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Abstract

We study scalable parallel computational geometry algorithms for the coarse grained

multicomputermodel: p processors solving a problem on n data items, were each proces-
sor has O(n

p
)� O(1) local memory and all processors are connected via some arbitrary

interconnection network (e.g. mesh, hypercube, fat tree). We present O(Tsequential
p

+

Ts(n; p)) time scalable parallel algorithms for several computational geometry problems.
Ts(n; p) refers to the time of a global sort operation.

Our results are independent of the multicomputer's interconnection network. Their
time complexities become optimal when

Tsequential
p

dominates Ts(n; p) or when Ts(n; p)
is optimal. This is the case for several standard architectures, including meshes and
hypercubes, and a wide range of ratios n

p
that include many of the currently available

machine con�gurations.
Our methods also have some important practical advantages: For interprocessor

communication, they use only a small �xed number of one global routing operation,
global sort, and all other programming is in the sequential domain. Furthermore, our
algorithms use only a small number of very large messages, which greatly reduces the
overhead for the communication protocol between processors. (Note however, that our
time complexities account for the lengths of messages.) Experiments show that our
methods are easy to implement and give good timing results.

�A preliminary version of this paper has been published in the proceedings of the 1993 ACM Conference
on Computational Geometry.

yThis work was partially supported by the Natural Sciences and Engineering Research Council of Canada
and the ESPRIT Basic Research Actions Nr. 3075 (ALCOM) and Nr. 7141 (ALCOM II).
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1 Introduction

Parallel computational geometry is concerned with solving some given geometric problem
of size n on a parallel computer with p processors (e.g., a pram, mesh, or hypercube

multiprocessor) in time Tparallel. The parallel solution is optimal if Tparallel = O(
Tsequential

p
),

where Tsequential is the sequential time complexity of the problem. Theoretical work for
parallel computational geometry has so far focussed on the case n

p
= O(1), also referred

to as the �ne grained case. However, for parallel geometric algorithms to be relevant in
practice, such algorithms must be scalable, that is, they must be applicable and e�cient for
a wide range of ratios n

p
. The design of such scalable algorithms is also listed as a major

goal in the recent \Grand Challenges" report [10].
Yet, only little theoretical work has been done for designing scalable parallel algorithms

for computational geometry problems. A related problem was studied in [2, 19]. The
model considered there was a host machine with O(n) memory attached to a systolic array
of size p with O(1) memory per processors. This model su�ers however from the fact
that data has to be frequently swapped between the host and the systolic array, and this
\I/O bottleneck" is the main factor determining the computation time. A closely related
\external memory" model was studied in [9]. At the end of Section 1 we will discuss more
in detail the relationship of our work to previous results in the literature.

The architectures of most existing multicomputers (e.g. the Intel Paragon, Intel ipsc/860,
and Thinking Machines Corp. cm-5) are quite di�erent. They consist of a set of p state-
of-the-art processors (e.g. sparc proc.), each with considerable local memory, connected to
some interconnection network (e.g. mesh, hypercube, fat tree). These machines are usually
coarse grained, i.e. the size of each local memory is \considerably larger" than O(1). In
order to minimize the I/O bottleneck, the entire data set for a given problem is immediately
loaded into the local memories and remains there until the problem is solved.

The coarse grained multicomputer model, or cgm(n; p) for short, considered in this
paper is a set of p processors with O(n

p
) local memory each, connected to some arbitrary

interconnection network or a shared memory. The term \coarse grained" refers to the fact
that (as in practice) the size O(n

p
) of each local memory is de�ned to be \considerably

larger" than O(1). Throughout the paper, we will assume that n
p
� p. This assumption

is necessary for the correctness of our algorithms. On the other hand, for all currently
available coarse grained parallel machines it is clearly true that n

p
� p. It is an interesting

open problem whether our methods can be generalized to apply also to the case n
p
< p.

Note that, for determining time complexities we will consider both, local computation time
and interprocessor communication time, in the standard way.

The problem studied in this paper is the design of scalable parallel geometric algorithms
for the coarse grained multicomputer model which are optimal or at least e�cient for a
wide range of ratios n

p
.

Note that, if there exists an optimal �ne grained algorithm with Tparallel = O(
Tsequential

p
)

then, at least from a theoretical point of view, the problem is trivial. Standard simula-
tion (also referred to as \virtual processor" simulation in many multiprocessor operating
systems) gives an optimal algorithm for any ratio of n and p. However, for most inter-
connection networks used in practice, many problems do not as yet have such optimal �ne
grained algorithms, or optimal �ne grained algorithms are impossible due to bandwidth or
diameter limitations (e.g. for the mesh).

We present new techniques for designing e�cient scalable parallel geometric algorithms.
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Our results are independent of the communication network (e.g. mesh, hypercube, fat tree).
A particular strength of our approach, which is very di�erent from the one presented in [2, 9],
is that all interprocessor communication is restricted to a constant number of usages of one
single global routing operation: global sort.

In a nutshell, the basic idea for our methods is as follows: We try to combine optimal
sequential algorithms for a given problem with an e�cient global routing and partitioning
mechanism. We devise a constant number of partitioning schemes of the global problem
(on the entire data set of n data items) into p subproblems of size O(n

p
). Each processor

solves sequentially a constant number of such O(n
p
) size subproblems, and we use a constant

number of global routing operations to permute the subproblems between the processors.
Eventually, by combining the O(1) solutions of its O(n

p
) size subproblems, each processor

determines its O(n
p
) size portion of the global solution.

The above is necessarily an oversimpli�cation. The actual algorithms will do more
than just those permutations. The main challenge lies in devising the above mentioned
partitioning schemes. Note that, each processor will solve only a constant number of O(n

p
)

size subproblems, but eventually will have to determine its part of the entire O(n) size
problem (without having seen all of the n data items). The most complicated part of the
algorithm is to ensure that at most O(1) global communication rounds are required.

We present scalable parallel algorithms for solving the following well known geometric
problems on the coarse grained multicomputer model:

(1) area of the union of rectangles,

(2) 3D-maxima,

(3) 2D-nearest neighbors of a point set,

(4) lower envelope of non-intersecting line segments in the plane (and, with slightly more
memory, for possibly intersecting line segments),

(5) 2D-weighted dominance counting,

(6) multisearch on balanced search trees, segment tree construction, and multiple segment
tree search.

We also study the following applications of (6): the problem of determining for a set of
simple polygons all directions for which a uni-directional translation ordering exists, and
determining for a set of simple polygons a multi-directional translation ordering.

Our scalable parallel algorithms for Problems 1-6 have a running time of

O(
Tsequential

p
+ Ts(n; p))

on a p-processor coarse grained multicomputer, cgm(n; p), with arbitrary interconnection
network and local memories of size O(n

p
) where n

p
� p. Ts(n; p) refers to the time to sort

globally n data items stored on a cgm(n; p), n
p
data items on each processor.

Since Tsequential = �(n logn) for Problems 1-6, our algorithms either run in optimal

time �(n logn
p

) or in sort time Ts(n; p) for the respective architecture. Our results become

optimal when
Tsequential

p
dominates Ts(n; p) or when Ts(n; p) is optimal. Note that, sort time

is a lower bound for the time complexities of all of the above problems.
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Consider for example the mesh architecture. For the �ne grained case, n
p
= O(1), a

time complexity of O(
p
n) is the best we can achieve due to the diameter of the network.

Standard simulation of the existing results on a coarse grained machine gives O(n
p

p
n) time

coarse grained methods. Our methods for the above problems run in time O(n
p
(logn+

p
p)),

a considerable improvement over the existing methods. For the hypercube, our algorithms
are optimal for n � plogp, in which case they also yield a considerable improvement over
previous methods.

Experiments with an implementation of our lower envelope algorithm (Problem 4) on
a cm-5 and ipsc/860 have shown that, in addition to being scalable, our algorithm for
Problem 4 quickly reaches the point of linear speed-up for reasonable data sizes. Even with
modest programming e�orts, our implementations showed good timing results. This is due
largely to the following two facts:

(1) Our algorithms use only one well known and extensively studied global routing oper-
ation. Global sort is usually available as a system call (often implemented on machine
level by the same group who wrote the operating system) or can be obtained as highly
optimized public domain software. All other programming is within the sequential do-
main. Even with modest programming e�orts, this produces highly optimized parallel
programs.

(2) On most architectures, for each message exchanged between two processors, there is
a considerable overhead involved (creating a communication channel, setting up the
communication protocol, etc.) which is independent of the size of the message. Exist-
ing parallel computational geometry algorithms, applied to a coarse grained machine,
tend to produce many short messages. Our methods involve only a small �xed num-
ber of global communication rounds, where large packets of size O(n

p
) are exchanged

between processors (i.e., the processors essentially swap their entire memory contents).

Our results are extensions of the methods in [2, 19] which study a machine model
consisting of a host machine with O(n) memory attached to a systolic array of size p with
O(1) memory per processor. The main architectural di�erence is that, in our model the
data is already stored in the processors' memories, which allows improved computation times
because the \I/O bottleneck" is not any more the determining factor. Nevertheless, several
of the data partitioning schemes presented in [2] have been very useful for our methods.
In fact, J.J. Tsay [19] pointed out that, for the special case of hypercubic networks, their
methods can be generalized to a machine model with O(n

p
) memory per processor, even for

any ratio n
p
� p�, � > 0. One of the main contributions of our paper is that our methods

can be applied to any interconnection network. Furthermore, the methods indicated in [19]
are recursive and require more than a constant number of communication rounds. Our
experiments show that few communication rounds (with large messages) are an important
feature for good practical performance. This is another important advantage of the methods
presented in this paper. It is an interesting open problem to study whether our methods
can be generalized to work for ratios n

p
< p for arbitrary networks and with a constant

number of communication rounds.
The remainder of this paper is organized as follows: In the next section we give more

details about the coarse grained multicomputer model, cgm(n; p). Sections 3-8 present
our algorithms for the problems listed above, and experimental results will be discussed in
Section 9.
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2 The \Coarse Grained Multicomputer" Model

The coarse grained multicomputer, cgm(n; p), considered in this paper is a set of p pro-
cessors numbered from 1 to p with O(n

p
) local memory each, connected via some arbitrary

interconnection network or a shared memory. Commonly used interconnection networks for
a cgm include the 2D-mesh (e.g. Intel Paragon), hypercube (e.g. Intel ipsc/860) and the
fat tree (e.g. Thinking Machines cm-5). Each processor may exchange messages of O(logn)
bits with any one of its immediate neighbors in constant time. For determining time com-
plexities, we will consider both, local computation time and interprocessor communication
time, in the standard way. The term \coarse grained" refers to the fact that the size O(n

p
)

of each local memory is assumed to be \considerably larger" than O(1). Our de�nition of
\considerably larger" will be that n

p
� p.

2.1 The Basic Communication Operation: Global Sort

Global sort refers to the operation of sorting O(n) data items stored on a cgm(n; p), O(n
p
)

data items per processor, with respect to the cgm's processor numbering. Ts(n; p) refers to
the time complexity of a global global sort.

Note that, for a mesh Ts(n; p) = �(n
p
(logn +

p
p)) and for a hypercube Ts(n; p) =

O(n
p
(logn + log2 p)). These time complexities are based on [14] and [3], respectively. Note

that for the hypercube better deterministic algorithms exist [6], but they are not of practical
use. One could also use randomized sorting [17], but in this paper we will only consider
deterministic methods. We refer the reader to [3, 5, 11, 13, 14, 17] for a more detailed
discussion of the di�erent architectures and routing algorithms.

It is interesting to study, for which ratio of n and p the global sort becomes optimal,
that is Ts(n; p) = O(n logn

p
). A simple calculation shows that the above sort methods are

optimal for a mesh with n � 2
p
p and a hypercube with n � plogp.

2.2 Other Communication Operations Based On Global Sort

For ease of description of our algorithms presented in the remainder, we will now outline
four other operations for interprocessor communication. All of these operations can be
implemented as a constant number of global sort operations and O(n

p
) time local com-

putation. Note that, for some interconnection networks it might be better in practice to
implement these operations directly rather than using global sort. This can improve the
time complexity constants of the algorithms described in the remainder.

Segmented broadcast: In a segmented broadcast operation, q � p processors with num-
bers j1 < j2 < : : : < jq are selected. Each such processor pji broadcasts a list of n

p
data

items from its local memory to the processors pji+1 : : :pji+1�1. The time for a segmented
broadcast operation will be referred to as Tsb(n; p).

Multinode broadcast: In a multinode broadcast operation, every processor sends one
message to all other processors. The time complexity will be denoted as Tb(p). For any
interconnection network, Tb(p) = O(p).

Total exchange: In a total exchange operation, every processor (in parallel) sends a
di�erent message to every other processor. The time complexity will be denoted as Tx(p).

Partial sum (Scan): Every processor stores one value, and all processors compute the
partial sums of these values with respect to some associative operator. The time complexity
will be denoted as Tp(p).
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Lemma 1 For any cgm(n; p) with n
p
� p,

(a) Tsb(n; p) = O(n
p
+ Ts(n; p)),

(b) Tb(p) = O(n
p
+ Ts(n; p)),

(c) Tx(p) = O(n
p
+ Ts(n; p)), and

(d) Tp(p) = O(n
p
+ Ts(n; p)).

Proof. For Part (a) we show that if n
p
� p then segmented broadcast can be simulated by

O(1) global sorts and O(n
p
) time local computation.

De�ne an operation segmented 1-broadcast as follows: r � p processors with numbers
k1 < k2 < : : : < kr are selected. Each processor pki broadcasts one data item from its local
memory to processors pki : : : pki+1�1, and each processor creates O(n

p
) copies of the received

data item.
Segmented 1-broadcast can be simulated by O(1) global sorts and O(n

p
) local computa-

tion as follows: Using global sort, compress into processor p0 all data items to be broadcast,
and an empty item from each processor not broadcasting anything. Create the copies to be
broadcast locally at processor p0 by �lling the empty items. Uncompress the data items
using another global sort.

We now describe how a segmented broadcast can be reduced to a segmented 1-broadcast.
Consider the q � p processors pj1 ; pj2 ; : : : ; pjq selected for the segmented broadcast and
de�ne label(pi) = k if and only if jk � i < jk+1. Create n

p
data items for each processor

which are either the data items to be broadcast or n
p
empty items. Sort all n data items

globally, using for each item x stored at processor pi (1 � i � p) label(pi) as �rst key,
the rank of x in the local list of the n

p
items at pi as second key, and i as the third key.

After this sort, consider the total list of all items over all processors (ordered by processor
number). Each item, y, to be broadcast is followed by all the empty items that need to be
�lled with y. For all those cases were y and its respective empty items reside within the
same processor, the �lling can be performed locally. The �lling process for the remaining
empty items reduces to a segmented 1-broadcast. After the �lling is complete, the above
sorting process is inverted, and the segmented broadcast is complete.

Parts (b), (c) and (d) are obvious.

3 Area of the Union of Isothetic Rectangles

Given a set R of n isothetic rectangles, the measure problem is to compute the area M
covered by the union of R.

Assume that the vertical edges of all rectangles r 2 R are sorted by their x-coordinate
and let L = fl1; : : : ; lpg be the set of vertical lines passing through every n

p
-th vertical edge.

Analogously let H = fh1; : : : ; hpg be the set of horizontal lines passing through every n
p
-th

horizontal edge. Let Vj be the vertical slab between lj and lj+1, let Hi be the horizontal
slab between hi and hi+1, and let box bij be the intersection of Hi and Vj. See Figure 1.

For each box bij consider the rectangles r 2 R which have one or more vertices in bij.
The horizontal lines through all these vertices inside bij cut bij into rectangles called stripes.
Note that, the total number of stripes in a horizontal or vertical slab is O(n

p
).

For each stripe s let xcover(s) be the total length of the parts of its upper boundary
covered by rectangles intersecting the stripe s with at least one vertical edge. Let ycover(s)
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Vj

hi+1
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Figure 1: Illustration of Lemma 2. Box bij consists of stripes s1; s2 and s3, with xcover(s1) =
3, xcover(s2) = xcover(s3) = 5 , ycover(s1) = 1, ycover(s2) = 3, and ycover(s3) = 0.

be the total length of the parts of the right boundary of s covered by rectangles intersecting
the box bij with at least one horizontal edge and having no corner in bij .

Lemma 2 Consider a box bij with stripes s1; : : : ; sr and de�ne as m(bij) the contribution
of box bij to the area M covered by the union of R. Two possible cases may occur:

(a) bij is contained in some rectangle r 2 R, in which case m(bij) is the total area of bij,

(b) m(bij) =
P

1�i�rm(si) where each stripe si contributes an area
m(si) = xcover(si)height(si) + ycover(si)length(si)� xcover(si)ycover(si).

Lemma 2 suggests the following algorithm: First we detect for each box b if it is contained
in a rectangle r, and if this is the case we setm(b) equal to the area of b. For each remaining
box b we determine its contribution m(b) by computing the values m(si) for all its stripes
si. The latter is obtained by computing for each stripe s the two values xcover(s) within
its vertical slab and ycover(s) within its horizontal slab.

The following is an outline of our scalable parallel algorithm for solving the measure
problem.

Algorithm 1
Architecture: A p-processor coarse grained multicomputer, cgm(n; p), with arbitrary inter-
connection network and local memories of size O(n

p
), n

p
� p.

Input: Each processor stores n
p
rectangles r 2 R.

Output: The area of the union of all r 2 R.
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(1) Globally sort the vertical (horizontal) edges of the rectangles by their x-coordinate
(y-coordinate) and compute the set L = fl1; : : : ; lpg (H = fh1; : : : ; hpg). Perform a
multinode broadcast, where each processor pi sends the edge li (hi) with maximal
x-coordinate (y-coordinate). After that, each processor holds a copy of L and H.
Rearrange all data using global sort such that each processor stores a vertical slab,
that is all rectangles with a vertex in that vertical slab, and locally compute all stripes
in that vertical slab.

(2) On each processor compute locally xcover(s) for all stripes s in the respective verti-
cal slab. Perform a plane sweep in upwards direction in time O(n

p
logn), using the

sequential measure of rectangles algorithm in [20] with minor adaptations.

(3) Determine all boxes b which are contained in a rectangle r 2 R: Each processor locally
builds a segment tree for L and H, each. Using these segment trees, determine for
each box b in the vertical slab the number l(b) of boxes to its left that are covered
by the rectangles with a corner in the vertical slab. Using a global sort rearrange the
p2 boxes such that each processor contains the boxes in a horizontal slab and their
respective values l(b). For each horizontal slab determine locally all covered boxes.

(4) Rearrange the data using global sort such that each processor stores a horizontal slab,
all stripes in that horizontal slab, and all rectangles with a vertex in that horizontal
slab. On each processor compute locally ycover(s) for all stripes s in the respective
horizontal slab which are not contained in a covered box. Perform a plane sweep
in horizontal direction in time O(n

p
logn), using the sequential measure of rectangles

algorithm in [20] with minor adaptations.

(5) Compute locally the values m(s) for all stripes not contained in a covered box, and
the values m(b) for boxes. Compute locally the sum of all m(s) and m(b) of all stripes
and boxes stored at each processor. Add these values over all processors.

| End of Algorithm |

Theorem 1 The measure problem for a set of n isothetic rectangles can be solved on a
p-processor coarse grained multicomputer with arbitrary interconnection network and local
memories of size O(n

p
), n

p
� p, in time O(n logn

p
+ Ts(n; p)).

Proof. The correctness of Algorithm 1 follows from Lemma 2. Note that, each rectangle
contributing to xcover(s) of some stripe s has a vertex in the vertical slab containing s,
and each rectangle contributing to ycover(s) of some stripe s has a vertex in the horizontal
slab containing s.

The space requirement is O(n
p
+ p) = O(n

p
) per processor. In each step, the local

computation time is at most O(n
p
logn). The global communication in each step reduces

to a constant number of global sorts and communication operations listed in Section 2.2.
Hence, the time complexity follows from Lemma 1.
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4 3D-Maxima

Consider a set S of n points in 3-space. For a point v let x(v), y(v), and z(v) denote the
x-coordinate, y-coordinate, and z-coordinate, respectively of v. Point v dominates a point
w if and only if x(v) > x(w), y(v) > y(w), and z(v) > z(w). A point is maximal in S if it
is not dominated by any other point of S. The 3D-maxima problem consists of determining
the set 3Dmax(S) of all maximal points in S.

Consider a set of p horizontal planes Hi (parallel to the x; y-plane, Hi below Hi+1)
which partition S into p subsets Hi (the points between Hi and Hi+1) of

n
p
points each.

Analogously, consider p vertical planes Vj (parallel to the y; z-plane, Vj to the left of Vj+1)
which partition S into p subsets Vj of

n
p
points each. See Figure 2 for an illustration.

Let H 0
i be the projection of all points of Hi onto the plane Hi, and let 2Dmax(H 0

i) be
the set of 2-D maximal points of H 0

i within plane Hi. De�ne 2Dmaxi to be the monotone
chain within plane Hi induced by 2Dmax(H 0

i), and let qij be the intersection of 2Dmax(H 0
i)

and Vj+1; see Figure 2.

Observation 1 Any point v 2 Vj nHi which is dominated by a point w 2 Hi n Vj is also
dominated by qij.

o

Vj

2Dmaxi

Hi

qij

w

v
y

x

z

Figure 2: Illustration of Observation 1. The point v 2 Vj nHi is dominated by w 2 Hi n Vj
and thus dominated by the intersection point qij .

De�ne Qi = fqij j1 � j � pg. Note that jQij = p because 2Dmaxi is monotone.
Observation 1 suggests the following algorithm for solving the 3D-maxima problem.

Algorithm 2

Architecture: A p-processor coarse grained multicomputer, cgm(n; p), with arbitrary inter-
connection network and local memories of size O(n

p
), n

p
� p.

Input: Each processor stores n
p
points of S.

Output: Each processor stores at most n
p
maximal points of S.
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(1) Globally sort S by x-coordinate. Processor pj stores subset Vj and bounding plane Vj .
Perform a multinode broadcast where each processor pj sends bounding plane Vj to
all other processors. As a result, each processor stores all bounding planes V1; : : :Vp.

(2) Globally sort S by z-coordinate. Processor pi stores subset Hi and bounding plane
Hi. Each processor pi computes locally 3Dmax(Hi) using the standard sequential
algorithm as described e.g. in [16], and removes all points dominated in Hi. Each
processor pi computes locally the 2D-projection H 0

i, 2Dmax(H 0
i), and the monotone

chain 2Dmaxi. Using the bounding planes V1; : : :Vp, each processor pi computes the
set Qi.

(3) Globally sort
Sp
i=1(3Dmax(Hi) [ Qi) by x-coordinate. Processor pj stores the set

V �
j consisting of the points of [pi=13Dmax(Hi) between the bounding planes Vj and
Vj+1 as well as fqij j1 � i � pg. Note that jV �

j j � n
p
. Each processor pj computes

locally 3Dmax(V �
j ) using the standard sequential algorithm. The reported result,

3Dmax(S), is [pi=13Dmax(V �
j ).

| End of Algorithm |

Theorem 2 The 3D-maxima problem for a set of n points in 3-space can be solved on a
p-processor coarse grained multicomputer with arbitrary interconnection network and local
memories of size O(n

p
), n

p
� p, in time O(n logn

p
+ Ts(n; p)).

Proof. The correctness of Algorithm 2 follows from Observation 1. The space requirement
is O(n

p
+ p) = O(n

p
) per processor. In each step, the local computation time is at most

O(n
p
logn). The global communication in each step reduces to a constant number of global

sorts and communication operations listed in Section 2.2. Hence, the time complexity
follows from Lemma 1.

5 2D-Nearest Neighbors of a Point Set

Given a set S of n points in the Euclidean plane, the all-nearest neighbor problem for S is to
determine for each point v 2 S its nearest neighbor NNS(v) in S, where NNS(v) is formally
de�ned as a point w 2 S n fvg such that dist(v; w) � dist(v; u) for all u 2 S n fvg.

Consider a set of p horizontal lines which partition S into p subsets Hi of
n
p
points each.

Analogously, consider p vertical lines which partition S into p subsets Vj of
n
p
points each.

See Figure 3 for an illustration. Let Iij denote the four point where the boundary lines of
Hi and Vj cross. De�ne Cij as the set of all w 2 Vj nHi such that w is closer to a point of
Iij than to its nearest neighbor NNVj(w) in Vj .

We recall the following lemma from [2].

Lemma 3 jCij j � 8, and every w 2 Vj n Hi such that NNS(w) 2 Hi n Vj is an element
of Cij.

Algorithm 3
Architecture: A p-processor coarse grained multicomputer, cgm(n; p), with arbitrary inter-
connection network and local memories of size O(n

p
), n

p
� p.

Input: Each processor stores n
p
points of S.

Output: Each processor stores NNS(v) for each of its points.
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Hi

Vj

u

q

w

Figure 3: Illustration of Lemma 3. The points � belong to the set Cij , the points � denote
the set Iij .

(1) Globally sort S by y-coordinate, such that processor pi stores subset Hi and the two
horizontal lines bounding Hi. Perform a multinode broadcast, such that every proces-
sor stores all p horizontal bounding lines. Every processor pi computes sequentially
NNHi

(v) for each of its points v 2 Hi, using the standard sequential algorithm [16].

(2) Globally sort S by x-coordinate, such that processor pj stores subset Vj and the two
vertical lines bounding Vj. Every processor pj computes sequentially NNVj(v) for each
of its points v 2 Vj , using the standard sequential algorithm. Using all p horizontal
bounding lines broadcast in Step 1, every processor pj computes the p sets Iij and
Cij, 1 � i � p.

(3) Globally sort S by y-coordinate, such that processor pi stores subsets Hi and Ci :=Sp
j=1 Cij . Every processor pi computes sequentially NNHi[Ci

(v) for each of its points
v 2 Hi [ Ci, using the standard sequential algorithm.

(4) Using global sort, the three \nearest neighbors" for each v 2 S, as determined in
Steps 1-3, are routed back to the processor who initially stored v, and the closest one
is reported as NNS(v).

| End of Algorithm |

Theorem 3 The all-nearest neighbor problem for a set of n points in the Euclidean plane
can be solved on a p-processor coarse grained multicomputer with arbitrary interconnection
network and local memories of size O(n

p
), n

p
� p, in time O(n logn

p
+ Ts(n; p)).
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Proof. The correctness of Algorithm 2 follows from Lemma 3. The space requirement
is O(n

p
+ p) = O(n

p
) per processor. In each step, the local computation time is at most

O(n
p
logn). The global communication in each step reduces to a constant number of global

sorts and communication operations listed in Section 2.2. Hence, the time complexity
follows from Lemma 1.

6 Lower Envelope of Non-Intersecting Line Segments in the

Plane

Given a set S of n non-intersecting line segments in the plane, the lower envelope problem
consists of computing the set LE(S) of segment portions visible from the point (0;�1).

Observation 2 The lower envelope of n non-intersecting line segments is x-monotone and
has size O(n).

Algorithm 4
Architecture: A p-processor coarse grained multicomputer, cgm(n; p), with arbitrary inter-
connection network and local memories of size O(n

p
), n

p
� p.

Input: Each processor pi stores a set Si of
n
p
line segments of S.

Output: Each processor stores O(n
p
) segment portions of LE(S).

(1) Each processor pi computes sequentially LE(Si) for its subset Si of line segments
(ignoring all other segments) [12].

(2) Globally sort the segments in
Sp
i=1LE(Si) by the x-coordinate of their right endpoints,

which moves to each processor pi a new set Vi of O(
n
p
) segments. Note that, each

processor pi also keeps the set LE(Si).

(3) Each processor pi determines the vertical line li through the rightmost vertex of a
segment of Vi. Perform a multinode broadcast where processor pi sends li to all other
processors. Hence, each processor stores all p vertical lines l1; : : : ; lp.

(4) Perform a total exchange, with processor pi sending segment s 2 LE(Si) to processor
pj i� s intersects the vertical line lj . Let Rj be the set of segments received by
processor pj .

(5) Each processor pi computes sequentially LE(Vi [ Ri).

| End of Algorithm |

Theorem 4 The lower envelope problem for a set of n non-intersecting line segments in
the plane can be solved on a p-processor coarse grained multicomputer with arbitrary inter-
connection network and local memories of size O(n

p
), n

p
� p, in time O(n logn

p
+ Ts(n; p)).

Proof. Since each LE(Si) is x-monotone (Observation 2), it can intersect each vertical line
lj at most once. Hence, each Rj has a cardinality of at most p. Furthermore, each segment
r in Vi can only be obstructed by a segment r0 from another set Vj if j > i and r0 intersects
li. The space requirement is O(n

p
+ p) = O(n

p
) per processor. In each step, the local

12



computation time is at most O(n
p
logn). The global communication in each step reduces

to a constant number of global sorts and communication operations listed in Section 2.2.
Hence, the time complexity follows from Lemma 1.

The above algorithm also computes the lower envelope for possibly intersecting line
segments. The only di�erence is that the size of the lower envelope may become O(n�(n)),
where �() is the extremely slow growing inverse Ackermann function. As we cannot produce
completely balanced output, this may require O(n�2(n)) memory space. Although each
processor has at most O(n

p
�(n

p
)) line segments after Step 4, it may happen that in Step 5

a processor computes O((n
p
�(n

p
))�(n

p
�(n

p
))) line segments. This is no contradiction to the

upper bound for the size of the lower envelope of n line segments, if, for example, all the
other processors produce lower envelopes of size O(n

p
) and if p > �(n). We thus obtain the

following.

Corollary 1 The lower envelope problem for a set of n possibly intersecting line seg-
ments in the plane can be solved on a p-processor coarse grained multicomputer with ar-

bitrary interconnection network and local memories of size O(n�
2(n)
p

), n�2(n)
p

� p, in time

O(n�
2(n) logn

p
+ Ts(n�

2(n); p)).

7 2D-Weighted Dominance Counting

Let S be a set of n points in the plane with some weight w(v) assigned to each v 2 S. The
2D-weighted dominance counting problem consists of determining for each v 2 S the total
weight, wdom(v; S), of all points of S which are dominated by v.

Consider a set of p horizontal lines hi which partition S into p subsets Hi of
n
p
points

each (with hi below Hi, and hi+1 above Hi). Analogously, consider p vertical lines lj which
partition S into p subsets Vj of

n
p
points each (with lj to the left of Vj , and lj+1 to the right

of Vj).
For a subset A � S let w(A) =

P
a2Aw(a). Denote with Sij the set of points in S which

are below hi and to the left of lj, and let Vij be the set of points of Vj that are below hi.

Observation 3

(a) For each point v 2 Hi \ Vj:
wdom(v; S) = wdom(v;Hi) + wdom(v; Vj)� wdom(v;Hi \ Vj) + w(Sij).

(b) w(Sij) =
Pj�1

k=1 w(Vik).

Algorithm 5

Architecture: A p-processor coarse grained multicomputer, cgm(n; p), with arbitrary inter-
connection network and local memories of size O(n

p
), n

p
� p.

Input: Each processor stores n
p
points of S.

Output: Each processor stores wdom(v; S) for each of its n
p
points v 2 S.

(1) Globally sort the points by their y-coordinates such that processor pi storesHi and hi.
Perform a multinode broadcast, where processor pi sends hi to all other processors;
i.e. every processor stores now all horizontal lines h1; : : : ; hp.

(2) Each processor pi sequentially computes wdom(v;Hi) for each v 2 Hi.

13



(3) Globally sort the points by their x-coordinates such that processor pj stores Vj and lj.

(4) Each processor pj sequentially computes wdom(v; Vj) for each v 2 Vj .

(5) Each processor pj determines the sets Vj \H1; : : : ; Vj \Hp using the lines h1; : : : ; hp,
respectively, received in Step 1, and computes sequentially wdom(v;Hi\ Vj) for each
v 2 Hi \ Vj .

(6) Each processor pj determines the sets V1j, : : :, Vpj using the lines h1, : : :, hp, respec-
tively, received in Step 1, and computes sequentially w(V1j), : : :, w(Vpj).

(7) Perform a total exchange, where processor pj sends w(Vij) to processor pi+1, 1 � i < p.

(8) Globally sort the points by their y-coordinates such that processor pi stores Hi.

(9) Each processor pi sequentially computes w(Sij) =
Pj�1

k=1 w(Vik), and wdom(v; S) =
wdom(v;Hi)+wdom(v; Vj)�wdom(v;Hi\Vj)+w(Sij) for each v 2 Hi\Vj, 1 � j � p.

| End of Algorithm |

Theorem 5 The 2D-weighted dominance counting problem for a set of n weighted points
in the plane can be solved on a p-processor coarse grained multicomputer with arbitrary
interconnection network and local memories of size O(n

p
), n

p
� p, in time O(n logn

p
+Ts(n; p)).

Proof. The correctness of Algorithm 5 follows from Observation 3. The space requirement
is O(n

p
+ p) = O(n

p
) per processor. In each step, the local computation time is at most

O(n
p
logn). The global communication in each step reduces to a constant number of global

sorts and communication operations listed in Section 2.2. Hence, the time complexity
follows from Lemma 1.

8 Parallel Tree Search and Applications

Let T = (V;E) be a balanced k-ary tree of size n and height h = O(logk n), where k is a
�xed constant. We recall from [7] the de�nition of the multisearch problem for T and a set
Q = fq1; : : : ; qmg of m = O(n) search queries on T .

Each query q 2 Q has a search path, path(q) = (v1(q); : : : ; vh(q)), of h vertices of T
(from the root to a leaf of T ) which is a sequence de�ned by a successor function f :
(V [ start) � Q ! V with the following properties: f(start; q) = v1, f(vi; q) = vi+1 where
(vi; vi+1) 2 E and f(vi; q) can be computed by a single processor in time O(1). We say that
query q visits node vt(q) at time t. The multisearch problem for Q on T consists of executing
(in parallel) all m search processes induced by the m search queries. It is important to note
that the m search processes may overlap arbitrarily. That is, at any time t, any node of T
may be visited by an arbitrary number of queries. See [1, 7] for more details.

De�ne as T0 the subtree of T induced by the root and all nodes of T which have a distance
from the root of at most logk p. Subtree T0 has p

0 � p leaves. To simplify exposition, assume
w.l.o.g. that p0 = p. Let Ti be the subtree of T rooted at the i-th leaf of T0, 1 � i � p.
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Algorithm 6

Architecture: A p-processor coarse grained multicomputer, cgm(n; p), with arbitrary inter-
connection network and local memories of size O(n

p
), n

p
� p.

Input: Each processor stores n
p
nodes of T and m

p
= O(n

p
) queries q 2 Q.

Result: Each q 2 Q visits its entire search path path(q).

(1) Using a total exchange operation, create p copies of T0 and distribute them such that
each processor has one copy of T0.

(2) Using its copy of T0, each processor performs the �rst logk p multisearch steps for its
O(n

p
) search queries.

(3) For each tree Ti compute c(Ti) =

�
jfq2Q:vlogk p(q)2Tigj

m
p

�
, 1 � i � p.

(4) Create c(Ti) copies of each subtree Ti and and distribute them such that each processor
stores at most two subtrees.

(5) Redistribute Q such that every query q 2 Q is stored at a processor that also stores
a copy of the subtree Ti (1 � i � p) containing vlogk p(q).

(6) Each processor performs the remaining h� logk p multisearch steps for its O(np ) search
queries.

| End of Algorithm |

Theorem 6 The multisearch problem for a balanced search tree of size O(n) and �xed
degree k, and a set of m = O(n) search queries, can be solved on a p-processor coarse
grained multicomputer with arbitrary interconnection network and local memories of size
O(n

p
), n

p
� p, in time O(n logn

p
+ Ts(n; p)).

Proof. The correctness of Algorithm 6 follows from the following three observations.
First, all subtrees T0; T1; : : : ; Tp have a size of O(

n
p
). Then, the total number

Pp
i=1 c(Ti) of

all tree copies created in Step 4 is O(p). Finally, in Step 5, the number of queries moved to
each processor is O(n

p
). The space requirement is O(n

p
+ p) = O(n

p
) per processor. In each

step, the local computation time is at most O(n
p
logn). The global communication in each

step reduces to a constant number of global sorts and communication operations listed in
Section 2.2. Hence, the time complexity follows from Lemma 1.

Observe that the above version of multisearch is \read only", that is queries only read
the contents of the nodes they are visiting without making any changes. The more general
multisearch problem with changing node values refers to the case where queries can also
change the contents of visited nodes. If several queries attempt to write di�erent values
into the same node, we use an associative operator � (e.g. sum, min, max, or, and, not, ...)
to determine the node's value.

Algorithm 6 is easily generalized to solve the multisearch problem with changing node
values. We insert after Steps 2 and 6 a procedure which combines the results written into
the di�erent copies of the same node of T (residing on di�erent processors). This is easily
performed in time O(n logn

p
+ Ts(n; p)) by sorting all tree nodes such that the O(p) copies

of the same node of T reside in the same processor, and executing the associative operator
� locally on those copies.
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Corollary 2 The multisearch problem with changing node values for a balanced searchtree
of size O(n) and �xed degree k, and a set of m = O(n) search queries, can be solved on a
p-processor coarse grained multicomputer with arbitrary interconnection network and local
memories of size O(n

p
), n

p
� p, in time O(n logn

p
+ Ts(n; p)).

In the remainder of this section, we study some applications of our multisearch algorithm.
A segment tree, originally introduced by Bently [4], is a data structure designed for

storing line segments. The segment tree T for a set of n line segments is a complete binary
tree with 2n leaves (for ease of description let 2n be a power of 2) representing the x-
coordinates of the segments' endpoints in sorted order. For each internal node v, its \node
list" is the set of all line segments s with the property that the projection of s onto the
x-axis contains all x-coordinates of leaves of the subtree rooted at v but but it does not
contain all leaves of the subtree rooted at the direct ancestor of v in T . See Preparata and
Shamos's book [16] for details and a catalog of applications. It is easy to see that the total
size of all \node lists" is O(nlogn). The linear size segment tree is obtained by storing for
each vertex v only the size of its \node list". As outlined e.g. in [16], a variety of problems
(e.g. computing the union of rectangles) can be solved through O(n) queries (insert, delete,
search) executed on a linear size segment tree.

Obviously, a parallel segment tree search, with O(n) queries executed in parallel, reduces
to a multisearch procedure. As shown in [7], the construction of a linear size segment tree
can also be reduced to a constant number of multisearch procedures on a complete binary
tree.

Corollary 3 The linear size segment tree construction problem for n line segments as well
as the parallel linear size segment tree search problem for O(n) search queries can be solved
on a p-processor coarse grained multicomputer with arbitrary interconnection network and
local memories of size O(n

p
), n

p
� p, in time O(n logn

p
+ Ts(n; p)).

Let S be a set of r pairwise disjoint m-vertex polygons. The uni-directional separability
problem [8] consists of determining all directions d such that S is separable by a sequence
of r translations in direction d (one for each polygon). The multi-directional separability
problem [8] asks if S is separable by a sequence of r translations in di�erent directions. We
refer the reader to [8] for more details on these problems. The solutions presented in [8]
are based on multiple searches on a modi�ed segment tree and another tree data structure
called wedge tree. It is not a complicated exercise to follow the steps of the algorithms in
[8] and observe that each step can be parallelized for a cgm(n; p) with n = O(r2 + rm),
n
p
� p, using the tools presented in this section.

Corollary 4 The uni-directional and multi-directional separability problems for r pairwise
disjoint m-vertex polygons can be solved on a p-processor coarse grained multicomputer with
arbitrary interconnection network and local memories of size O(n

p
), n = O(r2 + rm) and

n
p
� p, in time O( r

2(m+log r)
p

+ Ts(r2; p)).

9 Experimental Results

To demonstrate the practical relevance of our scalable cgm algorithms, we implemented
the lower envelope algorithm for (possibly intersecting) line segments (Section 6) on a cm-5
with 32 processors and on an Intel ipsc/860 with 8 processors.
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We �rst discuss our cm-5 implementation. Our code is less than 400 lines long and is
highly optimized. The sequential local computation of the lower envelope consists of log n
phases which merge pairs of envelopes, starting with envelopes consisting of a single segment
each. For parallel sorting we used a merge sort available as public domain code from [18].
The total exchange operation was implemented by using sort (see Section 2.2). Multinode
broadcast was available as a cm-5 system call, but partial sum had to be re-implemented
because the available system call did not handle n=p data per processor. Each line segment
was implemented as a structure of 4 double precision oats. The implementation did not
make use of the cm-5's vector units. The timings were made under time sharing and the
installation of the machine is experimental. Figure 4 describes therefore only the asymptotic
behavior of our algorithm.

total time (Case 1)

0 10000 20000 30000 40000
0

9

18

27

36

50000

total time (Case 3)

communication time (Case 3)

total time (Case 2)

communication time (Case 2)

[#seg/proc]

[sec]

45

communication time (Case 1)

Figure 4: cm-5 running times of the lower envelope algorithm.

The two bottom curves in Figure 4 labeled \total time (Case 1)" and \communication
time (Case 1)" describe the running time of our lower envelope algorithm applied to random
line segments in a unit square. The two curves show the total running time and the time
spent on communication only, respectively, depending on the number of line segments per
processor.

The estimated speedup is about 15, i.e. a little less than half of the possible linear
speedup (32). An exact measurement was not possible due to the memory limitation on
a single processor which did not allow us to run the above mentioned sequential lower
envelope code for the entire data set. We hence extrapolated the sequential times for fewer
line segments. The speedup is essentially determined by the fact that the algorithm uses
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two rounds of local lower envelope computation.
Recall that the size of the lower envelope can range between 1 and O(n�(n)). In our

experiments we observed that for sets of random line segments the sizes of the lower en-
velopes created in Steps 1 and 5 of Algorithm 4 are very small compared to the initial line
segment set. This drastic data reduction has a large positive impact on the running time
and is one of the reasons why our algorithm is so extremely fast. While this massive data
reduction is, in practice, a nice property of our algorithm, we were also interested in its
running time without this additional advantage.

Therefore we also applied our algorithm to several non random line segment sets were
the output size was considerably larger. Two cases were considered, which are referred to
in Figure 4 as \Case 2" and \Case 3".
Case 2: We selected only segments (inside the unit square) of a �xed very short length.
The larger the line segment set generated, the smaller was the chosen length, such that the
product of the length and the number of line segments was always a constant c = 10; 000.
Case 3: We selected n segments such that the lower envelope had a size of approximately
3n. An arrangement of 3 segments with a lower envelope of 6 segments was replicated and
the entire arrangement intersected by a long horizontal segment.

The timings in Figure 4 con�rm the theoretical analysis. For �xed p, Theorem 4 implies
that the total time grows proportional to O(n logn) while the communication time grows
proportional to O(n). As logn grows very slowly, O(n logn) and O(n) are usually very
similar in practice. This exactly what we observe in Figure 4: the total time and the
communication time are essentially linear in n, with di�erent constants.

Also the absolute times were interesting in practice. Note that, even for Case 3 (no data
reduction), the lower envelope for 32� 50; 000 = 1; 600; 000 line segments was reported in
45 sec. As indicated above, these timings were obtained in a time sharing environment and
on an experimental installation. Hence, we can expect further improvements.

The results for Case 3 also give a clue about the running times of the other algorithms
studied in this paper. They do not have the above mentioned data reduction property.
Otherwise, all other algorithms have a similar structure, except for the fact that they may
use up to twice as many global sorts and sometimes larger records to be sorted. This leads
us to conjecture that the communication times for those algorithms will have, within a small
constant factor, a similar growth rate. Note that the sequential algorithms for the other
problems have time complexities that are also larger, by small constant factors, than the
sequential lower envelope computation time.

We also implemented the lower envelope algorithm on an Intel ipsc/860 hypercube with
8 processors. We used a public domain sorting code for the ipsc and Intel's standard
fortran compiler. (We did not have available a high performance i860 compiler.) The
sequential lower envelope code was based on a plane sweep algorithm. The results for
random line segment sets in a unit square (Case 1) are shown in Figure 5.

Both experiments are not really comparable since the programming was done by di�er-
ent people using di�erent code for sorting and local computations. However, they illustrate
nicely a big architectural di�erence between the cm-5 and the ipsc/860. Within the range
for n considered in our experiments, the communication time for the ipsc is a large constant
with considerable inuence on the total time. The e�ect is that the total time is essentially
constant for n;p

� 1024 and shows linear linear grows only for larger values of n. This large
communication time even for small values of n is due to the fact that the ipsc was designed
primarily for sending large data packets but, on the other hand, needs considerably more
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Figure 5: ipsc/860 running times of the lower envelope algorithm.

time to initiate a data transfer. It underlines the importance of designing scalable par-
allel algorithms such that only few large data packets are exchanged, which is one of the
properties of all our algorithms presented in this paper.
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