
PARALLEL BRANCH AND BOUND ON FINE-GRAINED HYPERCUBE MULTIPROCESSORS'

FRANK DEHNE~ , AFONSO G. FERREIRA~, AND ANDREW RAUCHAPLIN~

Center for Parallel and Distributed Computing. School of Computer Science, Carleton University. Ottawa, Canada K1S 586
Laboratoire de I'lnformatique du Parallelisme - MAG, €cole Normale Superieure de Lyon, 69364 Lyon cedex 07, France

Abstract. In this paper, we study parallel branch and bound on
fine grained hypercube multiprocessors. Each processor in a fine
grained system has only a very small amount of memory
available, Therefore, current parallel branch and bound methods
for coarse grained systems (s 1000 nodes) can not be applied,
since all these methods assume that every processor stores the
path from the node it is currently processing back to the node
where the process was created (the back-up path). Furthermore,
the much larger number of processors available in a fine grained
system makes it imperative that global information (e.g., the
current best solution) is continuously available at every
processor; otherwise the amount of unnecessary search would
become intolerable. We describe an efficient branch-and-bound
algorithm for fine grained hypercube multiprocessors. Our method
uses a global scheme where all processors collectively store all
back-up paths such that each processor needs to store only a
constant amount of information. At each iteration of the
algorithm, all current nodes may decide whether they need, to
create new children, be pruned, or remain unchanged. We describe
an algorithm that, based on these decisions, updates the current
back-up paths and distributes global information in O(l0g m) steps,
where m is the current number of nodes. This method also includes
dynamic allocation of search processes to processors and
provides optimal load balancing. Even if very drastic changes in
the set of current nodes occur, our load balancing mechanism does
not suffer any slow down.

1 INTRODUCTION

Branch-and-bound (888) search methods such as A'

search, Alpha-Beta search, depth-first and best-first search

are used in areas such as VLSl design, theorem proving,

linear programming, chess playing, and many other

Artificial Intelligence and Operations Research applications

([Win], [Nil]). Since most of the addressed problems are

NP-hard, and therefore the size of the search space grows

exponentially, many researchers have studied the

parallelization of B&B methods (e.g. [HD], [New], [MC],

[UYll]). So far, studies have been aimed at using coarse

grained multiprocessors for parallel B&B implementations

(multiprocessors with a relatively small number - less than

1,000 -, of relatively powerful processors, each having a

considerable amount of memory). Particular attention has

recently been given to coarse-grained hypercube

multiprocessors such as the FPS hypercube, NCUBE, or Intel

iPSC (e.g. [LW], [Qui], [AC], [AM], [Fell, [MTM], [PW],

[SGBI).
Parallel B&B methods for coarse grained multiprocessors

aim at splitting the tree searched by the B&B method into

subtrees, and having subtrees searched in parallel by

different processors. The essential differences among the

proposed coarse grained algorithms are how they deal with

the two major problems arising in such an approach:

(1) Load balancing: When a subproblem (a subtree to be

searched) is assigned to an individual processor, the size of

the subtree is not known in advance. Therefore, the sizes of

the problems assigned to individual processors may vary

significantly and this unbalanced distribution of work load

may result in performance degeneration.

(2) Global information: For sequential B&B methods, the

pruning of the search tree often depends on global

information such as the best solution found so far. On a

multiprocessor, the distribution of global information causes

additional computational overhead or, if information is not

completely distributed, the parallel method may search more

nodes than the respective sequential algorithm (unnecessary

search).

*
This research was conducted while the second author was
visiting Carleton University. The first author's research is
partially supported by the Natural Sciences and Engineering
Research Council of Canada (Grant A9173). The second author
is currently on leave from the University of Sao Paul0
(Brazil), project BID/USP. and partially supported by
CAPES/COFECUB (Grant 503186-9).

In this paper, we study parallel B&B on fine grained

hypercube multiprocessors (hypercubes with a large

number - more than 10,000 - of small processors). The

Connection Machine is an example of an existing fine grained

616 1984/89/0000/0616$01.00 Q 1989 JEEE

I 1-

system. In the context of parallel B&B, fine grained

multiprocessors obviously have the advantage of a larger

number of processors and increased parallelism. However,

each processor in a fine grained system has only a small

constant amount of memory available. For any node p of the

search tree let the back-up path of p be the path from p to the

root of the search tree. In a fine grained multiprocessor, it is

impossible for one processor to store the back-up path even

for the one single node that it is currently examining.

Therefore, the above mentioned coarse grained parallel B&B

methods can not be applied to a fine grained system because

all these methods assume that every processor stores the

back-up path for its currently processed node (at least back

to the tree node where the process was created).

Furthermore, the much larger number of processors

(and, therefore, concurrent search processes) makes it

imperative, for fine grained B&B algorithms, that global

information (e.g., the current best solution) is continuously

available at every processor since otherwise the amount of

unnecessary search would become intolerable.

In the remainder of this paper we describe an efficient

B&B algorithm for fine grained hypercube multiprocessors

that solves the problem of storing all current back-up paths.

Our method uses a global scheme where all processors

collectively store all back-up paths such that each processor

needs to store only a constant amount of information. Instead

of storing the individual back-up paths, we store a current

back-up tree which is defined by the union of the back-up

paths of all search tree nodes currently under examination.

(This also ensures that paths in the search tree shared by

several back-up paths are stored only once, thus providing

optimal storage utilization.) At each iteration of the

algorithm, all nodes of the current back-up tree may decide

whether they need to create new children, be pruned, or
remain unchanged. We describe an algorithm that, based on

these decisions, updates the current back-up tree and

distributes global information in O(log m) steps, where m is

the size of the current back-up tree. This method also

includes a dynamic allocation mechanism for allocating

search processes to processors, and provides optimal load

balancing. Even if very drastic changes in the current back-

up tree occur, the performance of our load balancing

mechanism does not deteriorate.

Note that, the O(log m) overhead mentioned above is

measured by considering only constant length messages,

exchanged between adjacent processors, as 0(1) operations.

In this model, an O(log m) overhead is very small; in fact,

one single "PREF" operation (parallel inter-processor read)

in Connection Machine 'LISP has a larger time complexity.

The remainder of this paper is organized as follows:

Section 2 introduces some notation regarding B&B algorithms

as well as some standard hypercube operations that will be

utilized in our algorithm. In Section 3, we will then present

our parallel BBB algorithm for fine-grained hypercube

multiprocessors. Section 4 concludes the paper.

2 DEFINITIONS AND BASIC HYPERCUBE OPERATIONS

In this section, we will first define a generalized B&B

procedure in terms of five rules. By providing different

procedures to implement these rules, users will be able to

implement a wide range of B&B algorithms. We then review

some basic standard hypercube operations which will be used

in the remainder of this paper.

2.1 BRANCH AND BOUND

Branch-and-bound is a general technique for exploring

search spaces; A', Alpha-Beta, Hill-Climbing and Best-First

search are well known instances of B&B algorithms.

In this paper we consider a general B&B algorithm defined

by five rules; any particular B&B algorithm can be realized

by providing a suitable implementation for each rule (see

[ACI).

- Cost rule: Given a leaf node in the search tree and it

parent's cost, this rule defines the cost up to and

including the leaf.

Bounding rule: Given a node in the search tree, this rule

returns 1 if the node is no longer feasible (i.e.,

should be deleted) else returns a 0.

Selection rule: Given a node in the search tree, this rule

returns an integer specifying the number of children

this node should create in this iteration.

Expansion rule: Given a node, an integer specifying the

number of children to be created, and a pointer to

617

I I

where they should be created, this rule creates the

new children.

Termination rule: Given a set of global information, this

rule returns true if a satisfactory solution has been

found or all possibilities have been explored.

2.2 BASIC HYPERCUBE OPERATIONS

The branch-and-bound algorithm described in the next

section uses slightly generalized versions of five well-

defined hypercube operations. In addition to the registers

listed below, implementations of these operations may
require a constant number of auxiliary registers. In the

following, for every register A available at every processor,

A(i! refers to register A at processor PE(i). We assume a

hypercube consisting of N = 24 processors.

Psum(source(i),result(i)): Every processor PE(i) has

some value stored in the register source(i). This operation

computes result(i) := source(0) + source(1) + ...
+source(i) for each PE(i). This is the standard partial sum

operation in hypercubes and can be implemented in O(log N)

time.

Ident i fyBlock(block(i) ,endOfBlock(i)) : A b l o c k of

processors is defined by consecutive PE(i)'s having the same

value stored in the register block(i). For each PE(i), this

operation will then assign to endOfBlock(i) the largest j such

that block(j)=block(i). Its time complexity is also O(log N),

since it can be implemented by a "Concentrate" operation

(INS]) followed by a RouteAndCopy operation defined below.

BlockPsum(source(i),result(i),block(i)): This operation

performs a partial sum within blocks only. Every PE(i) will

store in result(i) the partial sum of the value stored in the

register source(i) within the block it belongs to. The

BlockPsum operation can be implemented by a Psum

operation followed by a RouteAndCopy operation. Hence its

time complexity is O(log N).

R o u t e f R e g ~ (i) , Regg(i) ,Dest (i) ,Cond(i)) : Every

processor PE(i) has 2 data registers Regl(i), Regp(i), a

destination register Dest(i), and a boolean condition register

Cond(i). I t is assumed that the destinations Dest(i) are

monotonic: i.e., i f iej then Dest(i)cDest(j). This operation

routes, for every processor PE(i) with Cond(i) = true, the

contents of register Regl(i) to processor register degn(i) of

processor PE(Dest(i)); it can be implemented with an O(log

N) time complexity by using a Concentrate operation followed

by a Distribute operation described in (NS].

RouteAndCopy(Reg 1 (i) , Regz(i), Dest(i),Cond(i)): Under

the same assumptions as for the Route operation, this

operation routes, for every processor PE(i) with Cond(i) =

true, a copy of registers Reg1 (i) to registers Regp(Dest(i -
1) + l) , ..., Regp(Dest(i)), each; it can be implemented

with an O(log(N)) time complexity by using a Concentrate

followed by a Generalize operation described in [NS].

3 AN ALGORITHM FOR PARALLEL BRANCH AND BOUND

WITH GLOBAL INFORMATION ON A FINE-GRAINED

HYPERCUBE

A branch and bound algorithm searches in the space of all

the feasible solutions for a given problem. These feasible

solutions are usually seen as a search tree S over the solution

space. In parallel B&B algorithms, the search in S for an

optimal or satisfactory solution is performed concurrently at

several nodes of S. These nodes are referred to as active

nodes. The subtree T of S defined by the union of the back-up

paths of all active nodes is the current back-up tree as

introduced in Section l (an example of a current back-up tree

is shown in Figure 1). Note that we allow any node of the

current back-up tree to be an active node, which allows e.g.

the implementation of best-first search. For the remainder,

m will refer to the size of the current back-up tree.

Figure 1. A Current Back-up Tree (Bold Nodes).

In this section, we will describe a parallel B&B algorithm

for fine grained hypercube multiprocessors. Our method

stores the current back-up tree such that each processor

needs to store only a constant amount of information. At each

iteration of the algorithm, all active nodes of the current

back-up tree decide whether they need to create new

618

- - - . I

children, be pruned, or remain unchanged. Based on these

decisions, the algorithm described below updates the current

back-up tree and distributes global information in O(log m)

steps. This method also includes a dynamic allocation of

search processes to processors, such that the work load

balancing problem is solved optimally.

3.1 ALGORITHM OVERVIEW

We assume that every processor PE(i) has a constant size

register n(i) to store one node of the current back-up tree T.

Register n(i) will contain fields n.data(i), n.cost(i),

n.parent(i), n.children(i), n.firstChild(i), n.level(i) and

n.newChildren(i). Each of these fields stores a constant

amount of data associated with the node n(i), its cost, parent,

number of children, position of first child, level, and number

of new children, respecfively. See Figure 2 for a list of

registers required at every processor.

rl f n(i): A node in the search tree.

firstchild i
newchildren i
oldChildren(i)

Auxiliary registers

Figure 2. The Registers Required at Each Processor PE(i).

The current back-up tree T is stored on the hypercube as

Consider the level ordering of the nodes of T as shown in

Figure 3. Each node v of T is stored in register n(i) of

processor PE(i), where i is the index of v with respect to

the level ordering of T.

follows:

Figure 3. Level Ordering of the Current Back-up Tree

The global structure of the B&B algorithm is described in

Figure 4. The back-up tree T starts as a single root node

stored in register n(0) of processor PE(0). The main loop of
the algorithm iterates until the termination rule returns

true.

'rocedure Branch-And-Bound:
(A) Initialize the current back-up tree to be the sing

root node in processor PE(0). Initialize n.data(1
and set all other fields of n(0) to 0. Also create
dummy node at PE(1) with n.parent(1) = m.

Repeat Until termination rule returns true.
(1) Every PE(i) storing a newly created node

uses the evaluation rule to compute
n.cost(i) and global information is
distributed to all processors.
Every PE(i) uses the bound rule to set
alive(i) = 1 if the node is still feasible and
else alive(i) = 0.
Every PE(i) uses the selection rule to set
n.newChildren(i) = number of children to b
created.
Procedure UpdateTree is called which
creates from the old back-up tree a new
back-up tree with all non-feasible nodes
removed and new nodes added.
Every PE(i) uses the expansion rule to lot
for each n(i) the data into its
n.newChildren(i) new children.

(B)

(2)

(5)

(C) Report best node and the path from the root to tt
best node.

Figure 4. The Global Structure of the Branch-And-Bound

Algorithm

In each iteration, the algorithm updates the tree by adding

new nodes in a manner prescribed by the selection and

expansion rules, while at the same time pruning the tree

using the cost and bound rules. A single pass through the

main loop consists of five steps. First, the evaluation rule is
used to calculate the cost function for all the nodes that were

created in the last iteration. The evaluation rule may also

maintain global knowledge concerning the progress of the

search. For example, after assigning new costs to nodes, the

evaluation rule may calculate a global minimum cost to be

619

I
I

used by the bound and termination rules. The maintenance of

such global knowledge does not increase the fundamental time

complexity of the algorithm, since such global knowledge can

be calculated by a global minimization and broadcast

procedure in time O(log m), which is the same time

complexity as the main body of the B&B algorithm.

The second step in the main loop of the algorithm uses the

bound rule to identify nodes to be deleted in this iteration.

Any particular implementation of the bound rule must never

delete a parent node without also deleting its children. The

parallel bounding of a large number of nodes is a particularly

effective aspect of our fine-grained B&B algorithm, since

with very low overhead a large number of nodes in the back-

up tree may be deleted and the data structure compacted.

In the third step, the selection rule is used to assign to

each node n(i) an integer, n.newChildren(i), that indicates

the number of children the node needs to create during this

iteration. The selection rule may also use global information

to instruct each node exactly which of its possible children

should be created.

Step 4, i.e. procedure UpdateTree, represents the main

part of our algorithm. In Steps 1 through 3 all the

information needed to extend the back-up tree to its next

state has been collected. Now, the back-up tree must be

transformed by deleting the bounded nodes and creating space

for the new additional nodes. This operation is performed by

procedure UpdateTree described in detail in the following

Section 3.2.

Finally, in Step 5, the data for the new leaf nodes are

created using the expansion rule. At this point each node has

information about how many new children should be created,

and about the address of the free processors allocated for

them by procedure UpdateTree. Therefore, Step 5 can be

implemented with an O(log m) time complexity by using a

RouteAndCopy operation to copy the data of each node creating

new children into the processors storing these children, and

then creating for each child in parallel its actual data set

locally at the respective processor.

3.2 UPDATING THE BACK-UP TREE

The core of our parallel B&B algorithm is procedure

UpdateTree which updates the back-up tree after infeasible

nodes have been deleted and new nodes have been added in the

previous step. The main problem here is that for the new

back-up tree, the nodes must again be stored by level number

(to allow maximum storage space utilization and

performance). This makes it necessary to compute for each

node of the new back-up tree its new address and relocate the

nodes to obtain the correct storage scheme. This relocation of

tree nodes also provides an optimal task allocation mechanism

for solving the load balancing problem.

The input to this procedure is stored in the two registers

alive(i) and n.newChildren(i) at each processor. Register

alive(i) is set to 1, if this node is not to be deleted, or 0

otherwise; n.newChildren(i) is set to the number of new

children to be created for node n(i).

The procedure UpdateTree calculates for each node where

its children, i f any, should be located on the hypercube after

the update is completed. Each parent then broadcasts this

information to all of its children. Since all nodes may move,

all parent nodes must also broadcast their own new address to

their children so that the children can update their parent

pointers. When these steps have been completed, all non-

deleted nodes are routed to their new locations. This route

operation will leave the necessary spaces for the new

children that are to be created by the expansion rule called in

the main procedure. Procedure UpdateTree is described in

detail in Figure 5.

620

1 -

'rocedure UpdateTree:
I . O) BlockPsum(alive(i),alive'(i).n.parent(i))

Route(alive'(i), n.children(i), n.parent(i),
n.parent(i) # n.parent(i + 1))

Every PE(i): n.bldChildren(i) := n.children(i)
Every PE(i): n.children(i) := n.children(i) +

n.newChildren(i)
E.0) Psum(n.children(i),x')

Each PE(i): x'(i) := x'(i) + 1
IdentifyBlock(n.leveI(i),endOfLevel(i))
Every PE(i): nextEndOfLevel(i) := endOfLevel(i+l)
RouteAndCopy(x'(i), x(i), nextEndOfLevel(i),

i = endOfLevel(i))
3.0) BlockPsum(n.children(i). y(i), level(i))

Each PE(i): y(i) := y(i) - n.children(i)
t.0) Each PE(i): newFirstChild(i) :=x(i) + y(i)

Each PE(i): lastChild(i) := n.firstChild(i) +

RouteAndCopy(newfirstchild(i),firstSibling(i),

Every PE(i): newAddress(i) := firstSibling(i) +

n.oldChildren(i) -1

lastGhild(i), n.oldChildren(i) > 0)

alive'(i) - 1
5.0) RouteAndCopy(newAddress(i), n.parent(i), lastChild(i).

n.oldChildren(i) > 0)
Each PE(i): n.firstChild := newFirstChild(i)

5.0) Route(n(i),n(i), newAddress(i), alive(i) = 1)

Figure 5. Procedure UpdateTree.

In order to obtain an illustration of the idea behind

procedure UpdateTree, consider the node p in Figure 6. The
address (processor number) of the first child of p, after the

update is completed, is the sum of two numbers x and y,

defined as follows: x is the number of nodes in the updated

tree up to (and including) p's level, while y is the number of

children of nodes to the left of p in p's level. The sum of these

two numbers indicates the position of p's first child in the

new back-up tree.

Procedure UpdateTree is composed of 6 steps. In Step 1,
the number of children at each node is recalculated to account

for the nodes that have been marked for deletion and the new

nodes that are to be added. This operation is performed by
first performing a partial sum over the number of alive

nodes within each block of nodes that share the same parent.

The result of the partial sum is then sent to each parent by

its last child. Step 1 is completed by setting register

n.children(i) of each node to the sum of its undeleted children

and its new children to be created.

Y

Figure 6. Illustration of the Address Calculation for the New
Back-up Tree.

In Step 2, the x value for each node is computed. The x

value for any node at level k is one plus the sum of the

number of children of all nodes up to (and including) the last

node in level k -1. The x value for all nodes can therefore be

calculated as follows. First, a partial sum on the number of

children, n.children(i), of every node is computed and stored

in register x'(i); x'(i) is then incremented by one to account

for the root node. Then, the last node in each block of nodes

sharing the same parent sends its x' value to its parent node.

In Step 3, the value of y for each node is calculated. This

is performed by computing a partial sum on register

n.children(i) for all nodes in the same level. In order not to

count the children of a node in its own y(i) count,

n.children(i) must then be subtracted from the value

provided by the partial sum operation.

In Step 4, the new address of the first child of each node is

computed and stored in register newFirstChild(i), using the

x(i) and y(i) values previously calculated. This value is

then broadcast to all the children of each node; since the

back-up tree is stored on the hypercube in level order, all

children of a node can calculate their new addresses by adding

to the new address of their first sibling the number of other

siblings that are before them.

Now, every node has its new address. In Step 5, all nodes

with children broadcast their new address to their children,

so that the children can update their parent pointers. Step 6

completes the UpdateTree procedure by moving every node to

its new address.

62 I

I'
I

4 CONCLUSION

In \his paper we have presented an efficient B&B

algorithm for fine grained hypercube multiprocessors. Our

method uses a global storage allocation scheme where all

processors collectively store all back-up paths such that

each processor needs to store only a constant amount of

information. At each iteration of the algorithm, all nodes of

the current back-up tree may decide whether they need to

create new children, be pruned, or remain unchanged. We

have described an algorithm that, based on these decisions,

updates the current back-up tree and distributes global

information in O(1og m) steps, where m is the current

number of nodes. This method also provides a dynamic

allocation mechanism that obtains optimal load balancing.

Another important property of our method is that even i f

very drastic changes in the current back-up tree occur, the

performance of the load balancing mechanism remains
constant.

The proposed method is currently being implemented on

the Connection Machine, and empirical performance test

results will be available in the near future.

REFERENCES

[ACI S.Anderson and M.C.Chen, Parallel branch and bound
algorithms on the hypercube, in Hypercube
Multiprocessors 1987, M.T.Heath, ed.. SIAM Press,
Philadelphia, PA, pp 309-31 7

T.S.Abdelrahman and T.N.Mudge, Parallel branch and
bound algorithms on hypercube multiprocessors, in
the Proceedings of the Third Conference on Hypercube
Concurrent Computers and Applications, 1988, G.Fox,
ed.. ACM Press. pp 1492-1499

[Fell E.W.Felten, Best-first branch and bound on a
hypercube, in the Proceedings of the Third Conference
on Hypercube Concurrent Computers and Applications,
1988, G.Fox, ed., ACM Press, pp 1500-1504

S.R.Huang and L.S.Davis. Parallel iterative A' search
: an admissible distributed heuristic search
algorithm, International Joint Conference on Artificial
Intelligence 89, Preprint

G.J.Li and B.W.Wah, Coping with anomalies in parallel
branch and bound algorithms, IEEE Trans. on Comp.,

[MC] A.Marsland and M.Campbell, Parallel search of
strongly ordered game trees, Computing Surveys,
vol. 14, no. 4, Dec 82, pp 533-551

[AM]

[HDI

[LWI

vol. C-35, no. 6, Juri 86, pp 568-573

[Nil]

[NSI

[Qui]

[UYll]

M.Newborn. Unsynchronized iteratively deepening
parallel alpha-beta search, IEEE Trans. on PAMI, vol.
10, no. 5, Sep 88, pp 687-694

Nils J. Nilsson, "Principles of Artificial Intelligence",
Tioga Publishing CO, 1980

D. Nassimi, S. Sahni, "Data broadcasting in SlMD
computers", IEEE Trans. on Computers 30:2, 1981,

R.P.Pargas and D.E.Wooster, Branch and bound
algorithms on a hypercube, in the Proceedings of the
Third Conference on Hypercube Concurrent Computers
and Applications, 1988, G.Fox, ed., ACM Press, pp

M.J.Ouinn, Implementing best-first branch and bound
algorithms on hypercubes multicomputers, in
Hypercube Multiprocessors 1987, M.T.Heath. ed.,
SIAM Press, Philadelphia, PA, pp 318-326

K.Scwan, J.Gawkowski and B.Blake. Process and
workload migration for a parallel branch and bound
algorithm on a hypercube multicomputer, in the
Proceedings of the Third Conference on Hypercube
Concurrent Computers and Applications, 1988, G.Fox,
ed., ACM Press, pp 1520-1530

F.S.Tsung and M.H.Ma, A dynamic load balancer for a
parallel branch and bound algorithm, in the
Proceedings of the Third Conference on Hypercube
Concurrent Computers and Applications, 1988, G.Fox,
ed., ACM Press, pp 1505-1513

H.Usui, M.Yamashita, M.lmai, T.lbaraki, Parallel
searches of game trees, Systems and Computers in
Japan, vol. 18, no. 8, 1987, pp 97-109

Patrick H. Winston. "Artificial Intelligence", Addison-
Wesley, July 1984

B.W.Wah, G.J.Li and C.F.Yu, Multiprocessing of
combinatorial search problems, Computer, Jun 85, pp
931 08

pp. 101-106.

1514-1519

622

