Natural Language Processing
CSCI 4152/6509 — Lecture 5
RegEx and Basic NLP in Perl

Instructors: Vlado Keselj
Time and date: 16:05 — 17:25, 19-Sep-2023
Location: Rowe 1011

CSCl 4152/6509, Vlado Keselj

1/26

Previous Lecture

@ NFA-to-DFA translation (continued)
@ Review of Regular Expressions
@ Introduction to Perl

» main Perl language features
» program examples, syntactic elements

- 1/0

CSCl 4152/6509, Vlado Keselj Lecture 5 2 /26

Regular Expressions in Perl

@ Perl provides an easy use of Regular Expressions
@ Consider the regular expression: /pro...ing/

@ Run the following commands on timberlea:
cp “prof6509/public/linux.words
grep proc...ing linux.words

@ Output includes ‘processing’, and more:
coprocessing
food-processing
microprocessing
misproceeding
multiprocessing

CSCl 4152/6509, Vlado Keselj Lecture 5 3 /26

Note About File ‘1inux.words’ and Others

@ Some helpful files can be found on timberlea in:
“prof6509/public/

@ or, on the web at:
http://web.cs.dal.ca/"vlado/csci6b09/misc/
@ For example:

linux.words

wordlist.txt
Natural-Language-Principles-in-Perl-Larry-Wall.pdf
TomSawyer.txt

CSCl 4152/6509, Vlado Keselj Lecture 5 4/26

Perl Regular Expressions: ‘proc...ing’ Example

e Similar functionality as grep:
#!/usr/bin/perl
run as: ./re-proc-ing.pl linux.words

while ($r = <>) {
if ($r =~ /proc...ing/) {
print $r;
+
}

CSCl 4152/6509, Vlado Keselj Lecture 5 5/ 26

Shorter ‘proc...ing’ Code

e There are several ways how this program can made
shorter: first, let us use the default variable ‘$_":
while ($_ = <>) {
if ($_ =" /proc...ing/) {
print $_;
+
}
e Shorter version:
while (<>) {
if (/proc...ing/) {
print;
+
}

CSCl 4152/6509, Vlado Keselj Lecture 5 6 /26

Even Shorter ‘proc...ing’ Code

e and shorter:
while (<>) {

print if (/proc...ing/);
}

e and shorter:
#!/usr/bin/perl -n

print if (/proc...ing/);

e or as a one-line command:
perl -ne ’print if /proc...ing/’

CSCl 4152/6509, Vlado Keselj Lecture 5 7 /26

More Special Character Classes

\d — any digit

\D — any non-digit

\w — any word character

\W — any non-word character
\s — any space character

\S — any non-space character

CSCl 4152/6509, Vlado Keselj ecture 8 /26

A More Complete List of Iterators

* — zero or more occurrence
+ — one or more occurrences

? — zero or one occurrence

{n} — exactly n occurrences

{n,m} — between n and m occurrences
{n,} — at least n occurrences

{,m} — at most m occurrences

9/26

CSCl 4152/6509, Vlado Keselj

Some Special Variables Assigned
After a Match in Perl

$var = |

regular expression match: $var =~ /re/
| | | |
y | N
$° $& $’

CSCl 4152/6509, Vlado Keselj ecture 10 / 26

Example: Counting Simple Words

#!/usr/bin/perl

my $wc = 0;
while (<>) {
while (/\w+/) { ++$uc; $_ = $’; }

}

print "$wc\n";

CSCl 4152/6509, Vlado Keselj ecture 11 /26

Example: Counting Simple Words (2)

e Consider the following variation:
#!/usr/bin/perl

my $wc = 0;
while (<>) {
while (/\wt+/g) { ++$wc }

}

print "$wc\n";

CSCl 4152/6509, Vlado Keselj ecture 12 /26

Counting Words and Sentences

#!/usr/bin/perl
simplified sentence end detection

my ($wc, $sc) = (0, 0);
while (<>) {
while (/\w+|[.!7]1+/) {
my $w = $&; $_ = $’;
if ($w =~ /~[.17]+8/) { ++$sc }
else { ++$wc }
}
+

print "Words: $wc Sentences: $sc\n';

CSCl 4152/6509, Vlado Keselj Lecture 5 13 /26

More on Perl RegEx'es

\G anchor, end of the previous match
(?=re) look-ahead
(?1re) negative look-ahead

(7<=re) look-behind
(?<!re) negative look-behind

e Some examples:

/foo(?!.*xfoo)/ — finding last occurrence of ‘foo’
s/ (?<=\be) (?=mail) /-/g — inserting hyphen
/\b\w+(?<!s)\b/ — a word not ending with ‘s’

CSCl 4152/6509, Vlado Keselj ecture 14 / 26

An Example with \G

while (<>) {

while (1) {
if (/\G\w+/gc) { print "WORD: $&\n" }
elsif (/\G\s+/gc) { print "SPACE\n" }
elsif (/\G[.,;?!]1/gc)

{ print "PUNC: $&\n" }

else { last }

}

+
e Option g must be used with \G for global matching
e Option c prevents position reset after mismatch

CSCl 4152/6509, Vlado Keselj ecture 15 / 26

Back References

@ \1 \2 \3 ... match parenthesized sub-expressions

o for example: /(a*)b\1/ matches a"ba"; such as b,
aba, aabaa, ...

@ Sub-expressions are captured in (...)
@ Aside, in grep: \(...\)
@ (7:...) is grouping without capturing

CSCl 4152/6509, Vlado Keselj Lecture 5 16 / 26

Back Reference Examples

Consider examples:

/(a+(o+)) (c+(d+))\4/ and /(a+(b+)) (c+(d+))\3/

CSCl 4152/6509, Vlado Keselj ecture 17 / 26

Shortest Match

o default matching: left-most, longest match
@ e.g., consider /\d+/
@ Shortest match is sometimes preferred
» e.g., consider: /<div>.*<\/div>/ or
/<[T>]1%>/ vs. /<.%>/
» and: /<div>.*7<\/div>/ and /<.*7>/
@ Shortest match iterators:
*? +7 7?7 {n}? {n,m}?

CSCl 4152/6509, Vlado Keselj Lecture 5 18 / 26

Regular Expression Substitutions

@ syntax: s/re/sub/options

@ Some substitution options
c — do not reset search position after /g fail
e — evaluate replacement as expression
g — replace globally (all occurrences)
i — case-insensitive pattern matching
m — treat string as multiple lines
o — compile pattern only once
s — treat string as a single line
x — use extended regular expressions

CSCl 4152/6509, Vlado Keselj Lecture 5 19 / 26

Text Processing Example

o Perl is particularly well suited for text
processing

o Easy use of Regular Expressions
o Convenient string manipulation
o Associative arrays

o Example: Counting Letters

CSCl 4152/6509, Vlado Keselj ecture 20 / 26

Experiments on “Tom Sawyer”

o File: TomSawyer.txt:
The Adventures of Tom Sawyer

by
Mark Twain (Samuel Langhorne Clemens)

Preface

MOST of the adventures recorded in this book really occurred;
one or two were experiences of my own, the rest those of boys
who were schoolmates of mine. Huck Finn is drawn from life;
Tom Sawyer also, but not from an individual -- he is a
combination of the characteristics of three boys whom I knew,
and therefore belongs to the composite order of architecture.

CSCl 4152/6509, Vlado Keselj Lecture 5 21 /26

Letter Count Total

#!/usr/bin/perl
Letter count total

my $1lc = 0;

while (<>) {

while (/[a-zA-Z1/) { ++$1c; $_ = $’; }
}
print "$lc\n";

./letter-count-total.pl TomSawyer.txt
296605

CSCl 4152/6509, Vlado Keselj Lecture 5 22 /26

Letter Frequencies

#!/usr/bin/perl
Letter frequencies

while (<>) {
while (/[a-zA-Z1/) {
my $1 = $&; $_ = $’;
$£{$1} += 1;
}
}

for (keys %f) { print "$_ $£{$_}\n" }

CSCl 4152/6509, Vlado Keselj ecture 23 /26

Letter Frequencies Output

./letter-frequency.pl TomSawyer.txt
606
22969
1899
324
24
14670
214
158
381
6531
8901

e m<aoax=2+ap W

CSCl 4152/6509, Vlado Keselj Lecture 5 24 / 26

Letter Frequencies Modification

#!/usr/bin/perl
Letter frequencies (2)

while (<>) {
while (/[a-zA-Z1/) {
my $1 = $&; $_ = $’;
$f{lc $1} += 1;
}
}

for (sort keys %f) { print "$_ $£{$_}\n" }

CSCl 4152/6509, Vlado Keselj ecture 25 /26

New Output

./letter-frequency2.pl TomSawyer.txt
a 23528
4969
6517
14879
35697
6027
6615
19608
18849
639
3030

NG B B0 o &0 T

CSCl 4152/6509, Vlado Keselj Lecture 5 26 / 26

