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Abstract: 

Modern imaging techniques such as Confocal 

Scanning Laser Tomography (CSLT) capture 

high-quality optic nerve images. The automated analysis 

of CSLT images, by combining image processing and 

data mining methods, offers the potential for developing 

objective methods for supporting clinical 

decision-making in glaucoma. We present our approach 

that involves the analysis of CSLT images using moment 

methods to derive abstract image defining features, and 

then the use of these features to train classifiers for 

automatically distinguishing CSLT images of healthy 

and diseased optic nerves. As a first step, in this paper, 

we present investigations in feature subset selection 

methods for reducing the relatively large input space 

produced by the moment methods. Our results 

demonstrate that our methods can discriminate between 

healthy and glaucomatous optic nerves based on shape 

information automatically derived from CSLT 

tomography images.  
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1. Introduction 

Confocal Scanning Laser Tomography (CSLT), a 

modern eye imaging technique, captures 3-dimensional 

optic nerve images that can be analyzed, in an automatic 

manner, to provide support in the clinical care of glaucoma 

patients [1]. Yet, to date, most diagnostic tools require 

human intervention—a trained professional has to manually 

define the margins of the optic nerve (a process that is 

somewhat subjective in nature and highly dependent on 

training and expertise). Whilst CSLT image analysis has 

tremendous potential to improve the clinical care of 

glaucoma patients, current methods for image analysis fail to 

detect optic nerve damage sufficient accuracy [2]. 

In this on-going project, we are working towards the 

development of a data-driven glaucoma diagnostic support 

system (shown in figure 1) that features the automatic 

interpretation of CSLT images by (a) applying image 

processing techniques to derive image-defining data that can be 

applied to a suite of data mining algorithms; (b) selecting a 

subset of image features that exhibit optimal classification 

capabilities for distinguishing between healthy and diseased 

optic nerves, and between different subtypes of optic nerve 

damage; (c) inducing classification rules in order to provide 

domain experts a symbolic explication of the data and the 

inherent class structures. 

 
Figure 1. Functional design of a glaucoma diagnostic 

support system 

 

In this paper we present an automated approach to 

CSLT image analysis by using image processing methods to 

derive image-defining features, and then applying data 

mining methods to the derived features to derive diagnostic 

knowledge from the images. The data mining task is the 

classification of CSLT images—to discriminate between 

healthy and glaucomatous optic nerves—based on the optic 

nerve’s shape. However, given the large number of features 

produced by image processing methods, it is important to 

reduce the feature subset size, without losing information, to 



 

 

optimize the image classification task.  

First we present, the derivation of image-defining 

features from CSLT images using Moment Methods [3, 4]. 

Classification of CSLT images based on image features (or 

moments) is constrained by the relatively large input 

space—i.e. image features—produced by moment methods, 

thus prompting the need to applying feature selection 

methods [5, 6, 7, 8] to select a feature subset that offers 

optimal classification accuracy for classifying CSLT images 

of normal and glaucoma patients. We have developed a 

two-pass feature subset selection method that is a hybrid of 

wrapper and filter methods. In the first pass, wrapper models 

of Multilayer Perceptron (MLP) [9] and Support Vector 

Machines (SVM) are used in a forward feature selection 

manner to identify an optimal subset of lower order 

image-defining moments that offer optimal classifications. 

In the second pass, the Markov blanket filter method [10] is 

used to select the highly relevant moments/features from the 

feature subset selected in pass 1. At the completion of the 

two feature selection passes we identify the smallest possible 

set of moments/features that provide the highest 

classification accuracy. Our results will demonstrate the 

efficacy of our automated approach to discriminate between 

healthy and glaucomatous optic nerves, based on shape 

information derived from CSLT topography images.  

Analysis of optic nerve data and CSLT based images, 

particularly using an assortment of feature subset selection 

and data classification methods has been actively pursued by 

researchers, with varying results [11-15]. Bowd et al [11], 

working with retinal tomograph images applied forward and 

backward feature selection methods for training MLP, SVM 

and linear discriminant functions; Park et al [12] have used 

correlation analysis and forward wrapper model to select 

features from optic nerve data for training SVM classifiers; 

Swindale et al [13] used a hill climbing wrapper model for 

feature selection to train SVM classifiers; whereas Cheng et 

al [14] and Peters et al [15] did not apply feature selection 

prior to their respective image analysis methods.  

2. Optic Nerve Image Processing  

The Heidelberg Retina Tomograph (HRT) is a CSLT 

system that uses a low-intensity monochromatic laser beam 

to scan the back of the eye sequentially in two dimensions to 

acquire a series of images from consecutive focal planes. 

Within each image series, the relative height of the retinal 

surface structure can be inferred by finding the focal plane in 

which maximum reflectance of each pixel occurs 

(topography image). After several image series for an eye are 

acquired (as shown in figure 2), the final mean topography 

images are used for diagnosis [1]. 

 
Figure 2. CSLT image series of the optic disc 

 

We use an image processing technique, referred to as 

Moment Methods [3], to extract features from CSLT images. 

By describing the properties of connected regions in binary 

images, Moment features are invariant to translation, 

rotation and scale. Thus, moment features both describe the 

image content with respect to its axes and capture detailed 

geometric information about the image. 

In our work, we analyze CSLT images using Zernike 

moments [4] which use a set of complex polynomials to 

form a complete orthogonal basis set on the unit disc (x
2
 + y

2
) 

<=1 (where x and y define the origin of the pixel). Put 

simply, Zernike moments describe the image’s properties by 

their order (n) and repetition (m) with respect to a digital 

image—the low order moments capture gross shape 

information and high order moments incrementally resolve 

high frequency information (representing detail) of the 

digital image. Two attractive features of this analysis is that 

(a) moments can be made invariant to shifts, rotations and 

magnification changes; and (b) the optic nerve is centered in 

the image, thus avoiding the requirement for an independent 

segmentation stage in which the object is explicitly 

identified. 

It should be noted that typically the low order moments 

capture fundamental geometric properties and high order 

moments represent detailed information of the image [4]. 

However, for image classification based on gross shape it 

can be argued that the high order moments do not contribute 

much information; in fact they can be regarded as noise. 

Given the above assumption, to better classify CSLT images 

between normal and glaucoma, the primary task is select an 

optimal number of lower order moments. However, the 

problem faced is two-fold: (a) there is no available objective 

measure to determine the exact number of (low order) 

moments necessary for achieving high classification 

accuracy; and (b) there is no discernable relationship 



 

 

between the moments that can be utilized. Hence, there is a 

need for a feature selection strategy to objectively select an 

optimal set of moments, starting from the lowest order 

moments and moving towards higher order moments.  

3. CSLT Optic Nerve Data 

For our experiments we worked with 1257 tomography 

images taken at different time intervals from 136 subjects 

(51 healthy subjects and 85 glaucoma patients). For each 

CSLT image we generated 254 Zernike moments with order 

1 to 29. For the Zernike moments generated, the order n and 

repetition m meet the conditions n-|m| = even and |m| <= |n|.  

Given the set of 254 moments for each CSLT image, the 

objective is to determine a set of optimal moments that can 

provide high classification accuracy. The rationale for 

feature subset selection is based on the observation that a 

large number of abstract moments tend to compromise the 

accuracy of supervised learning classifiers, the classification 

rules are difficult to understand and the computational cost is 

high.  

4. Hybrid Feature Subset Selection Strategy 

Feature selection, namely feature subset selection, is to 

find a subset of the original features of a data set such that an 

induction algorithm applied to the selected feature subset 

generates a classifier with the highest possible accuracy [5]. 

We have developed a hybrid feature subset selection 

strategy that combines both wrapper and filter models of 

feature subset selection, and operates in two phases 

(illustrated in figure 3). In the first phase, MLP and SVM 

based wrapper models are used to find an Optimal Moment 

Feature Subset (OMFS) which is the set consisting of low 

order moment feature groups that provide optimal data 

classification accuracy. In the second phase, a filter model 

based on a Markov Blanket (of the class label) [10] is applied 

to an inferred Bayesian network based on the OMFS. The 

moments that have no causal relationship with the class are 

removed from OMFS to realize an even smaller feature 

sub-set of moments.  

4.1. Phase I: Using MLP and SVM 

In the absence of any guiding principle to determine the 

size of the OMFS, we devised an accumulative feature 

selection strategy, whereby we incrementally add moments 

to an existing feature set and train a classifier (MLP and 

SVM) to determine the classification accuracy for the new 

feature subset. We had two options to generate the feature 

subset for training: (i) to add the next N higher features to the 

existing data-set, where N was deemed to range between 

1-10 moments. Say, if N = 5, then feature subset1 would 

include moments 1-5, feature subset2 would add the next 5 

moments to contain moments 1-10 and so on; or (ii) to use 

the intrinsic partitioning of the moments based on their order; 

the 254 moments were divided into 29 groups based on their 

order ranging from 1 to 29. This implies that feature subset1 

includes moments with order2, feature subset2 includes 

moments with order 2+3, and so on. Both from a theoretical 

and experimental point of view, we determined that 

generating the OMFS based on adding moments of 

increasing order is a sound option.  

 

 
Figure 3. Our Feature Subset Selection Strategy 

 

Finally, to determine the size of the OMFS we generate 

29 different feature subsets (in an accumulative manner), 

and for each feature subset we train two classifiers—MLP 

and SVM—and determine their classification accuracy. The 

classification accuracy trend for each of the 29 classifiers is 



 

 

plotted; the point on the plot (i.e. the moment group) from 

which the classification accuracy takes a downward trend 

(with the inclusion of the next higher moment group) is 

determined as the OMFS.  
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Figure 4. Classification accuracy for both MLP and SVM 

 

Table 1. Classification accuracy and standard deviation for 

MLP and SVM. 

MLP SVM  

Accuracy SD Accuracy SD 
1 0.7197 0.0737 0.7618 0.0572 

2 0.7071 0.0735 0.7706 0.0724 

3 0.6868 0.0760 0.7529 0.0740 

4 0.7072 0.0661 0.7103 0.0823 

5 0.6769 0.0702 0.7250 0.0818 

6 0.6832 0.0730 0.7000 0.0736 

7 0.6762 0.0852 0.7147 0.0733 

8 0.7400 0.0685 0.7397 0.0590 

9 0.7297 0.0680 0.7162 0.0679 

10 0.7271 0.0609 0.7044 0.0914 

11 0.7393 0.0752 0.8696 0.0305 

12 0.7224 0.0668 0.7676 0.0464 

13 0.7324 0.0690 0.7721 0.0482 

14 0.7294 0.0647 0.7941 0.0446 

15 0.7268 0.0700 0.7735 0.0427 

16 0.7241 0.0829 0.7662 0.0661 

17 0.7210 0.0708 0.8117 0.0746 

18 0.7359 0.0713 0.7853 0.0652 

19 0.7272 0.0723 0.7662 0.0735 

20 0.7235 0.0925 0.7750 0.0751 

21 0.7390 0.0756 07985 0.0632 

22 0.7271 0.0961 0.7500 0.0667 

23 0.7170 0.0789 0.7912 0.0541 

24 0.7257 0.0726 0.7838 0.0632 

25 0.7176 0.0713 0.7662 0.0792 

26 0.7224 0.0874 0.7882 0.0562 

27 0.7257 0.0718 0.7941 0.0581 

28 0.7288 0.0723 0.7750 0.0659 

29 0.7144 0.0740 0.7941 0.0631 

For training the MLP we partitioned the feature 

subset—i.e. the data—into a training and test set. Different 

data partitions, ranging from 80%-20%, 75%-25% and 

70%-30% (training%-testing%), were used. The 

classification accuracy results for MLP for all the moment 

groups are given in table 1. Figures 4 plots the classification 

trend for MLP.  

For training the SVM, each candidate feature 

subset—i.e. the data—was divided into 75% training and 

25% testing set. Based on the training data, a 5-fold cross 

validation was performed to find the optimal hyper 

parameters: C and λ. Finally, the testing data was used to 

calculate the SVM’s classification accuracy. In order to 

minimize the stochastic nature of the method, each candidate 

feature subset was trained 20 times and the mean 

classification accuracy is regarded as the final accuracy (as 

shown in table 1 and figure 4).  

A comparison of the classification accuracy trends for 

both the MLP and the SVM classifiers (see table 1 and figure 

4) shows that both these classifiers have a similar 

classification accuracy trend—i.e. they both start with a 

relatively high accuracy with the first moment group and 

then the accuracy drops with the accumulation of the next 

few moment groups. But later the accuracy starts to pick up 

again such that for the MLP it peaks when the feature subset 

constitutes the first 8 moment groups, whereas for the SVM 

the accuracy peaks for the first 11 moment groups. 

Furthermore, the classification accuracy with higher order 

moment groups is relatively low as compared to the peak 

achieved with the lower order moments. 

Based on the above interpretation of the classification 

accuracy trend for both classifiers, we determined the OMFS 

to constitute the first 11 moment groups—i.e. the first 47 

moment features—because the SVM exhibited the highest 

accuracy and the MLP exhibited the second highest accuracy 

with the first 11 moment groups 

4.2. Stage II: Using Markov Blanket 

Stage I generates the OMFS, which in this case 

comprises the first 11 groups of moments totaling 47 

features. In Stage II, the OMFS is further reduced by 

selecting highly salient features using a filter model based on 

a Bayesian network and the Markov blanket of the class 

label [10]. The choice of Markov blanket is guided by the 

observation that the correlation between most of moment 

features and class label is found to be weak, and the same is 

true for correlation between different features. Hence, 

correlation based feature selection methods are not suitable. 

The use of common forward or backward feature selection 

method is not suitable for our data because when all 

moments are ordered by Pearson coefficients with class label 

beginning with the highest one, the classification vary 



 

 

greatly with the inclusion of the next moment feature. Hence, 

we decided to use Markov blanket approach as it considers 

every feature’s probability dependence relationship during 

the learning procedure of the Bayesian network's structure.  

A Bayesian network is a directed acyclic graph, where 

each node represents a random variable and each arc 

represents a probabilistic dependence. In a Bayesian network 

where CA is the set of children of node A, and QA is the set of 

parents of node A, the subset of nodes containing QA, CA 

and the parents of CA is called Markov blanket of A. From 

the above, the Markov blanket of a specific feature is a 

subset of nodes in the Bayesian network; it comprises the 

feature's parent nodes, child nodes and all parent nodes of the 

child nodes. If we consider the class label node as the root 

node to learn a Bayesian network from data, then all nodes 

within the Markov blanket of the class node have 

probabilistic dependence relationship with it. So the Markov 

blanket method can be used as the criterion for feature 

selection. 

The following steps generated the Markov blanket. 

Step 1: We use the K2 algorithm to learn the Bayesian 

network. Initially, the 47 features in the OMFS are 

discretized using an entropy-based method. As a result, 29 

features are discretized into a single value. According to the 

principle of K2 algorithm, all these 29 features are removed 

from the data-set and only the remaining 18 features are kept 

for learning the Bayesian network. They following moments 

were retained: moments {1, 2, 5, 6, 7, 12, 16, 21, 23, 25, 27, 

33, 36, 37, 43, 44, 45, 46}. 

Step 2: A Bayesian network is learnt based on 18 

features, in their original order, using 5-folds stratified cross 

validation to evaluate the classification accuracy. The 

resulting classification accuracy was found to be 77.21%. 

Step 3: All features were ordered according to the chi 

squared statistical test score x2 between the features and the 

class labels beginning with the highest x2 score. The 

moments were ordered as follows: moments {1, 43, 16, 25, 

21, 23, 6, 5, 36, 2, 27, 33, 37, 7, 46, 45, 44, 12}. 

Step 4: To test the correctness of ordered moments, a 

Bayesian classier was learnt that gave a classification 

accuracy of 80.88%, which is 3% higher than that based on 

the original order of the features. So ordering features using 

chi square score improved the Bayesian classifier's accuracy. 

Figure 4, illustrates the learnt Bayesian network. 

Step 5: We know that the Markov blanket of a node A is 

composed by all of A's parent nodes, child nodes and parent 

nodes of A's child nodes. So from the learnt Bayesian 

network, we inferred the Markov blanket of the class label 

and found only six (6) moments {1, 6, 16, 21, 37 46} within 

the Markov blanket of the class label (see the shaded units in 

figure 5). These six (6) features represent the most optimal 

feature subset, because they have direct or indirect 

probabilistic dependence relationship with the class label. 
Step 6: In order to determine the significance of the 

selected feature subset, we use it to train a Bayesian 

classifier and the 5-folds cross validation's classification 

accuracy was found to 83.82%, which is higher 3% than that 

based on all features in chi squared order and 6% higher than 

that based on all features in original order. 

Table 2. Classification accuracy for feature subset selection 

Feature Subset Size Classifier Accuracy 

Phase I 

254 features MLP 71.44% 

254 features SVM 79.41% 

47 features in OMFS MLP 74.00% 

47 features in OMFS SVM 86.96% 

Phase II 

18 features in original 

order 

Bayesian 

Network 
77.21% 

18 features in 

chi-square order 

Bayesian 

Network 
80.88% 

6 Markov blanket 

features 

Bayesian 

Network 
83.82% 

5. Concluding Remarks 

From a practical standpoint, we demonstrated the 

potential of using Zernike moment methods as a viable 

image-processing approach for working with CSLT optic 

nerve images [16]. Furthermore, we presented a novel 

feature subset selection strategy that minimized the feature 

space without the loss of information. Table 2 indicates that 

through the first pass of our feature subset selection strategy 

we managed to reduce the feature set from 254 moments to a 

much smaller feature subset comprising just 47 salient 

moments, whilst achieving a slight increase in the 

classification accuracy. The second pass of our feature 

subset selection strategy, involves the use of a Markov 

Blanket as a filter model to the 47 features. We are able to 

further minimize the feature set to just 6 most salient 

moments whilst maintaining the classification accuracy.  
We have presented an alternate approach to analyze 

CSLT images for glaucoma detection. In the next step we 

plan to derive symbolic rules using rule induction algorithms 

to provide symbolic knowledge for diagnosing glaucoma 

leading to the automation of decision support for glaucoma 

based on CSLT images.

 



 

 

  
Figure 5. The learnt Bayesian network. The shaded nodes represent the Markov Blanket for the class label.  
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