemma 4.25 and Lemma 4.10 that each of ai(t)�di(t)

and bi(t)�ci(t) has O(�(n; 4k)) pieces generated by di�erences of members of T . The ordered pieces

of the functions ai(t)�di(t) and bi(t)�ci(t) are now constructed in Tsort(�(n; 4k); p) time by merge-

like operations. Similarly, ordered maximal intervals on which ai(t) and bi(t) are both unde�ned

(respectively, on which ci(t) and di(t) are both unde�ned) are determined in Tenv(n; 4k; p) time.

De�ne

Ai(t) =

�
1 if ai(t)� di(t) � �
0 otherwise

and

Bi(t) =

�
1 if bi(t)� ci(t) � �
0 otherwise.

Observe that if I1 and I2 are intervals of pieces of ai and di, respectively, where I = I1 \ I2 is

nondegenerate, then aijI(t) � dijI(t) = � implies there are integers j and m determined by I1 and

I2, respectively, such that aijI = Tij , dijI = Tim, and Tij(t)� Tim(t) = �. Solving the latter means

�nding instants at which the directed line segment from Pi to Pj and the directed line segment from

Pi to Pm are parallel and oppositely oriented. We noted above that �nding instants when the line

segments are parallel may be accomplished in �(1) serial time, and that there are at most 2k such

instants. Determining whether or not two parallel directed line segments are oppositely oriented may

also be done in �(1) serial time. Every piece of ai(t)� di(t) generated by di�erences of members of

T yields at most 2k + 1 pieces of Ai(t) generated by the set of constant functions f0; 1g. It follows

from Lemma 4.11 that Ai(t) has at most (2k+1) 2�(n; 4k) = O(�(n; 4k)) pieces generated by f0; 1g.

Similarly, Bi(t) has O(�(n; 4k)) pieces generated by f0; 1g. The functions Ai(t) and Bi(t) may be

constructed in Tsort(�(n; 4k); p) additional time, using merge-like operations.

Similarly, in Tsort(�(n; 4k); p) time we can construct the O(�(n; 4k)) ordered pieces generated by

f0; 1g of

Ci(t) =

�
1 if both ai(t) and bi(t) are unde�ned
0 otherwise

and

Di(t) =

�
1 if both ci(t) and di(t) are unde�ned
0 otherwise.

36

It follows from Lemma 4.11 that there are O(�(n; 4k)) pieces generated by f0; 1g of

Hi(t) = maxfAi(t); Bi(t); Ci(t); Di(t)g;

which now may be determined in Tsort(�(n; 4k); p) additional time by merge-like operations. Since

Lemma 4.26 implies Pi is an extreme point at time t if and only if Hi(t) = 1, the algorithm

is complete. The running time of the algorithm is Tenv(n; 4k; p) + Tsort(�(n; 4k); p), which, by

Lemma 4.2 and the de�nition of Tenv , is O[�(�(
n
p ; 4k); 4k + 1) logn + Tsort(�(n; 4k); p)]. �

5 Maximal collinear sets

In this section, we give a scaleable parallel algorithm to solve the All Maximal Equally Spaced

Collinear Subsets (AMESCS [K&R91]) Problem: Given a set S of n points in a Euclidean space,

�nd all maximal equally-spaced collinear subsets of S determined by segments of any length `. This

problem was studied in [K&R91, B&M93]. The algorithm of [K&R91] runs in optimal �(n2) serial

time. It seems to be an essentially sequential algorithm. A rather di�erent algorithm that is e�cient

on a �ne-grained PRAM and optimal on a �ne-grained mesh is presented in [B&M93].

We say S0 � S is collinear if jS0j > 2 and there is a line in Rd that contains all members of

S0. A collinear set S0 is equally-spaced if the members fs1; : : : ; skg of S
0 are in lexicographic order

such that all of the line segments sisi+1 have the same length `; such a set S0 is a maximal equally-

spaced collinear subset determined by segments of length ` if it is not properly contained in any other

equally-spaced collinear subset determined by segments of length `.

The AMESCS Problem is interesting because the regularity sought is often meaningful in a

seemingly irregular environment. Collinear equally-spaced subsets might represent street lights,

fence posts, land mines, etc. We have the following.

Theorem 5.1 Let d be a �xed positive integer. Let S � Rd, jSj = n. Then the AMESCS Problem

can be solved for S in Tsort(n
2; p) time on a CGM(n2; p).

Proof: We give the following algorithm.

1. Sort the members of S according to lexicographic order. This takes Tsort(n; p) time.

37

2. Determine the set L of all the ordered pairs of distinct data points in S such that the �rst

member of the pair precedes the second. This may be done by the algorithm of Proposition 2.8

in O(Tsort(n
2; p)) time.

Since S was sorted, the ordered pair formed from the set fxi; xjg, i < j, is (xi; xj).

3. Sort the members (xi; xj) of L with respect to length as the primary key and lexicographic

order of xi and xj as secondary and tertiary keys, respectively. This takes Tsort(n
2; p) time.

4. In parallel, every processor determines for each of its ordered pairs (xi; xj) 2 L a third point

z(i;j) such that (xi; xj ; z(i;j)) is an equally spaced collinear triple with the xi < xj < z(i;j).

This is done in �(n
2

p) time.

5. Perform a parallel search to determine for each pair (xi; xj) whether z(i;j) 2 S. If so, note the

value of k such that z(i;j) = xk. This takes Tsort(n
2; p) time.

6. For each (xi; xj) 2 L, create a record Li;j = (xi; xj ; i; j; k; i; j), where k is as determined in

the previous step, if found; otherwise, k =1. This takes �(n
2

p) time.

7. Now we perform a component labeling-like step. The ordering of L above allows the records

Li;j to inherit the order of L such that

� members of fLi;j j 1 � i < j � ng of the same length are consecutive, and

� if xk = z(i;j), then Li;j < Lj;k.

Let M = fms j s = 1; : : : ; Ng be an enumeration of the members of fLi;j j 1 � i < j � ng,

mi < mi+1, where N = �(n2). Regard the third and fourth components of each Li;j record

as representing the indices of a line segment's endpoints; the �fth component, if �nite, as

indicating the next vertex in a graph's component; and the sixth and seventh components as

forming a component label. We now perform a parallel pre�x operation, in �(n
2

p) + Tsort(p
2; p)

time, to compute all of the members of

fm1;m1 �m2; : : : ;m1 �m2 � : : : �mNg;

where u � v is de�ned as follows.

38

� Suppose u = (xi; xj ; i; j; k; a; b) and v = (xj ; xk; j; k; l; c; d). Then

u � v = (xj ; xk; j; k; l; a; b):

� Otherwise, u � v = v.

8. At the end of the last step, the pre�xes mi that are identical in the last two components

represent maximal equally spaced collinear subsets of S. Now, sort the mi with respect to,

in decreasing priority, the sixth, seventh, and third components of the mi records, so that

all members of a maximal equally spaced collinear set are grouped consecutively (sixth and

seventh components), and, within maximally equally spaced collinear sets, the points are

ordered (third components). This takes Tsort(n
2; p) time.

The running time of the algorithm is Tsort(n
2; p). �

6 Point set pattern matching

In this section, we give scaleable parallel algorithms to solve the Point Set Pattern Matching (PSPM)

Problem: Given a set S of points in a Euclidean space Rd and a pattern P � Rd, �nd all subsets

P 0 � S such that P and P 0 are congruent. Serial and �ne-grained parallel solutions to this problem

have been given in several papers, including [Boxe92, Boxe96, dR&L95, G&K92, L&L92, SL&Y90].

We assume that jSj = n, jP j = k � n, and that the coordinates of all members of

P = fa0; a1; : : : ; ak�1g and S = fs0; s1; : : : ; sn�1g are given as input to the problem, with

each of P and S evenly distributed among the processors of a CGM. In the following, we give rather

di�erent algorithms for solving the Point Set Pattern Matching Problem for di�erent values of d, the

dimension of the ambient Euclidean space. Roughly, this is because di�erent dimensions produce

di�erent constraints on the complexity of the output. We also give algorithms for PSPM restricted

to realization via rotation or translation in R2.

6.1 PSPM in R1

A serial algorithm for this case is given in [dR&L95], in which it is shown that the worst case output

complexity is �(k(n� k)). We have the following.

39

Theorem 6.1 The Point Set Pattern Matching Problem in R1 can be solved on a CGM(k(n�k); p)

in optimal Tsort(k(n� k); p) time.

Proof: We give the following algorithm.

1. Sort the members of S by their coordinates in Tsort(n; p) time.

2. Sort the members of P by their coordinates in Tsort(k; p) time.

3. Broadcast a0 to all processors. This takes O(p) time.

4. For j 2 f0; 1; : : : ; n� k � 1g, compute dj = sj � a0. This takes �(
n�k
p) time.

5. For i 2 f0; 1; : : : ; k�1g, j 2 f0; 1; : : : ; n�k�1g, de�ne Ai;j to be true if and only if (ai+dj) 2 S.

If Ai;j is true, associate the index m(i; j) with Ai;j , where sm(i;j) = ai + dj . These values

can be computed by a parallel search operation in Tsort(k(n� k); p) time.

6. In Tsort(k(n � k); p) time, sort the Ai;j with respect to j as primary key and i as secondary

key.

7. Observe now that P is matched in S via a translation that sends a0 to sj if and only if for all

i, Ai;j is true. In �(k(n�k)p) + Tsort(p
2; p) time, perform a parallel pre�x operation on the

Ai;j to determine which indices j yield such translations. Let Lq be the q
th index j such that

a translation � of P sending a0 to sj satis�es �(P) � S. We note the members of S forming

the set that matches P via this translation are marked by the indices associated with the Ai;j

above.

8. Another �(k(n�k)p) + Tsort(p
2; p) time parallel pre�x operation can be used to produce a list

of indices Mq;r from the lists Ai;j and Lq such that Mq;0 = Lq and Mq;r = sm(r;Lq), the

index of the member of S to which ar is translated, for 1 � r � k � 1. Thus, the list M is an

ordered list of the indices of translated copies of P in S.

9. The steps above �nd all matches of P in S obtained by translating P . In order to �nd matches

obtained by reecting and translating P , we compute the set �P = f�p j p 2 Pg and repeat

the previous steps with �P substituted for P . This takes Tsort(k(n� k); p) time.

40

10. It may happen that the same subset of S is found more than once as a match for P . We may

eliminate such duplication as follows.

� Sort each of the lists

Mq = fMq;r j r = 0; : : : ; k � 1g:

Then sort the list of lists

M1;M2; : : :

by lexicographic order. This takes Tsort(k(n� k); p) time.

� Use a parallel pre�x operation to remove any Mq that equals its predecessor. This takes

�(k(n�k)p) + Tsort(p
2; p) time.

Thus, the algorithm takes Tsort(k(n � k); p) time. This is optimal, as we produce ordered lists

with, in the worst case, �(k(n� k)) members. �

6.2 PSPM in R2

Let b > 0 be a �xed constant. In the Euclidean plane R2, the complexity of the output in the Point

Set Pattern Matching Problem is, in part, limited by the complexity of the function D2(n), the

number of line segments in R2 of length b whose endpoints are in S � R2. The function D2(n) was

introduced in [Erd46].

Proposition 6.2 [SST84] D2(n) = O(n4=3). �

We have the following, which is implicit in [G&K92].

Proposition 6.3 The output of the Point Set Pattern Matching Problem in R2 has complexity

O(kD2(n)).

Proof: Let b be the length of the line segment from a0 to a1. There are at most D2(n)

line segments ` � R2 of this length with endpoints in S. For each such `, let the endpoints of

` be fsi0 ; si1g � S. A necessary condition for the existence of fsi2 ; : : : ; sik�1
g � S such that

fsi0 ; si1 ; si2 ; : : : ; sik�1
g is a match for P is the existence of i2 such that fsi0 ; si1 ; si2g is a match for

41

fa0; a1; a2g. There are at most 2 such values of i2, each of which determines at most 1 matching of

P in S. Since every matching has complexity k, the assertion follows. �

The sequential time necessary to �nd all the O(D2(n)) line segments of length b with endpoints

in S is denoted by A2(n). We have the following.

Proposition 6.4 [Agar90, Chaz91] For any �xed � > 0, A2(n) = O(n
4
3+�). �

Theorem 6.5 [G&K92] The Point Set Pattern Matching Problem in R2 can be solved sequentially

in O(A2(n) + kD2(n) logn) time. �

Theorem 6.6 The Point Set Pattern Matching Problem in R2 can be solved in

A2(n)

p
+ pTsort(n; p) + Tsort(kD2(n); p) =

Tseq
p

+ O(pTsort(n; p) + Tsort(kD2(n); p))

time on a CGM(kD2(n); p). For p = O(kD2(n)
n), the running time is

A2(n)

p
+ Tsort(kD2(n); p) = O(

Tseq
p

+ Tsort(kD2(n); p)):

Proof: Note it follows from Theorem 6.5 that A2(n)
p = O(

Tseq
p). We give the following algorithm.

1. Broadcast fa0; a1; a2g to all processors and determine, in each processor, b = d(a0; a1), where

d is the Euclidean distance function. This takes O(p) time.

2. Determine all the combinations fsi; sjg � S such that d(si; sj) = b. This is done as follows.

� In parallel, each processor Pi determines all of its pairs of members of S that are at

distance b from each other. Let Si be the subset of S contained in Pi.

� Perform p � 1 circular rotations of S, keeping in processor Pi a copy of Si. After each

rotation operation, Pi has copies of Si and Sj for some j 6= i. Processor Pi �nds all

combinations fsq; srg, sq 2 Si, sr 2 Sj , such that d(sq ; sr) = b.

These operations take

A2(n)

p
+ (p� 1)Tsort(n; p) =

Tseq
p

+ O(pTsort(n; p))

time.

42

3. For each of the O(D2(n)) pairs fsi; sjg of members of S that are at distance b from each other,

determine the two points zm(i; j), m 2 f0; 1g, such that (a0; a1; a2) matches (si; sj ; zm(i; j)).

This takes O(D2(n)
p) time.

4. For each of the O(D2(n)) pairs fsi; sjg of members of S that are at distance b from each

other, determine for m 2 f0; 1g whether zm(i; j) 2 S. This may be done via a parallel search

operation in Tsort(D2(n); p) time.

5. For each of the O(D2(n)) triples (si0 ; si1 ; si2) such that (si0 ; si1 ; si2) matches (a0; a1; a2), de-

termine whether there exist si3 ; : : : ; sik�1
in S such that (si0 ; si1 ; si2 ; si3 ; : : : ; sik�1

) matches P .

This is done as follows.

� For each such triple (si0 ; si1 ; si2) and each j 2 f3; 4; : : : ; k � 1g, determine the unique

zj 2 R2 such that (si0 ; si1 ; si2 ; zj) matches (a0; a1; a2; aj). This takes O(
kD2(n)

p) time.

� For each such zj , determine whether zj 2 S. If so, let the jth component of a k�tuple,

whose components with indices 0; 1; 2 are, respectively, si0 ; si1 ; si2 , be zj ; otherwise, let

the jth component of this k�tuple be fail. This may be done a via parallel search

operation in Tsort(kD2(n); p) time.

� Perform a parallel pre�x operation to remove those k�tuples constructed above that have

at least one fail entry. The remaining k�tuples represent all the matches of P in S. This

step requires �(kD2(n)
p) + Tsort(p

2; p) time.

6. It may happen that the same subset of S is found more than once as a match for P . We may

eliminate such duplication as follows.

� Sort each of the k�tuples representing a match of P in S lexicographically. Then sort

the collection of such k�tuples by lexicographic order. This takes Tsort(kD2(n); p) time.

� Use a parallel pre�x operation to remove any k�tuple that equals its predecessor. This

takes �(kD2(n)
p) + Tsort(p

2; p) time.

Thus, the algorithm requires

A2(n)

p
+ pTsort(n; p) + Tsort(kD2(n); p) =

Tseq
p

+ O(pTsort(n; p) + Tsort(kD2(n); p))

43

time. It follows from Lemma 2.1 that pTsort(n; p) = O(Tsort(np; p)), so for p = O(kD2(n)
n), hence

for np = O(kD2(n)), the running time reduces to

A2(n)

p
+ Tsort(kD2(n); p) = O(

Tseq
p

+ Tsort(kD2(n); p)):

�

6.3 PSPM in R3

In this section, we present a scaleable parallel algorithm for solving the Point Set Pattern Matching

Problem in R3.

In the following, the function � is the same function used earlier to discuss the complexity of

lower envelope functions. The following is used to construct an upper bound on the complexity of

the output.

Proposition 6.7 [CEGSW90] Let S � R3 with jSj = n. The maximum number of line segments

in R3 of a given length with endpoints in S is n3=2[�(n;6)n]1=4. �

It follows from Theorem 4.3 that the expression [�(n;6)n]1=4, which appears in the analysis of our

algorithm, is nearly constant. We have the following, which is implicit in [Boxe96].

Proposition 6.8 The output of the Point Set Pattern Matching Problem in R3 has complexity

� O(kn3=2[�(n;6)n]1=4), if P is a collinear set;

� O(kn5=2[�(n;6)n]1=4) in general.

Proof: By Proposition 6.7, there are O(n3=2[�(n;6)n]1=4) pairs (si0 ; si1) of members of S such that

(si0 ; si1) matches (a0; a1).

� If P is a collinear set, then, without loss of generality, P is contained in the line segment from

a0 to a1. A necessary condition of a matching of P by members of S is a matching of a pair of

members (si0 ; si1) of S with (a0; a1). Since P is a collinear set, there are at most two subsets

fsi2 ; : : : ; sik�1
g of S in the line segment from si0 to si1 that match fa2; : : : ; ak�1g and either

(si0 ; si2) or (si1 ; si2) matches (a0; a2). It follows that the output in this case has complexity

O(kn3=2[�(n;6)n]1=4).

44

� If P is not collinear, we may assume a0, a1, and a2 are not collinear. For every pair (si0 ; si1)

that matches (a0; a1), there are at most n � 2 points si2 2 S such that (si0 ; si1 ; si2) matches

(a0; a1; a2). For each of the O(n5=2[�(n;6)n]1=4) such triples (si0 ; si1 ; si2), there is a unique rigid

transformation fi0i1i2 of R3 such that fi0i1i2(aj) = sij , j 2 f0; 1; 2g. The transformation

fi0i1i2 yields a matching of P in S if and only if fi0i1i2(faj j j = 3; : : : ; k�1g) � S. Since there

is a one-to-one correspondence between such rigid transformations of R3 and matchings of P

in S, and every such matching has complexity �(k), it follows that the output in the general

case has complexity O(kn5=2[�(n;6)n]1=4). �

Theorem 6.9 [Boxe96] The Point Set Pattern Matching Problem in R3 can be solved on a serial

computer in

� O(n2 + kn3=2[�(n;6)n]1=4 logn) time, if P is a collinear set;

� O(kn5=2[�(n;6)n]1=4 logn) time in the general case. �

We present a scaleable parallel algorithm to handle the special case of a collinear pattern.

Proposition 6.10 Let P and S be �nite subsets of R3. Let jP j = k � n = jSj. Suppose it is known

that there is a line L � R3 such that P � L. Then every subset P 0 of S such that P 0 matches P

can be identi�ed in

O[Tsort(n
2; p) + Tsort(kn

3=2[
�(n; 6)

n
]1=4; p)]

time on a CGM(n2 + kn3=2[�(n;6)n]1=4; p).

Proof: We give the following algorithm.

1. Sort P by lexicographic order. This takes Tsort(k; p) time.

2. Sort S by lexicographic order. This takes Tsort(n; p) time.

3. Form the set C of all the ordered pairs (si; sj), i 6= j, of members of S, and sort C with respect

to the lengths of the line segments whose endpoints are the members of the respective pairs.

By Proposition 2.8, this takes O(Tsort(n
2; p)) time. Note jCj = �(n2).

45

4. Broadcast fa0; ak�1g to all processors. This takes O(p) time.

5. Use a parallel pre�x operation to determine the range C 0 of consecutive members of the ordered

list C representing line segments whose length equals the length of the line segment from a0 to

ak�1. This takes �(
n2

p) + Tsort(p
2; p) time. By Proposition 6.7, jC 0j = O(n3=2[�(n;6)n]1=4).

6. The members of C 0 are not (likely) evenly distributed. Use a sort step to redistribute the

members of C 0 evenly among the processors. This takes O(Tsort(n
2; p)) time.

7. We know (si; sj) matches (a0; ak�1) for each (si; sj) 2 C 0. Thus, to identify a subset of S that

matches P including a submatch of (si; sj) with (a0; ak�1), it is necessary and su�cient to

determine if there exists a (k�2)�tuple (si1 ; : : : ; sik�2
) such that for each im, m 2 f1; : : : ; k�

2g,

� sim 2 S;

� sim belongs to the line segment sisj ; and

� the length of sisim equals the length of a0am for all m 2 f1; 2; : : : ; k � 2g, or the length

of sisim equals the length of ak�1am for all m 2 f1; 2; : : : ; k � 2g.

For each m, it takes �(1) time to compute the length of a0am and the Cartesian coordinates

of sim ; we also require time for a search on S to determine if sim 2 S. Since these searches

can be done in a parallel search operation, determination of all such matches of P in S takes

Tsort(kn
3=2[�(n;6)n]1=4; p) time. The list of matches of P in S has complexityO(kn3=2[�(n;6)n]1=4).

Repeat this step, substituting ak�1am for a0am.

8. It may happen that the same subset of S appears twice in our list M of matches of P . If we

wish to eliminate such duplication, we may do so as follows.

� Sort all the k�tuples in M lexicographically. This takes Tsort(kn
3=2[�(n;6)n]1=4; p) time.

� Now sort M lexicographically. This takes Tsort(kn
3=2[�(n;6)n]1=4; p) time.

� Perform a parallel pre�x operation to remove every entry of the ordered listM that equals

its predecessor. This takes �(
kn3=2[

�(n;6)
n]1=4

p) + Tsort(p
2; p) time.

46

Thus, our algorithm takes O[Tsort(n
2; p) + Tsort(kn

3=2[�(n;6)n]1=4; p)] time. �

Our algorithm for the general Point Set Pattern Matching Problem in R3 is given below.

Theorem 6.11 Let P and S be �nite subsets of R3. Let jP j = k � n = jSj. Then every subset P 0

of S such that P 0 is congruent to P can be identi�ed on a CGM(kn5=2[�(n;6)n]1=4; p), in

� O[Tsort(n
2; p) + Tsort(kn

3=2[�(n;6)n]1=4)] time, if P is a collinear set;

� Tsort(kn
5=2[�(n;6)n]1=4; p) time in the general case.

Proof: Without loss of generality, i 6= j implies ai 6= aj . We give the following algorithm.

1. Determine whether or not P is a collinear set. This is done as follows. Broadcast a0 and a1

to all processors in O(p) time. Then, for each k 2 f2; : : : ; k � 1g, determine if ak is collinear

with a0 and a1, in �(kp) time. P is a collinear set if and only if ak is collinear with a0 and a1

for all k 2 f2; : : : ; k � 1g. If P is not a collinear set, note an index r such that a0; a1, and ar

are not collinear. This may be done, e.g., by a minimum (with respect to indices) operation

on P n fa0; a1g in �(kp) + Tsort(p
2; p) time, followed by O(p) time broadcasts of a0, a1, and

ar to all processors.

2. If P is a collinear set, execute the algorithm of Proposition 6.10. This �nishes the current

algorithm in an additionalO[Tsort(n
2; p) + Tsort(kn

3=2[�(n;6)n]1=4; p)] time. Otherwise, continue

with the following steps.

3. Sort S lexicographically. This takes Tsort(n; p) time.

4. For every pair si; sj , i < j, of distinct members of S, form the line segment (si; sj). Let L(S)

be the set of such line segments. By Proposition 2.8, this step takes O(Tsort(n
2; p)) time.

5. Form the set L(P) = f�ig
k�1
i=1 , where �i = a0ai is the line segment from a0 to ai. Since

every processor has the value of a0, this takes �(
k
p) time.

6. Sort the set L(S), using the lengths of the members as the primary key and lexicographic order

on the coordinates of the endpoints as the secondary key. This takes Tsort(n
2; p) time.

47

7. Let M be the number of members of L(S) whose length is equal to the length of �1. Mark the

sublist of L(S) whose members' length equals the length of �1 and determine the value of M

by performing a parallel pre�x operation on L(S). The time required is �(n
2

p) + Tsort(p
2; p).

If M = 0, the length of �1 is not matched by that of a member of L(S), so report failure and

halt. Otherwise, let L1 be the sublist of L(S) whose members have length equal to the length

of �1. Note by Proposition 6.7 that

M � n3=2[
�(n; 6)

n
]1=4:

8. As above, mark Lr, the sublist of L(S) whose entries have length equal to the length of �r.

This is done via a parallel pre�x operation on L(S) in �(n
2

p) + Tsort(p
2; p) time.

9. For each Sij = (si; sj) 2 L1, �nd all Sjm = (sj ; sm) 2 Lr such that Sij [Sjm matches

�1 [�r. This may be done by a search on Lr to �nd the subrange of its members that

have sj as initial endpoint, then testing each member Sjm of the subrange for the match.

Since there are M members of L1, each of which requires a search to determine a subrange

of Lr containing suitable candidates Sjm, the searches may be performed by a parallel search

operation in O(Tsort(M + n2; p)) = O(Tsort(n
2; p)) time. Since for each Sij 2 L1 there are

O(n) suitable values of Sjm 2 Lr (since O(n) members of Lr share an endpoint with Sij), such

pairs (Sij ; Sjm) may be formed by circular rotations of Lr accompanied by the formation of

pairs in O(pTsort(M;p) + Mn
p) time. By Lemma 2.1, this is

O(Tsort(Mp; p) + Tsort(Mn; p)) = O(Tsort(Mn; p))

time to form the O(Mn) = O(n5=2[�(n;6)n]1=4) such pairs (Sij ; Sjk). Note each pair (Sij ; Sjk)

corresponds to a triple (si; sj ; sm) of vertices in S that match (a0; a1; ar).

10. Since a0; a1, and ar are not collinear, for each triple (si; sj ; sm) of vertices in S that matches

(a0; a1; ar) we can describe in �(1) time the unique rigid transformation fijm of R3 such that

fijm(a0) = si, fijm(a1) = sj , and fijm(ar) = sm. Since there are O(Mn) such triples, creating

all such descriptions takes O(Mn
p) = O(n5=2[�(n;6)n]1=4=p) = O(Tsort(n

5=2[�(n;6)n]1=4; p)) time.

48

11. If k > 3, proceed as follows. For each of the O(Mn) rigid transformations fijm of R3 deter-

mined above, compute the set

Vijm = ffijm(aq) j 2 � q � k � 1; q 6= rg

and, for each of its members, determine via a search of S which, if any, member of S it equals.

These operations can be done by circular rotations of P , computation of all the sets Vijm, and

a parallel search operation. Altogether, these operations require, respectively, (p�1)Tsort(k; p)

= O(Tsort(kp; p)), �(
kMn
p), and Tsort(kMn; p) time. Thus, the operations required for this

step take Tsort(kn
5=2[�(n;6)n]1=4; p) time. If Vijm � S, then fijm(P) � S.

12. Among the sets fijm(P) that match P , there may be duplicate sets determined by distinct fijm.

If desired, we may eliminate such duplication as follows.

� Sort each of the fijm(P) by lexicographic order. This takes Tsort(kn
5=2[�(n; 6)=n]1=4; p)

time.

� Now sort the collection of matches fijm(P) of P in S by lexicographic order. This takes

Tsort(kn
5=2[�(n; 6)=n]1=4; p) time.

� Perform a parallel pre�x operation to eliminate each member of the list that is equal to

a predecessor on the list. This takes �(kn
5=2[�(n;6)=n]1=4

p) + Tsort(p
2; p) time.

The algorithm requires

� Tsort(kn
3=2[�(n;6)n]1=4; p) time if P is a collinear set;

� Tsort(kn
5=2[�(n;6)n]1=4; p) time in the general case. �

6.4 PSPM in R2 under rotations or translations

In this section, we give scaleable parallel algorithms for the PSPM Problem in R2 under the restric-

tions that the pattern matching be realized via a rotation or a translation of P . As above, we assume

the pattern set P has cardinality k, the sampling set S has cardinality n, and that 0 < k � n.

We have the following.

49

Theorem 6.12 [G&K92]

� Every rotation r of P about the origin such that r(P) � S may be found in O(kn + n logn)

serial time.

� Every translation T of P in R2 such that T (P) � S may be found in O(kn + n logn) serial

time. �

We give a scaleable parallel version of Theorem 6.12.

Theorem 6.13 � Every rotation r of P about the origin such that r(P) � S may be found in

O(Tsort(kn; p)) time on a CGM(kn; p).

� Every translation T of P in R2 such that T (P) � S may be found in O(Tsort(kn; p)) time on

a CGM(kn; p).

Proof: Let R be the set of angles �, 0 � � < 2�, such that a rotation r� of P by � about the

origin satis�es r�(P) � S. For each a 2 P , let R(a) be the set of angles �, 0 � � < 2�, such that a

rotation r� of p by � about the origin satis�es r�(a) 2 S. Note that

R = \a2P R(a)

and that, in the worst case, jR(a)j = n for all a 2 P (this happens if P [S is contained in a circle

centered at the origin). We give the following algorithm.

1. Sort S by distance from the origin as the primary key and angular coordinate as the secondary

key. This takes Tsort(n; p) time.

2. For all a 2 P , compute R(a) by forming O(kn) pairs (a; �), a 2 P , � an angle by which a may

be rotated into s 2 S such that a and s have the same distance from the origin. This may be

done in O(Tsort(kn; p)) time, as follows.

� Form P � S by the algorithm of Proposition 2.9 in O(Tsort(kn; p)) time.

� In �(knp) time, each processor examines each of its pairs (a; s) 2 P � S and, if a and s

have the same distance from the origin, forms the corresponding pair (a; �).

50

3. Sort [ki=1R(ai) with respect to the angular coordinate. This takes O(Tsort(kn; p)) time.

4. Note that � 2 R if and only if � appears as the angular component of k consecutive entries of

the ordered list [ki=1R(ai). Thus, the set R may be computed from a parallel pre�x operation

on [ki=1R(ai) in O(knp) + Tsort(p
2; p) time.

The algorithm to compute R thus takes O(Tsort(kn; p)) time.

A similar algorithm is used to �nd the set of all translations T of P in R2 such that T (P) � S in

O(Tsort(kn; p)) time. The most important modi�cations to the algorithm above are the following.

� In the �rst step, S is sorted by lexicographical order.

� Replace the second step as follows. De�ne R(a) by

R(a) = fs� a j s 2 Sg:

The sets R(a) can all be computed after forming all pairs (a; s), where a 2 P , s 2 S, in

O(Tsort(kn; p)) time.

� [a2PR(a) is sorted as follows. Each R(a) is sorted lexicographically, then the union of the

lists R(a) (for all a 2 P) is sorted lexicographically.

� In the last step, a translation vector T takes P into a subset of S if and only if T appears as

the translation component of k consecutive entries of the ordered list [a2PR(a).

�

7 Further remarks

7.1 Summary

In this paper, we have given examples of optimal and e�cient scaleable parallel algorithms for the

following.

� Finding all rectangles determined by a set of planar points. (We have also indicated solutions

to some related problems.)

51

� Describing the lower envelope function for a set of polynomials of bounded degree.

� A variety of geometric problems whose solutions are dominated by description of lower (or

upper) envelopes.

� Finding all maximal equally-spaced collinear subsets of a �nite set in a Euclidean space.

� Solving various versions of the Point Set Pattern Matching Problem in Euclidean spaces.

As far as we know, our algorithms are in all cases the �rst scaleable parallel algorithms given in

solution to their respective problems. In many cases, they are the �rst parallel algorithms given in

solution to their respective problems for machines of any granularity.

7.2 Acknowledgment

We acknowledge suggestions of the anonymous referees that helped improve the presentation of our

results.

References

[Agar90] P.K. Agarwal, Partitioning arrangements of lines: II, applications, Discrete and Com-

putational Geometry 5 (1990), 533-573.

[Agar91] P.K. Agarwal, Intersection and Decomposition Algorithms for Planar Arrangements,

Cambridge University Press, Cambridge, 1991.

[AShSh89] P.K. Agarwal, M. Sharir, and P. Shor, Sharp upper and lower bounds on the length

of general Davenport-Schinzel sequences, Journal of Combinatorial Theory Series A

52 (1989), 228-274.

[A&L93] S.G. Akl and K.A. Lyons, Parallel Computational Geometry, Prentice-Hall, New

York, 1993.

[Atal85a] M.J. Atallah, Some dynamic computational geometry problems. Computers and

Mathematics with Applications 11 (1985), 1171-1181.

52

[Boxe92] L. Boxer, Finding congruent regions in parallel, Parallel Computing 18 (1992), 807-

810.

[Boxe96] L. Boxer, Point set pattern matching in 3-D, Pattern Recognition Letters 17 (1996),

1293-1297.

[Boxe97] L. Boxer, A scaleable parallel algorithm for the Hausdor� metric in digitized pictures,

submitted.

[B&M89a] L. Boxer and R. Miller, Parallel dynamic computational geometry, Journal of New

Generation Computer Systems 2 (1989), 227-246.

[B&M89b] L. Boxer and R. Miller, Dynamic computational geometry on meshes and hypercubes,

Journal of Supercomputing 3 (1989), 161-191.

[B&M90] L. Boxer and R. Miller, Common intersections of polygons, Information Processing

Letters 33 (1990), 249-254; Corrigenda in Information Processing Letters 35 (1990),

53.

[B&M93] L. Boxer and R. Miller, Parallel algorithms for all maximal equally-spaced collinear

sets and all maximal regular coplanar lattices, Pattern Recognition Letters 14 (1993),

17-22.

[BMR96a] L. Boxer, R. Miller, and A. Rau-Chaplin, Some scalable parallel algorithms for geo-

metric problems, SUNY at Bu�alo Department of Computer Science Technical Re-

port 96-12 (1996).

[BMR96b] L. Boxer, R. Miller, and A. Rau-Chaplin, Some scaleable parallel algorithms for

geometric problems, Proceedings IASTED Conference on Parallel and Distributed

Computing and Systems (1996), 426-430.

[Chaz91] B. Chazelle, An optimal convex hull algorithm and new results on cuttings, Proc.

32nd IEEE Symposium on Foundations of Computer Science (1991), 29-38.

53

[CEGSW90] Clarkson, K.L., H. Edelsbrunner, L.J. Guibas, M. Sharir, and E. Welzl, Combi-

natorial complexity bounds for arrangements of curves and surfaces, Discrete and

Computational Geometry 5 (1990), 99-160.

[CKPSSSSE] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramo-

nian, and T. von Eicken, LogP: Towards a Realistic Model of Parallel Computation.

Proc. 4th ACM SIGPLAN Sym. on Principles of Parallel Programming, 1993.

[D&S65] H. Davenport and A. Schinzel, A combinatorial problem connected with di�erential

equations. Amer. J. Math. 87 (1965), 684-694.

[DFR93] F. Dehne, A. Fabri, and A. Rau-Chaplin, Scalable parallel geometric algorithms for

multicomputers, Proc. 9th ACM Symp. on Computational Geometry, (1993), 298-307.

[DDDFK95] F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. Khokhar, A randomized parallel

3D convex hull algorithm for coarse grained multicomputers, Proc. 7th ACM Symp.

on Parallel Algorithms and Architectures, (1995), 27-33.

[De&Dy95] X. Deng and P. Dymond, E�cient routing and message bounds for optimal parallel

algorithms, Proceedings International Parallel Processing Symposium, (1995), 556-

562.

[dR&L95] P.J. de Rezende and D.T. Lee, Point set pattern matching in d�dimensions, Algo-

rithmica 13 (1995), 387-404.

[Erd46] P. Erd�os, On a set of distances of n points, American Mathematical Monthly 53

(1946), 248-250.

[FRU95] A. Ferreira, A. Rau-Chaplin, and S. Ubeda, Scalable 2d convex hull and triangulation

algorithms for coarse grained multicomputers, Proc. 7th IEEE Symp. on Parallel and

Distributed Processing, 1995.

[G&K92] Goodrich, M.T., and D. Kravetz, Point set pattern matching, Johns Hopkins Univer-

sity Department of Computer Science Technical Report JHU-92/11 (1992).

54

[H&K93] S. Hambrusch, and A. Khokhar, C3: An Architecture-Independent Model For Coarse-

Grained Parallel Machines, Purdue University Computer Sciences Technical Re-

port CSD-TR-93-080 (1993).

[H&Sh86] S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of general-

ized path compression schemes, Combinatorica 6 (1986), 151-177.

[Hersh89] J. Hershberger, Finding the upper envelope of n line segments in O(n logn) time,

Information Processing Letters 33 (1989), 169-174.

[K&R91] A.B. Kahng and G. Robins, Optimal algorithms for extracting spatial regularity in

images, Pattern Recognition Letters 12 (1991), 757-764.

[L&L92] C-L Lei and H-T Liaw, A parallel algorithm for �nding congruent regions, Computers

and Graphics 16 (1992), 289-294.

[M&S96] R. Miller and Q.F. Stout, Parallel Algorithms for Regular Architectures: Meshes and

Pyramids, The MIT Press, Cambridge, Mass., 1996.

[Nadl78] S.B. Nadler, Jr., Hyperspaces of Sets, Marcel Dekker, Inc., New York, 1978.

[P&Sh92] J. Pach and M. Sharir, Repeated angles in the plane and related problems, Journal

of Combinatorial Theory 59 (1) (1992), 12-22.

[Reic88] M. Reichling, On the detection of a common intersection of k convex objects in the

plane, Information Processing Letters 29 (1988), 25-29.

[R�ote91] G. R�ote, Computing the minimum Hausdor� distance between two point sets on a

line under translation, Information Processing Letters 38 (1991), 123-127.

[SL&Y90] Z.C. Shih, R.C.T. Lee, and S.N. Yang, A parallel algorithm for �nding congruent

regions, Parallel Computing 13 (1990), 135-142.

[SST84] J. Spencer, E. Szemeredi, and W.T. Trotter, Jr., Unit distances in the Euclidean

plane, in Graph Theory and Combinatorics, Academic Press, London, 1984, 293-303.

55

[Vali90] L.G. Valiant, A Bridging Model for Parallel Computation, Communications of the

ACM 33 (1990), 103-111.

[VK&D91] M.J. Van Kreveld and M.T. De Berg, Finding squares and rectangles in sets of points,

BIT 31 (1991), 202-219.

[Wi&Sh88] A. Wiernik and M. Sharir, Planar realization of nonlinear Davenport-Schinzel se-

quences by segments, Discrete and Computational Geometry 3 (1988), 15-47.

56

