
Lecture 8 p.1

Faculty of Computer Science, Dalhousie University 28-Sep-2023
CSCI 4152/6509 — Natural Language Processing

Lecture 8: Text Mining Review

Location: Rowe 1011 Instructor: Vlado Keselj
Time: 16:05 – 17:25

Previous Lecture

– P0 reminder: due this Friday by midnight, submission by email
– Some possible sources of data and ideas for projects: Kaggle, TREC, PAN workshops, etc.
– Guest speaker next lecture

– N-grams definition
– Extracting and Analyzing n-grams in Perl
– Elements of Information Retrieval
– Vector space model

After preprocessing steps, such as stop-word removal, rare words removal, and stemming, we have a global set of
terms {t1, t2, . . . , tm}, which are used to represent documents and queries.

In a vector space model, document and queries are represented by vectors of weights, such as

~d = (w1,d, w2,d, . . . , wm,d), and ~q = (w1,q, w2,q, . . . , wm,q)

where the weights wi,x correspond to the term ti, of the document or query x. There are different ways how weights
can be determined. One simple way is to use binary weights: 1 if the document contains the term, or 0 if it does not.
Another option is to use term counts, or frequency within the document or query. The most widely adopted standard
choice is to use term frequency inverse document frequency weights (tfidf), which are calculated using the following
formula:

tfidf = tf · log

(
N

df

)
where tf is frequency (count) of a term in document, which is sometimes log-ed as well; df is document frequency,
i.e., number of documents in the collection containing the term; and N is the total number of documents in the
collection. The document frequency df is the number of documents that contain the term t. We could also calculate
it as the portion of the document collection that contain the term; i.e., the fraction of documents that contain the
term, which would be df /N . A term should be more important and have a higher weight if it is more rare, so that
is the reason why we use the inverse document frequency, or N/df . For very rare terms this number could be
very large, for example the terms with df = 1 and N = 1 000 000 it would be 1 000 000, so to “curb” this growth
we apply the slow-growing logarithm function and finally obtain tfidf = tf · log(N/df). In some references, the
logarithm is applied to tf as well.

8.3 Cosine Similarity Measure

A natural measure to measure similarity between a document and a query is the cosine similarity measure. It is
known that the cosine of the angle between two vectors can be easily computed using the following formula:

sim(q, d) =

∑m
i=1 wi,qwi,d√∑m

i=1 w
2
i,q ·

√∑m
i=1 w

2
i,d

=
~q · ~d
|~q| · |~d|

September 28, 2023, CSCI 4152/6509 http://web.cs.dal.ca/˜vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/

Lecture 8 p.2 CSCI 4152/6509

The formula gives the cosine of the angle between vectors in 2-dimensional and 3-dimensional space, and although
we cannot exactly image the angle in spaces in more dimensions it still preserve some nice properties that match our
intuition about similarity between documents, or between a document and a query. For example, if a document and
query have exactly the same terms and in exactly the same proportion of their frequencies, the angle will be 0, and
the cosine will be 1. On the other hand, if and only if the query and the document have no terms in common, the
angle will be 90◦, and the cosine will be 0.

The angle between a query and a document vector in the 3-dimensional space is shown in the Figure 1.

α
q

d cos = sim(d,q)α

x

y

z

Figure 1: Cosine Similarity in the 3-dimensional Space

If the vectors representing documents (~d) and queries (~q) are normalized in advance, i.e., if they are divided with
their length, then the cosine similarity computation becomes simpler and more efficient. Namely, if the normalized
vectors are precomputed

~d0 =
~d

|~d|
=

 w1,d√∑m
i=1 w

2
i,d

,
w2,d√∑m
i=1 w

2
i,d

, . . .
wm,d√∑m
i=1 w

2
i,d


and

~q0 =
~q

|~q|
=

 w1,q√∑m
i=1 w

2
i,q

,
w2,q√∑m
i=1 w

2
i,q

, . . .
wm,q√∑m
i=1 w

2
i,q


then the similarity value is simply computed as

sim(q, d) = ~q0 · ~d0 =

m∑
i=1

wiq0wid0

Side Note: An interesting open-source search engine:

– Lucene search engine
– http://lucene.apache.org
– Open-source, written in Java
– Uses the vector space model
– Another interesting link: Introduction to IR on-line book covers well text classification:
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

8.4 Term-by-Document Matrix and Latent Semantic Analysis

Note: This subsection will not be covered in the class.

http://lucene.apache.org
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

CSCI 4152/6509 Lecture 8 p.3

Term-by-Document Matrix: The vector space model provides a way to represent each document as a vector. If
we have m selected terms for a document collection of n documents, then using for example tfidf weights we can
represent each of the n documents as an m-dimensional vector. If we order these vectors as columns, we get an
m× n dimensional matrix called term-by-document matrix. if wij is the weight of term ti in the document dj , then
the term-by-document matrix is [wij]m×n, or:

d1 d2 . . . dn
t1 w11 w12 . . . w1n

t2 w21 w22 . . . w2n

...
...

...
...

...
tm wm1 wm2 . . . wmn

or, as a proper matrix:


w11 w12 . . . w1n

w21 w22 . . . w2n

...
...

...
...

wm1 wm2 . . . wmn


Dimensionality reduction: The number of different terms generally corresponds to the number of different words
in a document collection, and this number is generally large, in the range of 100,000s. It is useful for various
application to reduce this dimensionality. Some ways of reducing dimensionality are: removing stop-words and
very rare words, and selecting only the most distinctive terms, which is a process known as feature selection.

Latent Semantic Analysis: An interesting mathematical way of representing documents in a vector space with
much lower dimensionality is known as Latent Semantic Analysis.

Latent Semantic Analysis

– A method for term-by-document dimensionality reduction
– Also known as Latent Semantic Indexing (LSI) in IR
– Example with four terms and two documents
– Main idea: use singular value decomposition on term-by-document matrix M
– Singular value decomposition: Mm×n = Um×mΣm×nV

T
n×n

– Closest by Frobenius norm matrix of rank ≤ k is
M

(k)
m×n = Um×mΣ

(k)
m×nV

T
n×n

– Concept and document representations

8.5 IR Evaluation Measures: Precision, Recall, and F-measure

Note: This section is normally covered in an earlier Machine Learning course, so it is covered in the class as a
review material.

We will now define some main evaluation measures used in IR, which are also important in general text mining
tasks, such as text classification. The main three measures are: precision, recall, and F-measure:

– Precision is the percentage of true positives out of all returned documents; i.e.,

P =
TP

TP + FP

– Recall is the percentage of true positives out of all relevant documents in the collection; i.e.,

R =
TP

TP + FN

– F-measure is a weighted harmonic mean between Precision and Recall:

F =
(β2 + 1)PR

β2P +R

Lecture 8 p.4 CSCI 4152/6509

– We usually set β = 1, in which case we have:

F =
2PR

P +R

Precision and Recall can be explained in the following way: Given a query, the search engine identifies a set of
relevant documents, and returns this set. Some of the returned documents are truly relevant and we call them true
positives (TP); some returned documents are not relevant and we call them false positives (FP); some documents are
relevant but were not returned by the engine and we call them false negatives (FN); and the remaining documents
are not returned by the engine and they are not relevant, and we call them true negatives (TN).

The typical value in the F-measure is β = 1, for equal emphasis on precision and recall. However, if we want to put
more emphasis on precision we choose β close to 0, and for more emphasis on recall we choose β close to 1. β
must always be from the interval [0, 1], i.e., 0 ≤ β ≤ 1.

8.6 Recall-Precision Curve

Note: Covered in class as review material.

Precision, recall and F-measure may be seen as too simplistic views of evaluating a search engine since a search
engine does not return just a set of relevant documents, but a ranked list of relevant documents.

A more appropriate way to evaluate this ranked list is using the recall-precision curve. The basic idea of the
recall-precision curve is to draw a point in a two-dimensional plane corresponding to precision (y axis) and recall (x
axis) of the following document sets: first ranked document, the first two ranked documents, the first three ranked
documents, and so on. Although such curve is a roughly smooth curve going from the point (0,1) to (1,0), it does
usually have some noisy changes of direction, so it is “smoothed” by actually using the interpolated precision curve.

A typical Recall-Precision curve looks as follows:

P

R
0

1

1

To avoid “noisy” changes of curve direction, interpolated precision (IntPrec) is often used. Interpolated precision is
the maximal precision that is obtained with certain recall level; namely, if P (k) and R(k) are precision and recall of
the set of first k ranked documents, than for any recall value r ∈ [0, 1]:

IntPrec(r) = max
k,R(k)≥r

P (k)

Recall-Precision Curve Example. Suppose that a search engine returned 12 ranked results to our query, and
when we checked them, the following are our judgments on their relevance:

1. relevant
2. relevant
3. relevant
4. not relevant
5. relevant
6. not relevant

CSCI 4152/6509 Lecture 8 p.5

7. relevant
8. not relevant
9. not relevant
10. relevant
11. not relevant
12. not relevant

Task 1: Precision, Recall and F-measure

– Assuming that the total number of relevant documents in the collection is 8, calculate precision, recall, and
F-measure (β = 1) for the returned 12 results.

Since there is a total of 6 relevant documents among the set of 12, we can calculate precision to be P = 6
12 = 0.5.

It is assumed that there is a total number of 8 relevant documents in the collection, so the recall is R = 6
8 = 0.75.

Finally, we calculate the F-measure: F = 2PR
P+R = 2·0.5·0.75

0.5+0.75 = 0.75
1.25 = 3

5 = 0.6.

Task 2: Recall-Precision Curve

– Task: Draw the recall-precision curve for these results
– First step: Form sets of n initial documents, and look at their relevance:

Set 1: {R}: R1 = 1
8 = 0.125 P1 = 1

1 = 1

Set 2: {R,R}: R2 = 2
8 = 0.25 P2 = 2

2 = 1

Set 3: {R,R,R}: R3 = 3
8 = 0.375 P3 = 3

3 = 1

Set 4: {R,R,R,NR}: R4 = 3
8 = 0.375 P4 = 3

4 = 0.75

Set 5: {R,R,R,NR,R}: R5 = 4
8 = 0.5 P5 = 4

5 = 0.8

Set 6: {R,R,R,NR,R,NR}: R6 = 4
8 = 0.5 P6 = 4

6 ≈ 0.666666666666667

Set 7: {R,R,R,NR,R,NR,R}: R7 = 5
8 = 0.625 P7 = 5

7 ≈ 0.714285714285714

Set 8: {R,R,R,NR,R,NR,R,NR}: R8 = 5
8 = 0.625 P8 = 5

8 = 0.625

Set 9: {R,R,R,NR,R,NR,R,NR,NR}: R9 = 5
8 = 0.625 P9 = 5

9 ≈ 0.555555555555556

Set 10: {R,R,R,NR,R,NR,R,NR,NR,R}: R10 = 6
8 = 0.75 P10 = 6

10 = 0.6

Set 11: {R,R,R,NR,R,NR,R,NR,NR,R,NR}: R11 = 6
8 = 0.75 P11 = 6

11 ≈ 0.545454545454545

Set 12: {R,R,R,NR,R,NR,R,NR,NR,R,NR,NR}: R12 = 6
8 = 0.75 P12 = 6

12 = 0.5

Using these ten points, we can draw the recall-precision curve:

Lecture 8 p.6 CSCI 4152/6509

0

1

P

1
R

1 2 3

4

5

6

7

8

9

10

11

12

The recall-precision curve that we just saw is not exactly monotonically non-increasing although the general trend
of these curves is to grom from near the point (0, 1) down towards point (1, 0) in the coordinate system. The reason
is that after the initial 100% precision, each time we see a new relevant document in the ranked list both precision
and recall will increase a bit, and when we see a non-relevant document the precision will drop with the same
recall, which creates a bit of a zig-zagged line. To make the non-increasing, and thus a bit smoother, we use the
interpolated precision-recall curve, which is obtained by keeping precision at the level that is maximal from the
associated recall point and forward.

Slide notes:

Task 3: Interpolated Recall-Precision Curve
– Task: Draw interpolated Recall-Precision curve
– Formula:

IntPrec(r) = max
k,R(k)≥r

P (k)

– Based on the previous Task:
0 ≤ r ≤ R4 = 3

8 = 0.375⇒ IntPrec(r) = 1
R4 < r ≤ R6 = 4

8 = 0.5⇒ IntPrec(r) = 0.8
R6 < r ≤ R9 = 5

8 = 0.625⇒ IntPrec(r) = 5/7 ≈
0.714285714
R9 < r ≤ R12 = 6

8 = 0.75⇒ IntPrec(r) = 0.6

To calculate the interpolated recall-precision curve, we use the formula:

IntPrec(r) = max
x,R(k)≥r

P (k)

To use this formula, we can start first with r = 0, which gives:

IntPrec(0) = max
k,R(k)≥0

P (k) = max
k

P (k) = 1

because R(k) ≥ 0 for all k, and maximum P (k) is 1. If we increase r starting from 0, we see that the maximal
precision will remain 1 for all points R1, R2, R3, and R4, as shown in the following figure:

CSCI 4152/6509 Lecture 8 p.7

0

1

P

1
R

1 2 3

4

5

6

7

8

9

10

11

12

max=1

r

This is how we get the following values for the Interpolated Precision:
0 ≤ r ≤ R4 = 3

8 = 0.375⇒ IntPrec(r) = 1

For the values r > R4, the next maximum is 0.8, as shown in the following figure:

0

1

P

1

1 2 3

4

5

6

7

8

9

10

11

12

max=1

max=0.8

Rr

and that is how we obtain the next interval:

R4 < r ≤ R6 = 4
8 = 0.5⇒ IntPrec(r) = 0.8

Similarly, for the values r > R6, the next maximum is 5/7, as shown in the following figure:

Lecture 8 p.8 CSCI 4152/6509

0

1

P

1

1 2 3

4

5

6

7

8

9

10

11

12

max=1

max=0.8

max=5/7

rR

and that is how we obtain the next interval:

R6 < r ≤ R9 = 5
8 = 0.625⇒ IntPrec(r) = 5/7 ≈ 0.714285714

For the values r > R9, the next maximum is 0.6, as shown in the following figure:

0

1

P

1

1 2 3

4

5

6

7

8

9

10

11

12

max=1

max=0.8

max=5/7

R

max=0.6

r

and that is how we obtain the final interval:

R9 < r ≤ R12 = 6
8 = 0.75⇒ IntPrec(r) = 0.6

There are no further points, so we can finish the curve at this point. We can summarize the values for the interpolated
recall-precision curve as:
0 ≤ r ≤ R4 = 3

8 = 0.375⇒ IntPrec(r) = 1
R4 < r ≤ R6 = 4

8 = 0.5⇒ IntPrec(r) = 0.8
R6 < r ≤ R9 = 5

8 = 0.625⇒ IntPrec(r) = 5/7 ≈ 0.714285714
R9 < r ≤ R12 = 6

8 = 0.75⇒ IntPrec(r) = 0.6

Using these points, we can construct the interpolated precision curve, up to R = 0.75:

CSCI 4152/6509 Lecture 8 p.9

0

1

P

1
R

1 2 3

4

5

6

7

8

9

10

11

12

A way to look at the interpolated recall-precision curve is that it is obtained from the direct recall-precision curve
by “filling up” all parts where the curve increases, in a way similar as water would fill up the “depressions” if we
imagine the curve to be a waterfall cascade.

Interpolated R-P Curve at 11 Standard Levels

Some Other Similar Measures

– Fallout
Fallout =

FP
FP + TN

– Specificity

Specificity =
TN

TN + FP
– Sensitivity

Sensitivity =
TP

TP + FN
(= R)

– Sensitivity and Specificity: useful in classification and contexts such as medical tests

Sensitivity and Specificity are typically used in the classification task, that we will described later. They are also
frequently useful to evaluate medical tests. For example, if we consider a context of a medical test for disease
diagnostics: a sensitive test, same as recall, is good at not missing any true cases of a disease (true positives); while
a specific test is good in eliminating a possible suspected disease.

9 Text Classification as General NLP Task
Note: Covered in class as review material.

9.1 Text Classification as a Text Mining Task

Text Classification is one of the tasks in a more general area called Text Mining. The area of Text Mining generally
deals with processing of large quantities of text and deriving some useful information, knowledge, or insight from it.
The name Text Mining is derived from a similar area of Data Mining, which deals with large quantities of data in
general for the purpose of knowledge discovery. Some tasks in Text Mining are related to similar tasks in a wider
Data Mining area. The following are some typical text mining tasks:

Lecture 8 p.10 CSCI 4152/6509

– Text Classification
– Text Clustering
– Information Extraction
– And some new and less prominent tasks:

– Text Visualization
– Filtering tasks, Event Detection
– Terminology Extraction

Text Classification is the task of classifying documents into classes of documents; i.e., sets of documents, of certain
properties. For example, classifying email into spam email and non-spam email is an example of text classification.
Text Clustering is the task of grouping documents in a collection in a groups of similar documents, or clusters.
Information Extraction is the task of extracting table-like data from text documents. For example, processing news
and filling out information about companies, their names, addresses, and names of CEOs would be an information
extraction task.

The area of text visualization addresses the problem of different visual representations of text and textual documents.
Filtering tasks deal with selecting relevant documents or information from a stream of usually short textual
documents. Event detection is the task of detecting events from a stream of documents, such as news-wire. A CEO
change in a company could be one kind of interesting events to be detected. Terminology Extraction is the task
of extracting terminology, i.e., domain terms, from a document collection in a domain. For example, analyzing
bio-medical scientific papers and detecting and extracting terminology such as protein names would be an example
of terminology extraction.

9.2 Types of Text Classification

Text Classification is also known as Text Categorization. It is the problem of automatically classifying a document
into one of predetermined classes or categories of documents. In a more usual form of classification, we always
assign a document to exactly one class. In a more flexible form, known as multi-label classification, we assign
document to zero or more classes; or we can view the task as assigning a set of labels to the document, where each
label is a designation of a class.

Beside some reading on document classification in the textbook [JM], there is a more elaborate description in the
Manning and Schütze book ([MS]), in Chapter 16: Text Categorization.

Types of Text Classification

– topic categorization
– sentiment classification
– authorship attribution and plagiarism detection
– authorship profiling (e.g., age and gender detection)
– spam detection and e-mail classification
– encoding and language identification
– automatic essay grading

More specialized example: dementia detection using spontaneous speech

Creating Text Classifiers

– Can be created manually
– typically rule-based classifier
– example: detect or count occurrences of some words, phrases, or strings

– Another approach: make programs that learn to classify
– In other words, classifiers are generated based on labeled data

CSCI 4152/6509 Lecture 8 p.11

– supervised learning

While we can create a classifier from the scratch, a more usual approach is to classify, i.e., label, a set of document
manually, and then devise a method generate a classifier based on this set of labeled documents. This process of
generating a classifier is known as training, or machine learning. The classification problem is known as an example
of supervised learning in the machine learning area, since we need to provided labeled examples; in other words,
we “supervise” the learning algorithm.

9.3 Evaluation Measures for Text Classification

When we build a text classifier, an important question is how to evaluate it so we can measure how good it is and
how different classifiers compare. In order to do this, we first need to prepare a dataset consisting of documents,
where each document is labeled with the class that it belongs too. This is called a labeled dataset or a labeled
document collection. The labels are usually assigned and checked manually, and we take them as the ground truth,
also called the gold standard, against which we evaluate the classifier.

We run the classifier against the documents, with labels being hidden, and once the classifier assigns labels to the
documents, we compare them against the gold standard labels. The first evaluation measure that we can calculate is
the accuracy, which is the percentage or fraction of the documents being correctly classified by the classifier. If
we want to examine in more details how classifier performed on documents from different classes, we present the
results in the contingency table also known as the confusion matrix.

Slide notes:

Evaluation Measures for Text Classification
– Contingency table (confusion matrix) and Accuracy
– Example (classes A, B, and C):

Model
classification

Gold standard
A B C

A 5 1 1 7
B 3 10 2 15
C 0 2 10 12

8 13 13 34
– Accuracy: percentage of correct classifications; in the example,

= 25/34 ≈ 0.7353 = 73.53%

Per class: Precision, Recall, and F-measure

– For each class: Yes = in class, No = not in class
Yes is correct No is correct

Yes assigned a b
No assigned c d

– precision (a
a+b), recall (a

a+c), fallout (b
b+d), F-measure:

F =
(β2 + 1)PR

β2P +R

– If β = 1⇒ Precision and Recall treated equally
– macro-averaging (equal weight to each class) and micro-averaging (equal weight to each object)

(2×2 contingency tables vs. one large contingency table)

Example: Let us assume that we are evaluating an authorship-attribution classifier. The classifier is presented
with 34 documents, written by three authors: A1, A2, and A3, and the classifier produces labels. We know the

Lecture 8 p.12 CSCI 4152/6509

true authorship of the documents, so we compare the classifier results to these labels. The obtained results can be
presented as a so-called confusion matrix, or contingency table:

System
response

Gold standard
A1 A2 A3

A1 5 1 1 7
A2 3 10 2 15
A3 0 2 10 12

8 13 13 34

Or, we can create contingency tables for each class separately:

Gold standard
A1 not A1

A1 5 2 7
not A1 3 24 27

8 26 34

Gold standard
A2 not A2

A2 10 5 15
not A2 3 16 19

13 21 34

Gold standard
A3 not A3

A3 10 2 12
not A3 3 19 22

13 21 34

The overall accuracy can be calculated using the overall table;

Accuracy =
5 + 10 + 10

34

Per-class precisions are:

PA1 =
5

7
PA2 =

10

15
PA3 =

10

12

Per-class recalls are:
RA1 =

5

8
RA2 =

10

13
RA3 =

10

13

Macro-averaged precision, recall, and F-measure are:

Pmacro =
5/7 + 10/15 + 10/12

3
Rmacro =

5/8 + 10/13 + 10/13

3
Fmacro =

2 · Pmacro ·Rmacro

Pmacro +Rmacro

To calculate micro-averaged precision, recall, and F-measure, we calculate cumulative per-class table:

Gold standard
A not A

A 25 9 34
not A 9 59 68

34 68 102

and then we calculate the micro-averaged measures:

Pmicro =
25

34
Rmicro =

25

34
Fmicro =

2 · Pmicro ·Rmicro

Pmicro +Rmicro
=

25

34

CSCI 4152/6509 Lecture 8 p.13

9.4 Evaluating Classifiers

In order to decide which machine learning classification method is the best choice for a classification task, we need
to evaluate those methods, or classifiers for short. The goal of evaluation is to see what kind of performance we can
expect from a classifier after it learns its model from training data. The two main concerns with classifier learning
are underfitting and overfitting.

9.4.1 Underfitting and Overfitting

Slide notes:

Evaluation Methods for Classification
– General issues in classification

– Underfitting and Overfitting
– Example with polynomial-based function learning

– Underfitting and Overfitting

Two basic issues that we can find with classifiers that are trained from labeled data are underfitting and overfitting.
Underfitting is an issue in which the training algorithm does not learn well from training data, which is indicated by
poor performance on the training data itself. This means that it cannot fit well the training data. In this case, we
cannot expect any better performance on unseen data. Overfitting is the issue that the classifiers fits very well the
training data, and even too well in sense that it learns signals from training data that are not relevant to the task,
which hurt its performance on unseen data. In other words, the classifier fits the training data too well, and thus it
does not properly generalize in order to classify unseen data. These issues can be well illustrated on an example of
polynomial-based function learning.

Polynomial-based Function Learning Example. An example for overfitting and underfitting can be created
from function learning. We can draw a set of, for example, 10 points in a 2-dimensional plane, being closely
distributed around a parabola with equation y = x2/4. Assuming that we do not know that the points are generally
close to this parabola, we could try to fit them to polynomials of various degrees. By fitting them with a polynomial
with the first degree, i.e., a line, we can see that the data does not fit the line very well. We call this a training error,
since our line is learned from the 10 training points, and this is an example of underfitting, since we cannot fit the
training data. On the other hand, if we try a polynomial of 9th degree, we can perfectly fit the training data, but the
polynomial will not match well new data. This is an overfitting error, since the learned function fits the training data
too well, fitting even the errors which may have happened in measurements or similar.

9.4.2 Evaluation Methods for Text Classifiers

Slide notes:

Evaluation Methods for Text Classifiers
– Training Error
– Train and Test
– N-fold Cross-validation

Training Error. The classifier is trained on a training data set and also evaluated on the same data set. It is a
good idea to get this result, although it is obviously biased towards the training data. This evaluation can detect
underfitting but not overfitting of the training data.

Lecture 8 p.14 CSCI 4152/6509

training data
training classifier

evaluation

Train and test. The data is divided into two parts: training and testing part. The split is usually 90% for training
and 10% for testing, but sometimes 2/3 of data is used for training and 1/3 for testing. This is an unbiased evaluation,
which can detect underfitting as well as overfitting. To be sure that the evaluation is unbiased, it is important not to
use testing data in any way, even to glance at it, if it may influence our decisions regarding classifier construction.
With some methodologically generic methods, this is not an issue.

training data
training classifier testing data

evaluation

N-fold cross-validation. In this method, the data is randomly partitioned into n equal parts. n experiments are
performed, where in each another part is taken as the testing data, while remaining parts are used for training. At
the end, the results over experiments are averaged. This is unbiased testing that gives more statistical significance
than train-and-test, but it is not applicable if we need to examine the training data during classifier construction.

classifier 1
fold 3

fold 2

. . .

fold 1

fold n

fold n−1
evaluation

training

fold n−1

fold 3

fold 2

evaluation

training

fold n

fold 1

. . .

fold 3

fold 2

. . .

fold 1

evaluation

training

fold n

fold n−1

classifier 2

classifier n. . .

Side note: An interesting link:

– SpamAssassin is considered the best, or at least one of the best spam-classification software packages. It is an
open-source package available at:
http://spamassassin.apache.org

http://spamassassin.apache.org

CSCI 4152/6509 Lecture 8 p.15

9.5 Text Clustering

Note: This sub-subsection (Text Clustering) is not covered in this course. These notes are only for your additional
information, or use in a project.

– Task definition
– Example of unsupervised learning
– Example approach: the simple k-means approach
– Hierarchical clustering

– agglomerative, and
– divisive

– Evaluation
– inter-cluster similarity (average inter-cluster distance)
– cluster purity (classes known)
– entropy or information gain (classes known)

Simple k-means. In the simple k-means clustering, all documents are translated into vectors of same dimension-
ality. We choose a number of clusters k in advance and choose randomly initial k centroids, i.e., vectors of the same
dimensionality as the documents. After this we repeat the following two steps:

1) Assign each document to the closest centroid using Euclidean distance. In this way, all documents are partitioned
into k clusters.

2) Calculate new k centroids as centroids of k clusters created in the previous step. A centroid of a set of vectors is
equivalent to the arithmetic mean of a set of numbers, i.e., for n vectors v1, v2, . . . , vn, their centroid is calculated
using the formula:

centroid =

∑n
i=1 vi
n

This iterative process stops either if: (1) the clusters do not change between two iterations, i.e., a stable partition is
achieved; (2) a clustering quality measure stops improving; or, (3) we reach a predefined iteration limit.

Clustering evaluation. The clustering evaluation methods can be internal and external. In the internal methods,
clusters are evaluated based on the high similarity among items in the same cluster, and low similarity among
items in different clusters. In the external methods, clustering is evaluated as part of a larger application, and the
performance of that application is measured.

Average inter-cluster distance. As an example for internal evaluation, we could find the average distance among
all pairs of items belonging to the same cluster. This is the average inter-cluster distance. The lower the average
inter-cluster distance, the better is the clustering. The number of clusters needs to be limited from above in this case,
since one-item-one-cluster approach would lead to the best (zero) average inter-cluster distance, with a very large
number of clusters.

Clustering purity. The clustering purity measure can be used if we have document labels according to some
classification. We assume that a better clustering will group more documents with the same label in one cluster, and
tend to put documents with different labels in different clusters. Clustering purity evaluation can be described as
follows: we assign each cluster its majority class and then we measure accuracy as it would be done for classification:

purity(Ω, C) =
1

N
Σk max

j
|ωk ∪ cj |

where Ω = {ω1, . . . , ωK} is the set of clusters, and C = {c1, . . . cJ} is the set of classes.

There are other evaluation measures for clustering, including F-measure for clustering.

	Cosine Similarity Measure
	Term-by-Document Matrix and Latent Semantic Analysis
	IR Evaluation Measures: Precision, Recall, and F-measure
	Recall-Precision Curve
	Text Classification
	Text Classification as a Text Mining Task
	Types of Text Classification
	Evaluation Measures for Text Classification
	Evaluating Classifiers
	Underfitting and Overfitting
	Evaluation Methods for Text Classifiers

	Text Clustering

