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Abstract. In this paper, we study parallel branch and bound on 
fine grained hypercube multiprocessors. Each processor in a fine 
grained system has only a very small amount of memory 
available, Therefore, current parallel branch and bound methods 
for coarse grained systems (s 1000 nodes) can not be applied, 
since all these methods assume that every processor stores the 
path from the node it is currently processing back to the node 
where the process was created (the back-up path). Furthermore, 
the much larger number of processors available in a fine grained 
system makes it imperative that global information (e.g., the 
current best solution) is continuously available at every 
processor; otherwise the amount of unnecessary search would 
become intolerable. We describe an efficient branch-and-bound 
algorithm for fine grained hypercube multiprocessors. Our method 
uses a global scheme where all processors collectively store all 
back-up paths such that each processor needs to store only a 
constant amount of information. At each iteration of the 
algorithm, all current nodes may decide whether they need, to 
create new children, be pruned, or remain unchanged. We describe 
an algorithm that, based on these decisions, updates the current 
back-up paths and distributes global information in O(l0g m) steps, 
where m is the current number of nodes. This method also includes 
dynamic allocation of search processes to processors and 
provides optimal load balancing. Even if very drastic changes in 
the set of current nodes occur, our load balancing mechanism does 
not suffer any slow down. 

1 INTRODUCTION 

Branch-and-bound (888) search methods such as A' 

search, Alpha-Beta search, depth-first and best-first search 

are used in areas such as VLSl design, theorem proving, 

linear programming, chess playing, and many other 

Artificial Intelligence and Operations Research applications 

([Win], [Nil]). Since most of the addressed problems are 

NP-hard, and therefore the size of the search space grows 

exponentially, many researchers have studied the 

parallelization of B&B methods (e.g. [HD], [New], [MC], 

[UYll]). So far, studies have been aimed at using coarse 

grained multiprocessors for parallel B&B implementations 

(multiprocessors with a relatively small number - less than 

1,000 -, of relatively powerful processors, each having a 

considerable amount of memory). Particular attention has 

recently been given to coarse-grained hypercube 

multiprocessors such as the FPS hypercube, NCUBE, or Intel 

iPSC (e.g. [LW], [Qui], [AC], [AM], [Fell, [MTM], [PW], 

[SGBI). 
Parallel B&B methods for coarse grained multiprocessors 

aim at splitting the tree searched by the B&B method into 

subtrees, and having subtrees searched in parallel by 

different processors. The essential differences among the 

proposed coarse grained algorithms are how they deal with 

the two major problems arising in such an approach: 

(1) Load balancing: When a subproblem (a subtree to be 

searched) is assigned to an individual processor, the size of 

the subtree is not known in advance. Therefore, the sizes of 

the problems assigned to individual processors may vary 

significantly and this unbalanced distribution of work load 

may result in performance degeneration. 

(2) Global information: For sequential B&B methods, the 

pruning of the search tree often depends on global 

information such as the best solution found so far. On a 

multiprocessor, the distribution of global information causes 

additional computational overhead or, if information is not 

completely distributed, the parallel method may search more 

nodes than the respective sequential algorithm (unnecessary 

search). 

* 
This research was conducted while the second author was 
visiting Carleton University. The first author's research is 
partially supported by the Natural Sciences and Engineering 
Research Council of Canada (Grant A9173). The second author 
is currently on leave from the University of Sao Paul0 
(Brazil), project BID/USP. and partially supported by 
CAPES/COFECUB (Grant 503186-9). 

In this paper, we study parallel B&B on fine grained 

hypercube multiprocessors (hypercubes with a large 

number - more than 10,000 - of small processors). The 

Connection Machine is an example of an existing fine grained 
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system. In the context of parallel B&B, fine grained 

multiprocessors obviously have the advantage of a larger 

number of processors and increased parallelism. However, 

each processor in a fine grained system has only a small 

constant amount of memory available. For any node p of the 

search tree let the back-up path of p be the path from p to the 

root of the search tree. In a fine grained multiprocessor, it is 

impossible for one processor to store the back-up path even 

for the one single node that it is currently examining. 

Therefore, the above mentioned coarse grained parallel B&B 

methods can not be applied to a fine grained system because 

all these methods assume that every processor stores the 

back-up path for its currently processed node (at least back 

to the tree node where the process was created). 

Furthermore, the much larger number of processors 

(and, therefore, concurrent search processes) makes it 

imperative, for fine grained B&B algorithms, that global 

information (e.g., the current best solution) is continuously 

available at every processor since otherwise the amount of 

unnecessary search would become intolerable. 

In the remainder of this paper we describe an efficient 

B&B algorithm for fine grained hypercube multiprocessors 

that solves the problem of storing all current back-up paths. 

Our method uses a global scheme where all processors 

collectively store all back-up paths such that each processor 

needs to store only a constant amount of information. Instead 

of storing the individual back-up paths, we store a current 

back-up tree which is defined by the union of the back-up 

paths of all search tree nodes currently under examination. 

(This also ensures that paths in the search tree shared by 

several back-up paths are stored only once, thus providing 

optimal storage utilization. ) At each iteration of the 

algorithm, all nodes of the current back-up tree may decide 

whether they need to create new children, be pruned, or 
remain unchanged. We describe an algorithm that, based on 

these decisions, updates the current back-up tree and 

distributes global information in O(log m) steps, where m is 

the size of the current back-up tree. This method also 

includes a dynamic allocation mechanism for allocating 

search processes to processors, and provides optimal load 

balancing. Even if very drastic changes in the current back- 

up tree occur, the performance of our load balancing 

mechanism does not deteriorate. 

Note that, the O(log m) overhead mentioned above is 

measured by considering only constant length messages, 

exchanged between adjacent processors, as 0(1) operations. 

In this model, an O(log m) overhead is very small; in fact, 

one single "PREF" operation (parallel inter-processor read) 

in Connection Machine 'LISP has a larger time complexity. 

The remainder of this paper is organized as follows: 

Section 2 introduces some notation regarding B&B algorithms 

as well as some standard hypercube operations that will be 

utilized in our algorithm. In Section 3, we will then present 

our parallel BBB algorithm for fine-grained hypercube 

multiprocessors. Section 4 concludes the paper. 

2 DEFINITIONS AND BASIC HYPERCUBE OPERATIONS 

In this section, we will first define a generalized B&B 

procedure in terms of five rules. By providing different 

procedures to implement these rules, users will be able to 

implement a wide range of B&B algorithms. We then review 

some basic standard hypercube operations which will be used 

in the remainder of this paper. 

2.1 BRANCH AND BOUND 

Branch-and-bound is a general technique for exploring 

search spaces; A', Alpha-Beta, Hill-Climbing and Best-First 

search are well known instances of B&B algorithms. 

In this paper we consider a general B&B algorithm defined 

by five rules; any particular B&B algorithm can be realized 

by providing a suitable implementation for each rule (see 

[ACI). 

- Cost rule: Given a leaf node in the search tree and it 

parent's cost, this rule defines the cost up to and 

including the leaf. 

Bounding rule: Given a node in the search tree, this rule 

returns 1 if the node is no longer feasible (i.e., 

should be deleted) else returns a 0. 

Selection rule: Given a node in the search tree, this rule 

returns an integer specifying the number of children 

this node should create in this iteration. 

Expansion rule: Given a node, an integer specifying the 

number of children to be created, and a pointer to 
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where they should be created, this rule creates the 

new children. 

Termination rule: Given a set of global information, this 

rule returns true if a satisfactory solution has been 

found or all possibilities have been explored. 

2.2 BASIC HYPERCUBE OPERATIONS 

The branch-and-bound algorithm described in the next 

section uses slightly generalized versions of five well- 

defined hypercube operations. In addition to the registers 

listed below, implementations of these operations may 
require a constant number of auxiliary registers. In the 

following, for every register A available at every processor, 

A(i! refers to register A at processor PE(i). We assume a 

hypercube consisting of N = 24 processors. 

Psum(source(i),result(i)): Every processor PE(i) has 

some value stored in the register source(i). This operation 

computes result(i) := source(0) + source(1) + ... 
+source(i) for each PE(i). This is the standard partial sum 

operation in hypercubes and can be implemented in O(log N) 

time. 

Ident i fyBlock(block( i ) ,endOfBlock( i ) ) :  A b l o c k  of 

processors is defined by consecutive PE(i)'s having the same 

value stored in the register block(i). For each PE(i), this 

operation will then assign to endOfBlock(i) the largest j such 

that block(j)=block(i). Its time complexity is also O(log N), 

since it can be implemented by a "Concentrate" operation 

(INS]) followed by a RouteAndCopy operation defined below. 

BlockPsum(source(i),result(i),block(i)): This operation 

performs a partial sum within blocks only. Every PE(i) will 

store in result(i) the partial sum of the value stored in the 

register source(i) within the block it belongs to. The 

BlockPsum operation can be implemented by a Psum 

operation followed by a RouteAndCopy operation. Hence its 

time complexity is O(log N). 

R o u t e f R e g  ~ ( i ) ,  Regg( i ) ,Dest ( i ) ,Cond( i ) ) :  Every 

processor PE(i) has 2 data registers Regl(i), Regp(i), a 

destination register Dest(i), and a boolean condition register 

Cond(i). I t  is assumed that the destinations Dest(i) are 

monotonic: i.e., i f  iej then Dest(i)cDest(j). This operation 

routes, for every processor PE(i) with Cond(i) = true, the 

contents of register Regl(i) to processor register degn(i) of 

processor PE(Dest(i)); it can be implemented with an O(log 

N) time complexity by using a Concentrate operation followed 

by a Distribute operation described in (NS]. 

RouteAndCopy(Reg 1 ( i ) ,  Regz(i), Dest(i),Cond(i)): Under 

the same assumptions as for the Route operation, this 

operation routes, for every processor PE(i) with Cond(i) = 

true, a copy of registers Reg1 (i) to registers Regp(Dest(i - 
1) + l ) ,  ..., Regp(Dest(i)), each; it can be implemented 

with an O(log(N)) time complexity by using a Concentrate 

followed by a Generalize operation described in [NS]. 

3 AN ALGORITHM FOR PARALLEL BRANCH AND BOUND 

WITH GLOBAL INFORMATION ON A FINE-GRAINED 

HYPERCUBE 

A branch and bound algorithm searches in the space of all 

the feasible solutions for a given problem. These feasible 

solutions are usually seen as a search tree S over the solution 

space. In parallel B&B algorithms, the search in S for an 

optimal or satisfactory solution is performed concurrently at 

several nodes of S. These nodes are referred to as active 

nodes. The subtree T of S defined by the union of the back-up 

paths of all active nodes is the current back-up tree as 

introduced in Section l (an example of a current back-up tree 

is shown in Figure 1). Note that we allow any node of the 

current back-up tree to be an active node, which allows e.g. 

the implementation of best-first search. For the remainder, 

m will refer to the size of the current back-up tree. 

Figure 1. A Current Back-up Tree (Bold Nodes). 

In this section, we will describe a parallel B&B algorithm 

for fine grained hypercube multiprocessors. Our method 

stores the current back-up tree such that each processor 

needs to store only a constant amount of information. At each 

iteration of the algorithm, all active nodes of the current 

back-up tree decide whether they need to create new 
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children, be pruned, or remain unchanged. Based on these 

decisions, the algorithm described below updates the current 

back-up tree and distributes global information in O(log m) 

steps. This method also includes a dynamic allocation of 

search processes to processors, such that the work load 

balancing problem is solved optimally. 

3.1 ALGORITHM OVERVIEW 

We assume that every processor PE(i) has a constant size 

register n(i) to store one node of the current back-up tree T. 

Register n(i) will contain fields n.data(i), n.cost(i), 

n.parent(i), n.children(i), n.firstChild(i), n.level(i) and 

n.newChildren(i). Each of these fields stores a constant 

amount of data associated with the node n(i), its cost, parent, 

number of children, position of first child, level, and number 

of new children, respecfively. See Figure 2 for a list of 

registers required at every processor. 

rl f n(i): A node in the search tree. 

firstchild i 
newchildren i 
oldChildren(i) 

Auxiliary registers 

Figure 2. The Registers Required at Each Processor PE(i). 

The current back-up tree T is stored on the hypercube as 

Consider the level ordering of the nodes of T as shown in 

Figure 3. Each node v of T is stored in register n(i) of 

processor PE(i), where i is the index of v with respect to 

the level ordering of T. 

follows: 

Figure 3. Level Ordering of the Current Back-up Tree 

The global structure of the B&B algorithm is described in 

Figure 4. The back-up tree T starts as a single root node 

stored in register n(0) of processor PE(0). The main loop of 
the algorithm iterates until the termination rule returns 

true. 

'rocedure Branch-And-Bound: 
( A )  Initialize the current back-up tree to be the sing 

root node in processor PE(0). Initialize n.data(1 
and set all other fields of n(0) to 0. Also create 
dummy node at PE(1) with n.parent(1) = m. 

Repeat Until termination rule returns true. 
(1 ) Every PE(i) storing a newly created node 

uses the evaluation rule to compute 
n.cost(i) and global information is 
distributed to all processors. 
Every PE(i) uses the bound rule to set 
alive(i) = 1 if the node is still feasible and 
else alive(i) = 0. 
Every PE(i) uses the selection rule to set 
n.newChildren(i) = number of children to b 
created. 
Procedure UpdateTree is called which 
creates from the old back-up tree a new 
back-up tree with all non-feasible nodes 
removed and new nodes added. 
Every PE(i) uses the expansion rule to lot 
for each n(i) the data into its 
n.newChildren(i) new children. 

(B) 

(2) 

(5) 

( C )  Report best node and the path from the root to tt 
best node. 

Figure 4. The Global Structure of the Branch-And-Bound 

Algorithm 

In each iteration, the algorithm updates the tree by adding 

new nodes in a manner prescribed by the selection and 

expansion rules, while at the same time pruning the tree 

using the cost and bound rules. A single pass through the 

main loop consists of five steps. First, the evaluation rule is 
used to calculate the cost function for all the nodes that were 

created in the last iteration. The evaluation rule may also 

maintain global knowledge concerning the progress of the 

search. For example, after assigning new costs to nodes, the 

evaluation rule may calculate a global minimum cost to be 
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used by the bound and termination rules. The maintenance of 

such global knowledge does not increase the fundamental time 

complexity of the algorithm, since such global knowledge can 

be calculated by a global minimization and broadcast 

procedure in time O(log m), which is the same time 

complexity as the main body of the B&B algorithm. 

The second step in the main loop of the algorithm uses the 

bound rule to identify nodes to be deleted in this iteration. 

Any particular implementation of the bound rule must never 

delete a parent node without also deleting its children. The 

parallel bounding of a large number of nodes is a particularly 

effective aspect of our fine-grained B&B algorithm, since 

with very low overhead a large number of nodes in the back- 

up tree may be deleted and the data structure compacted. 

In the third step, the selection rule is used to assign to 

each node n(i) an integer, n.newChildren(i), that indicates 

the number of children the node needs to create during this 

iteration. The selection rule may also use global information 

to instruct each node exactly which of its possible children 

should be created. 

Step 4, i.e. procedure UpdateTree, represents the main 

part of our algorithm. In Steps 1 through 3 all the 

information needed to extend the back-up tree to its next 

state has been collected. Now, the back-up tree must be 

transformed by deleting the bounded nodes and creating space 

for the new additional nodes. This operation is performed by 

procedure UpdateTree described in detail in the following 

Section 3.2. 

Finally, in Step 5, the data for the new leaf nodes are 

created using the expansion rule. At this point each node has 

information about how many new children should be created, 

and about the address of the free processors allocated for 

them by procedure UpdateTree. Therefore, Step 5 can be 

implemented with an O(log m) time complexity by using a 

RouteAndCopy operation to copy the data of each node creating 

new children into the processors storing these children, and 

then creating for each child in parallel its actual data set 

locally at the respective processor. 

3.2 UPDATING THE BACK-UP TREE 

The core of our parallel B&B algorithm is procedure 

UpdateTree which updates the back-up tree after infeasible 

nodes have been deleted and new nodes have been added in the 

previous step. The main problem here is that for the new 

back-up tree, the nodes must again be stored by level number 

(to allow maximum storage space utilization and 

performance). This makes it necessary to compute for each 

node of the new back-up tree its new address and relocate the 

nodes to obtain the correct storage scheme. This relocation of 

tree nodes also provides an optimal task allocation mechanism 

for solving the load balancing problem. 

The input to this procedure is stored in the two registers 

alive(i) and n.newChildren(i) at each processor. Register 

alive(i) is set to 1, if this node is not to be deleted, or 0 

otherwise; n.newChildren(i) is set to the number of new 

children to be created for node n(i). 

The procedure UpdateTree calculates for each node where 

its children, i f  any, should be located on the hypercube after 

the update is completed. Each parent then broadcasts this 

information to all of its children. Since all nodes may move, 

all parent nodes must also broadcast their own new address to 

their children so that the children can update their parent 

pointers. When these steps have been completed, all non- 

deleted nodes are routed to their new locations. This route 

operation will leave the necessary spaces for the new 

children that are to be created by the expansion rule called in 

the main procedure. Procedure UpdateTree is described in 

detail in Figure 5. 
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'rocedure UpdateTree: 
I . O )  BlockPsum(alive(i),alive'(i).n.parent(i)) 

Route(alive'(i), n.children(i), n.parent(i), 
n.parent(i) # n.parent(i + 1)) 

Every PE(i): n.bldChildren(i) := n.children(i) 
Every PE(i): n.children(i) := n.children(i) + 

n.newChildren(i) 
E.0) Psum(n.children(i),x') 

Each PE(i): x'(i) := x'(i) + 1 
IdentifyBlock(n.leveI(i),endOfLevel(i)) 
Every PE(i): nextEndOfLevel(i) := endOfLevel(i+l) 
RouteAndCopy(x'(i), x(i), nextEndOfLevel(i), 

i = endOfLevel(i)) 
3.0) BlockPsum(n.children(i). y(i), level(i)) 

Each PE(i): y(i) := y(i) - n.children(i) 
t.0) Each PE(i): newFirstChild(i) :=x(i) + y(i) 

Each PE(i): lastChild(i) := n.firstChild(i) + 

RouteAndCopy( newfirstchild( i),firstSibling(i), 

Every PE(i): newAddress(i) := firstSibling(i) + 

n.oldChildren(i) -1 

lastGhild(i), n.oldChildren(i) > 0) 

alive'(i) - 1 
5.0) RouteAndCopy(newAddress(i), n.parent(i), lastChild(i). 

n.oldChildren(i) > 0) 
Each PE(i): n.firstChild := newFirstChild(i) 

5.0) Route(n(i),n(i), newAddress(i), alive(i) = 1) 

Figure 5. Procedure UpdateTree. 

In order to obtain an illustration of the idea behind 

procedure UpdateTree, consider the node p in Figure 6. The 
address (processor number) of the first child of p, after the 

update is completed, is the sum of two numbers x and y, 

defined as follows: x is the number of nodes in the updated 

tree up to (and including) p's level, while y is the number of 

children of nodes to the left of p in p's level. The sum of these 

two numbers indicates the position of p's first child in the 

new back-up tree. 

Procedure UpdateTree is composed of 6 steps. In Step 1, 
the number of children at each node is recalculated to account 

for the nodes that have been marked for deletion and the new 

nodes that are to be added. This operation is performed by 
first performing a partial sum over the number of alive 

nodes within each block of nodes that share the same parent. 

The result of the partial sum is then sent to each parent by 

its last child. Step 1 is completed by setting register 

n.children(i) of each node to the sum of its undeleted children 

and its new children to be created. 

Y 

Figure 6. Illustration of the Address Calculation for the New 
Back-up Tree. 

In Step 2, the x value for each node is computed. The x 

value for any node at level k is one plus the sum of the 

number of children of all nodes up to (and including) the last 

node in level k -1. The x value for all nodes can therefore be 

calculated as follows. First, a partial sum on the number of 

children, n.children(i), of every node is computed and stored 

in register x'(i); x'(i) is then incremented by one to account 

for the root node. Then, the last node in each block of nodes 

sharing the same parent sends its x' value to its parent node. 

In Step 3, the value of y for each node is calculated. This 

is performed by computing a partial sum on register 

n.children(i) for all nodes in the same level. In order not to 

count the children of a node in its own y(i) count, 

n.children(i) must then be subtracted from the value 

provided by the partial sum operation. 

In Step 4, the new address of the first child of each node is 

computed and stored in register newFirstChild(i), using the 

x(i) and y(i) values previously calculated. This value is 

then broadcast to all the children of each node; since the 

back-up tree is stored on the hypercube in level order, all 

children of a node can calculate their new addresses by adding 

to the new address of their first sibling the number of other 

siblings that are before them. 

Now, every node has its new address. In Step 5, all nodes 

with children broadcast their new address to their children, 

so that the children can update their parent pointers. Step 6 

completes the UpdateTree procedure by moving every node to 

its new address. 
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4 CONCLUSION 

In \his paper we have presented an efficient B&B 

algorithm for fine grained hypercube multiprocessors. Our 

method uses a global storage allocation scheme where all 

processors collectively store all back-up paths such that 

each processor needs to store only a constant amount of 

information. At each iteration of the algorithm, all nodes of 

the current back-up tree may decide whether they need to 

create new children, be pruned, or remain unchanged. We 

have described an algorithm that, based on these decisions, 

updates the current back-up tree and distributes global 

information in O(1og m) steps, where m is the current 

number of nodes. This method also provides a dynamic 

allocation mechanism that obtains optimal load balancing. 

Another important property of our method is that even i f  

very drastic changes in the current back-up tree occur, the 

performance of the load balancing mechanism remains 
constant. 

The proposed method is currently being implemented on 

the Connection Machine, and empirical performance test 

results will be available in the near future. 

REFERENCES 

[ACI S.Anderson and M.C.Chen, Parallel branch and bound 
algorithms on the hypercube, in Hypercube 
Multiprocessors 1987, M.T.Heath, ed.. SIAM Press, 
Philadelphia, PA, pp 309-31 7 

T.S.Abdelrahman and T.N.Mudge, Parallel branch and 
bound algorithms on hypercube multiprocessors, in 
the Proceedings of the Third Conference on Hypercube 
Concurrent Computers and Applications, 1988, G.Fox, 
ed.. ACM Press. pp 1492-1499 

[Fell E.W.Felten, Best-first branch and bound on a 
hypercube, in the Proceedings of the Third Conference 
on Hypercube Concurrent Computers and Applications, 
1988, G.Fox, ed., ACM Press, pp 1500-1504 

S.R.Huang and L.S.Davis. Parallel iterative A' search 
: an admissible distributed heuristic search 
algorithm, International Joint Conference on Artificial 
Intelligence 89, Preprint 

G.J.Li and B.W.Wah, Coping with anomalies in parallel 
branch and bound algorithms, IEEE Trans. on Comp., 

[MC] A.Marsland and M.Campbell, Parallel search of 
strongly ordered game trees, Computing Surveys, 
vol. 14, no. 4, Dec 82, pp 533-551 

[AM] 

[HDI 

[LWI 

vol. C-35, no. 6, Juri 86, pp 568-573 

[Nil] 

[NSI 

[Qui] 

[UYll] 

M.Newborn. Unsynchronized iteratively deepening 
parallel alpha-beta search, IEEE Trans. on PAMI, vol. 
10, no. 5, Sep 88, pp 687-694 

Nils J. Nilsson, "Principles of Artificial Intelligence", 
Tioga Publishing CO, 1980 

D. Nassimi, S. Sahni, "Data broadcasting in SlMD 
computers", IEEE Trans. on Computers 30:2, 1981, 

R.P.Pargas and D.E.Wooster, Branch and bound 
algorithms on a hypercube, in the Proceedings of the 
Third Conference on Hypercube Concurrent Computers 
and Applications, 1988, G.Fox, ed., ACM Press, pp 

M.J.Ouinn, Implementing best-first branch and bound 
algorithms on hypercubes multicomputers, in 
Hypercube Multiprocessors 1987, M.T.Heath. ed., 
SIAM Press, Philadelphia, PA, pp 318-326 

K.Scwan, J.Gawkowski and B.Blake. Process and 
workload migration for a parallel branch and bound 
algorithm on a hypercube multicomputer, in the 
Proceedings of the Third Conference on Hypercube 
Concurrent Computers and Applications, 1988, G.Fox, 
ed., ACM Press, pp 1520-1530 

F.S.Tsung and M.H.Ma, A dynamic load balancer for a 
parallel branch and bound algorithm, in the 
Proceedings of the Third Conference on Hypercube 
Concurrent Computers and Applications, 1988, G.Fox, 
ed., ACM Press, pp 1505-1513 

H.Usui, M.Yamashita, M.lmai, T.lbaraki, Parallel 
searches of game trees, Systems and Computers in 
Japan, vol. 18, no. 8, 1987, pp 97-109 

Patrick H. Winston. "Artificial Intelligence", Addison- 
Wesley, July 1984 

B.W.Wah, G.J.Li and C.F.Yu, Multiprocessing of 
combinatorial search problems, Computer, Jun 85, pp 
931 08 

pp. 101-106. 

1514-1519 

622 


