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We present a new method for the realistic real-time simulation of rivers. Our solution

includes a 2D fluid solver that simulates the flow of a river’s surface, an efficient method for

adaptively computing 3D flow information and an animated 3D procedural wave texture

that is advected through the fluid via advection particles in order to mimic the highly

detailed fluid surfaces that are characteristic of rivers. Our technique that couples animated

texture advection with a pseudo-3D fluid simulation produces stable results that are

representative of large-scale real-world rivers and suitable for use in real-time applications.

Our system surpasses prior work on real-time river rendering both with regards to efficiency

and visual quality, whichwe establish through the rendering of rivers tens of kilometers long.
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Introduction

Real-time fluid simulation is a challenging problem in

which ‘‘no single method (exists) that can capture all the

subtle effects of water’’1. Our work specifically focuses

on real-time river rendering which is problematic for

several reasons: the arbitrary 3D terrain geometry of the

riverbedmust be taken into account, rivers often include

situations with both shallow and deep water, even slow

moving rivers have highly detailed dynamic geometries,

and rivers are generally very large, stretching many

kilometers. Rendering large scale river flows for real-

time applications is therefore difficult because of the

complexity involved in generating a fluid surface that is

both detailed enough to be visually realistic and efficient

enough to be interactive.

Throughexperimentation,wehavecome tobelieve that

in order to realistically simulate and render a river it

requires either a full 3D free-surface solver, or a hybrid

technique that couples a lower resolution fluid solver to a

higher detail fluid surface construction method. Current

techniques do not satisfy all these requirements. Existing

real-time fluid techniques are either too computationally

expensive or do not exhibit large-scale visual properties

required for a river. Given these constraints, the goal

of our method is to approximate as much detail as

possible while remaining efficient enough for interactive

applications. We have also adopted the additional

requirement that the method should be suitable for

coupling with a rigid-body physics engine allowing 3D

objects in the scene to interact with the river’s surface.

Specifically, we achieve the following: detailed fluid

surface construction that responds appropriately to the

underlying 3D terrain, simulation of the surface detail of

real rivers, above real-time frame rates on commodity

hardware, and an algorithm designed with rigid-body

coupling inmind. To realize these goals we incorporate a

2D Navier–Stokes solver for its stability, efficiency, and

accuracy, that is informed by 3D information gleaned

from a series of Hydrostatic Pressure (HSP) columns.We

do not use HSP columns alone since it is not a suitable

approach for large-scale river representations as it cannot

capturedetailedeffects 2.Wethencouple the resultsofour

pseudo-3DNavier–Stokes-HSPfluid solverwith a texture

advectionmethod in order to derive highly detailed river

surfaces. Example renderings running at 60–120 frames

per second (85 on average) can be found in Figure 1.

PreviousWork

Many techniques have beendeveloped for different types

of fluid simulations including deepwater, shallowwater,

and enclosed volumes ofwater. Otherwork has looked at

the interplay between fluids and rigid bodies3 and the

simulation of hydraulic erosion4,5. Evenphenomena such
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as smoke, foam, sand, and clouds have been simulated

with fluid dynamics6–10. Common to all these techniques

are a few underlying approaches that range from solving

differential equations to methods that simulate water at

the particle level.

The most common approach for real-time simulation

are Navier–Stokes based solvers. Early work by Chen

et al.11 proposed a method for real-time Navier–Stokes;

however, the system suffers from instability issues and

only operates on limited size volumes of water. Stam’s12

groundbreaking work later outlined techniques for

stable advection. Thon and Ghazanfarpour13 simplify

the problem for rivers by using a 2D Navier–Stokes

solver to drive Perlin Noise functions14 along streak-

lines. However, their system does not incorporate 3D

flow information and produces animations with a

procedural appearance lacking key visual features

found in rivers. Neyret and Praizelin15 proposed a

simpler model for streams using a two-dimensional

Laplace equation, but only produce schematic 2D

animations. In recent work, Lee and Sullivan16 present

a method for efficiently computing shallow water

equations but only at the expense of stability and they

are unable to simulate volumes of fluid at the river scale.

To date, real-time free-surface 3D solvers remain

unfeasible for large volumes of fluid.

Particle systems instead coarsely model the inter-

action between individual water molecules17,18. SPH

methods retain conservation of mass and can represent

free-form surfaces and splashing19. However, such

methods are limited by the number of particles that

can be used in real-time. In 2003, Müller et al.20 achieve

interactive rates with 5000 particles. Clavet et al.21

simulate 1000 particles at 10 fps while offering two-way

arbitrary object to fluid coupling. Kipfer and Wester-

mann22 simulate rivers using SPH at interactive rates

with 3000 particles, though we argue that the fluid does

not achieve a truly realistic river surface. In recent years

commercial GPU based solutions have appeared that

can handle roughly 100,000 particles but even this is

insufficient to simulate a river with fine grained detail.

Realistic rivers would require perhaps tens to hundreds

of millions of particles which is simply not feasible at

this time. Though we note SPH has successfully been

used offline to create stunning simulations23,24.

TheWave Particles method by Cem Yuksel, et al.25 is a

2D method that uses deviation functions to perturb a

surface heightfield based on interactions with rigid

bodies. However, the method does not provide two way

fluid-to-fluid and fluid-to-object coupling which means

it would still require an underlying fluid simulation.

Cords26 later tied wave particles to a 2D Navier–Stokes

simulation which yields an enclosed, small body water

system. However, it is unable to simulate river-scale

systems in real-time and does not take into account the

3D terrain and flow.

Hydrostatic Pressure (HSP) columns presented by

Kass and Miller27 and extended to 3D by Mould and

Yang28 form a system of columns and pipes that move

water based on the laws of hydrostatics. Several

simulators incorporate HSP solvers as it is one of the

few techniques that is efficient enough to produce a

large-scale fluid simulation in real-time. Holmberg and

Wunsche2 use an HSP based system to represent a very

small river section. Their aim was more to generate

splashing based on interactions between fluid and

terrain than large-scale rivers or a detailed surface

representation. Maes et al.1 later used HSPs and a

particle system to model both a river fluid surface and

splashing effects. But the method is unstable if time

Figure 1. Real-time river renderings running at 60–120 frames per second on a single core.

Figure 2. Partial 3D HSP grid visualized within a riverbed.
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deltas become too large, and does not achieve real-time

frame rates even with extensive GPU optimization.

HSPs are also ‘‘not capable of simulating certain

situations such as vortices. A second problem arises

from the fact that turbulence is a feature of flow and not

of the fluid at rest. This means that. . .the equations

generated for flow are incomplete and ignore many of

the visible characteristics of water such as viscous shear

stresses.’’2. We therefore do not use HSP columns

directly, but use them to inform our NS solver and

method of texture advection.

Other work has employed statistical or procedural

fluid simulation. Fournier and Reeves’29 pioneering

work on deep-water simulation uses a mix of Gerstner

waves and Biesel swell models. Work on statistical wave

generation by Perlin and Hoffert30 influenced a series of

approaches, including Tessendorf’s31,32 ocean simu-

lators which build on earlier work by Mastin et al.33.

Mitchell34 uses Tessendorf’s technique to great effect, as

well as integrating a shallow water solver and object to

fluid coupling. The methods in this area are computa-

tionally inexpensive but are not directly suited for

simulating rivers because the interaction with terrain

geometry cannot be easily modeled. Another interesting

procedural method is Gerstner waves, which has been

used for the realistic rendering of choppy and rapid

river water35. But with this method one must explicitly

define the parameters of the Gerstner functions and

setting these parameters for a series of Gerstner waves is

very much an artistic endeavor. Shi et al.36 use a

statistical (FFT) procedural approach to generating a

fluid surface. However, this work is focused on dynamic

flood routing rather than the fluid representation itself.

Texture advection12,37 transports colour based on a

simulation or function. For our purposes we recast

texture advection moving surface waves along a river as

dictated by our fluid simulation. Kwatra et al.38 recently

tied texture synthesis to a full 3DNS solver. However, as

they were not concerned with real-time performance,

their technique is not immediately applicable to

our problem domain. Their system required up to

200 seconds per frame in order to render a small volume

of fluid and it can be argued that they remain somewhat

artificial and procedural in appearance.

Real-Time River Simulation

Our hybrid approach to river simulation incorporates

2D Navier–Stokes, HSPs and texture advection in order

to achieve the final result. We drive the simulation with

2D Navier–Stokes for its efficiency and stability. This is

augmented with the output from HSP columns in order

to integrate 3D flow information while still retaining the

efficiency of a 2D based fluid simulation. Texture

advection is then used to add surface detail to the fluid

volume.

2DNavier^Stokes Simulation

2D Navier–Stokes will provide fluid flow velocity

information for the simulation. In our discussion we

focus primarily on the relationship between the results

of the NS solver, how they apply to the Hydrostatic

Pressure Columns, how they are used during the

TextureAdvection phase and howwe achieve a constant

flow by applying impulses to the Navier–Stokes velocity

field.

The NS solver itself is based on the work of Stam39

which uses a grid of cells where each cell has a velocity

and pressure value associated with it. The initial state of

the grid is a zero state where all grid cells have zero for

both velocity and density. By solving the Navier–Stokes

equations the solvermodifies the velocities and densities

of all cells in the system with the output of one step

becoming input of the next.

The simulation represents the fluid on a regular grid

x¼ (x, y) with time t. The fluid itself is represented as a

velocity field, u¼ (x, t), and a scalar pressure field, p(x, t).

The equations are then:

@u

@t
¼ � u � rð Þu� 1

r
rpþ yr2uþ FþH

r � u ¼ 0

(1)

where r is the fluid density, v is the kinematic viscosity

of the fluid, F¼ ( fx, fy) are the external forces acting on

the fluid and H(x, y) is a function that returns HSP

pressure information. In addition we use standard

Neumann boundary conditions for the river banks.

These equations express the standard components of

any fluid simulation: advection, pressure gradient,

diffusion, and external forces. The reader is referred

to Stam12,29 for further discussion of the Helmholtz–

Hodge decomposition.

Hydrostatic Pressure Columns

The 2D NS simulation gives the fluid surface the

ability to appropriately interact with river banks and

obstacles, but lacks the ability to simulate inter-

fluidic shear stresses and 3D interactions with the

terrain. We therefore augment the 2D NS simulation
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with Hydrostatic Pressure (HSP) columns27 which

provide pseudo-3D fluid flow in addition to pressure

information. Our method couples the HSPs with the NS

solver in order to affect the NS velocity and pressure

fields based on the 3D pressure information from the

HSP grid.

An HSP grid is constructed and used to compute

pressure values at each grid cell in the fluid volume,

using the laws of hydrostatics. The fluid volume is

discretized into small columns which are further split

vertically into cells (see Figure 2). Each cell’s pressure is

computed based on the pressure of neighboring cells.

The laws of hydrostatics dictate that fluid will attempt to

equalize its pressure which is used to determine the rate

that fluid flows from one cell to another.

The movement of fluid between cells is accomplished

by connecting the cells to their neighbors via a series of

pipes.When there are multiple cells touching one side of

a cell, a pipe is created for each overlapping cell. This

pipe’s size, called the pipe cross-section, is determined

by the amount of overlap:

Cpipe ¼ htop � hbottom
� �� d (2)

where d is the length of the pipe (equal to the grid

spacing) and the tops and bottoms of the pipes are

the min andmax of the tops and bottoms of the cells into

which the pipe flows:

htop ¼ min a1; a2ð Þ; hbottom ¼ max b1; b2ð Þ (3)

where an is the height of cell n and bn is its base.

The pipe cross sections are re-computed at every

simulation step since they change as the pressures in the

cells change. However, before calculating any volume

transfer we need to first compute the pressure of each

cell as follows:

p ¼ hijrgþ p0 þ pij (4)

such that hij is the height of column at position (i, j), r is

the density of the fluid, g is the force of gravity, p0 is the

atmospheric pressure and pij is an external pressure

being exerted on the column at position (i, j) due to rigid

body interaction or an impact on the fluid surface.

Once the column pressures are computed and the

pipe cross sections are determined, the next step is to

calculate the flow velocity and resultant flow volume

through the pipes using the pressure differences

between cells. The velocity through any given pipe is

given as:

n ¼ fu0 þ Dt
phead � ptailð Þ

r
(5)

where f is a friction coefficient, u0 is the flow velocity

from the previous time step, Dt is the time delta, phead is

the pressure of the cell at the head of the pipe, ptail is the

pressure of the tail cell and r is the density of the liquid.

The volume of fluid that passes through a pipe is defined

as:

v ¼ Dt� n� cpipe (6)

where cpipe is the cross sectional area of the pipe.

During the simulation the fluid transfers may cause

one or more cells to have a negative volume. To

compensate for this, the total outflows from each cell

are first calculated, then each cell is checked to see if it

will contain a negative volume. If a cell would contain

negative volume, all pipes flowing out of the cell are

scaled back by an amount equal to a percentage of the

total cell outflow and the negative amount of fluid

that the cell would contain. For example, if a 10%

overflow has occurred, each outflowing pipe is scaled

back by 10% of the amount that flowed through it, as

opposed to 10% of the total overflow. This process

continues until all cells contain a non-negative amount

of fluid.

Since the HSP columns are not the primary simulation

they can be run under precisely controlled conditions

such that explosions do not occur. We only re-calculate

the columns whenever the fluid volume’s path requires

updating; in our test application this is only done once at

program startup. Because of this HSP stability is not an

issue. Furthermore, in a large fluid body such as a river,

Figure 3. In step 1, the top-left cell has its velocity calcu-

lated and this information is saved as the flow hint. In step 2,

cells adjacent to the first cell are computed which are again

saved as flow hints. Once all cells have flow hints (step 4) the

system is primed and constant flow is achieved through the

application of impulses.
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our experiments showed that the HSP pressure field did

not vary significantly over time. We therefore only run

the HSP simulation once to obtain the general pattern of

flow and vary the 3D pressure information over time via

random fluctuations. We modulate pressure infor-

mation in order to approximate the subtle pressure

changes that would occur if the simulation was re-

computed at every time-step:

pij ¼ pijrand rmin; rmaxð Þ þ pij (7)

where pij is the pressure at column (i, j), and rand()

returns a random value from rmin¼�0.05 to rmax¼ 0.05,

such that the final value will be �5% of pij. It should be

stressed that this step is optional since running

simulations with and without the random variance

produces results that look only slightly different. The

main effect is due to the 3D pressure information.

Bootstrapping the Hydrostatic
Pressure Columns

It is difficult to produce large-scale constant flows that

rivers exhibit with HSPs alone. Because of this we

bootstrap the HSP solver with external constant flow

information. We adapt our NS solver to achieve a

constant flow and provide the HSP simulation its flow

information from a single run of a strictly 2D Navier–

Stokes flow simulation. This initial simulation is the first

step in the simulation.

The HSP computations are dependent on the velocity

in the previous time step. Therefore in order to generate

an HSP pressure map we simply substitute the initial

phase of NS velocity output into the velocity component,

u0, of the HSP velocity update equation. This boot-

strapping procedure only provides the HSP simulation

with the initial flow rate and direction of each

hydrostatic pressure column cell. Once these values

are input into the HSP solver, the resulting 3D flow

information is entirely based on the 3D terrain under-

neath and inside the fluid volume.

After the initial Navier–Stokes system is solved, and

the results have been provided as input to the HSP

solver, the resultant pressure grid is used, in turn, to

influence the augmented 2D Navier–Stokes solver with

the 3D pressure data. And since rivers are basically static

with regards to their flow path we can simply pre-

compute and store the HSP grid prior to simulation. The

algorithm completes a single HSP update in approxi-

mately 3–5 seconds with a column depth of three cells.

Impulse DrivenNS

There remains an issue that arises when simulating a

large body of fluid. Specifically, the simulation must be

primed with large areas of off camera fluid in order to

generate the necessary momentum inherent in an open

system.Moreover, it is not possible to accurately simulate

a river by simply placing a source at one end and a sink at

the other. In order to achieve the desired flow rates, the

source and sinks would require such large pressure

values that major artifacts would emerge.

Our solution is related to a technique used in rigid-

body physics engines: the application of impulses. We

will apply small impulses to each cell in order to

maintain flow. There are, however, issues with this

approach that must be addressed. For example, in what

direction should impulses be applied, particularly if the

local flow is in opposition to the mean direction of the

river? Another issue is what the initial state of the river

should be and how are the first rounds of impulses to be

applied?

Before applying the impulses an initial state must be

computed so that we know which direction and with

what magnitude the impulses should be applied. We

refer to this process as priming the flow which is

depicted in Figure 3. First, an impulse field is

propagated across the simulation grid over a number

of steps starting with an initial impulse hint from the

user at one edge of the river which dictates the basic

direction of the river. The first time step causes the

impulses to be applied as the fluid is solved. At any cell

where the velocity is not zero, that velocity vector is

normalized and saved as the flow hint for that cell. In the

next time step impulses are applied to the initial cells

given by the user and those cells already affected by the

simulation. The algorithm sweeps across the river in

successive time-steps from the user specified source

location. This is repeated until all cells have a flow hint

associated with them. In the second phase of the flow

priming procedure the simulation is run with flow

hinting enabled until one ‘‘advection particle’’ is able to

travel the length of the river.

Equipped with the flow hinting field and a primed

fluid volume we begin adding impulses to each cell in

the simulation as it runs. As we do so we need to ensure

the simulation stability is not compromised, complex

flows can still be visualized and the overall flowdoes not

exhibit incorrect flow behavior such as a river reversing

its direction. To accomplish this, the magnitude of the

impulse added to a cell is made proportional to the cell’s

velocity in relation to the desired flow volume. For
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example, if two cells had the same flow hint, with one

having a velocity of 1.0 units of flow and the other 0.5,

the faster moving cell would be affected twice as much

as the slower moving cell during the application of the

impulse. In this way, the impulse application scales

linearly and the ratio between one cell and another does

not change after the impulses are applied (given equal

circumstances the difference in rate of flow between

once cell and the next will have the same ratio after the

impulse application).

The direction of the impulse is thenmodified based on

the deviation between the flow hint vector and the

current velocity vector. In order to calculate the cell’s

directional deviance, d, from the flow hint we use the

standard geometric angle difference:

d ¼ abs rad2deg atan2 u:y; u:xð Þ � atan2 f :y; f :xð Þð Þ� �
(8)

where v is the cell’s velocity, and f is the flow hint. We

then check if d is greater than or equal to a cutoff

deviance value and if so we calculate an impulse for the

cell using the cell’s current velocity vector and the cell’s

previously calculated flow hinting value. From our

experiments, we found values around 158 to be an

effective cutoff value that works across different

simulations. With numbers significantly less than 158
the visual diversity of the simulation is impacted as the

ability for opposing flows or fluidic shearing is overly

constrained. Conversely, as the value is relaxed the

general flow of the river becomes too variable and less

visually realistic. A compromise between flow diversity

and the general river flow is therefore necessary.

We must also incorporate the data provided by the

hydrostatic pressure columns, which augments our

simulationwith 3D information. For thiswe simply scale

the impulse velocity by the pressure value returned

from the cell’s associated HSP column:

lij ¼ uij

�� �� pij
P
z (9)

where lij is the new impulsemagnitude for cell at index (i,

j), uij is the cell’s velocity, p is the HSP pressure, P is the

maximum pressure the HSP simulation can contain and

z is a user defined value such that 0� z<1. By

changing zwith a slider one can influence howmuch the

HSP information affects the simulation. However, for all

our simulations we keep z at 1.0. The sum of all these

modified impulses is then equal to the desired flow

velocity.

Foreffect,wecanalsoaddother factorsaswell, suchasa

small random variance to either the impulse direction or

velocity, or to how much the HSP columns affect the

simulation. Such variances will result in a more, or less

turbulent river. It is also possible to apply a maximum

and/or minimum flow rate check in order to match the

river flow to a desired look. In our examples, the random

variance factor is set to be plus or minus 1%, and

maximum and minimum flow speeds to be no more (or

less) than200 timesgreater thanor less than themeanflow

speed.

It should also be noted that the flow speed of the river

itself should be set in accordance to the grid cell size of

the river in order to maintain grid size independent flow

rates. For example, if the desired flow rate is 1.3 meters

per second and the cell width is 1.0 unit, the flow rate

should be set to one half the value of the same flow rate

on a grid with a cell width of 2.0 units.

River Surface Advection

We have defined a highly efficient pseudo-3D fluid

simulator, however, this alone is not sufficient to derive

the highly detailed surface deformations found in real

rivers, we therefore incorporate texture advection of

animated ocean waves. We first discuss the formation of

the animated wave texture itself which is generated

procedurally while the simulation runs. We experimen-

ted with a number of techniques including random noise

and Gerstner Waves35. But, we chose to adapt the

method presented by Mitchell34 which is derived from

Tessendorf’s31 FFT method for Ocean waves. This

approach computes large quantities of realistic waves

at a low cost. The fluid surface is defined as a heightfield

where theheight of anygrid cell, x at a givenpoint in time,

t, is:

h X; tð Þ ¼
X

k

HðkÞei k�x�vðkÞtð Þ (10)

where h is the height field, v is the angular wave

frequency, H(k) contains amplitude and phase infor-

mation, k is a 2D vector such that kx¼ 2pn/ Lx, ky¼ 2pm/

Ly and (n, m) are integers with bounds –N/2� n<N/2

and –M/2�m<M/2.

However, procedural techniques are not intended to

simulate a fluid volume and so the static wave fronts

must be transported such that they have the appearance

of moving with the river. One can think of moving a

carpet around a curved track. But our situation is more

complex because we must simultaneously move every

section of the carpet in a different direction and at a

different speed. The principle behind texture advection

is to transport or morph one or more textures over time

based on a series of input parameters (see Figure 4). In
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our case, we use velocity and pressure information from

the pseudo-3D fluid simulator to advect the wave

texture using what we will call river particles. These

particles are propagated through the fluid using the

results of the velocity and pressure information from the

NS simulation. A river particle is an encapsulation of a

mathematical deviation function that describes how a

particular section (texel) of a texture is to be propagated

through space and time.

The task of advecting the wave texture is similar to the

procedure that the Navier–Stokes advection solver uses.

A back-trace is performed on each point in the

volumetric grid to its source location in the previous

time step:

p x;tþ Dtð Þ ¼ p x� uðx;tÞDt; tð Þ (11)

where, u(x, t) is the particle’s current position, and�u(x,

t)Dt is the vector that we use to translate the particle back

through time by the amount specified in Dt. Note that, as

with the NS advection, this step will likely place the

particle somewhere in between four grid cells, so we

perform bilinear interpolation from the four neighbor-

ing grid cells to compute the end result.

In addition, each river particle has the following

properties: location in the input textures, birth location,

age, current location in the river, and age at death. An

advection particle pertains to a specific location in the

input textures which does not change. For our

application we use an animated texture comprised of

a number of frames of individual textures. The location

in the input textures refers to the same location in each

texture, where one texture is a single frame of the texture

animation.

This particle is then introduced into the fluid

simulation and affected by the fluid simulation’s

velocity and pressure fields so that it moves through

the river. As it moves it affects the resultant wave texture

by adding its value from the input textures to the output

texture. Each location in the output texture can be seen

as the average of all particles currently occupying that

location:

Oxy ¼
Pn

i¼0

f pið Þ
nþ 1

(12)

where f (Pi) is a function that returns the value of the

particle’s combined input textures. We use a texture

resolution equal to the grid resolution at its highest level

of detail setting so that the resulting surface is no more

or less detailed than the geometry itself. The number of

advection particles varies over time as they spawn,

however, the initial state matches the number of

advection particles with the grid resolution of the

advection texture.

Particles are spawned at specific times and have

limited lifespans. They also do not travel infinitely far

from their birth location because after traveling a certain

distance they become completely un-grouped from their

neighbors and start to resemble noise rather than wave

fronts. In addition, the particle’s age determines how

strongly the output texture is affected by that particle. If

a particle was recently spawned it fades in and as a

particle nears its time of death it fades out, thus

removing visual popping artifacts. The particle’s current

location has a similar impact, in that the farther a particle

strays from its birth location the less of an impact it has

on the final wave summation. We therefore define the

particle update function to be:

fðPÞ ¼
ac�ab
A þ lc�lbk k

L

2
(13)

where ac is the particle’s current age, ab its birth time,

while lc and lb denote the particle’s current and birth

locations. A is a constant defining the average age of a

particle and L determines the maximum distance a

particle can be from its birth location without being

transparent. For all our simulations we set A to be 1.5

seconds and L to be 5% of the total length of the river.

The average lifespan, A, of the particles can be

adjusted depending on how turbulent and quickly the

river is moving. Our system provides a graphical

particle display that assists in the adjustment of this

value, as seen in Figure 5. By representing each particle

as a color determined by its birth location it is easy to see

how far the particles remain traveling in groups of

similar color. We note that there is significant leeway in

choosing good settings for these parameters; finding a

single optimum setting for these constants is not

Figure 4. Texture advection. Arrows (left) represent velocity

components of the fluid simulator and circles represent river

particles. The resultant image after being advected is shown right.
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required since the system is not overly sensitive to the

tuning of this parameter. Moreover, we use a pseudo-

random function with values in the range of (0.5, 2.0) to

scale each particle’s life spanwith respect to the average,

A. The aim being to avoid situations in which many

particles are dying or spawning simultaneously.

In the initial bootstrapping phase, we first assign an

advection particle to every cell in the grid. We then run

the simulation until all initial advection particles have

died and respawned at least once, thereby reaching a

stable state. In practice this requires a few seconds of

computation on 10 km river, but can be pre-computed

and stored.When no particle remains in a cell, a new one

is faded into existence with its birth location set to an

average of its neighbors. This removes the situation

where a section of a river becomes empty and also

eliminates any visual popping that might occur at the

introduction of new particles. As can be seen in Figure 5,

particles travel together in loose groupings where

particles instantiated in similar locations remain near

to one another. Yet features such as vortices and

directionally opposing fluid flows can still be seen.

Results

Our real-time method for simulating and rendering

rivers is visuallymore convincing than existingmethods

and runs at far higher frame rates. Minute details in the

river flow can be seen as a result of complex interactions

between fluid and terrain and the fluid with itself. These

complex interactions are a direct result of combining

HSP columns with a 2D Navier–Stokes solver.

The texture advection step produces highly detailed

fluid surfaces in which the water interacts with the

underlying terrain in ways typically reserved for the

Figure 5. Visualization of advection particles. The number of

particles has been reduced to improve claity.

Figure 6. Comparison with the hydrostatic pressure columns disabled (left) and enabled (right). Underlying terrain shown below.
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fully 3D fluid solvers. Water can be seen speeding up

over shallow sections and slowing down over deep

sections, as well as becoming turbulent in areas with

large underwater obstacles, getting caught in nooks or

eddies and flows around bends. This can be partially

seen in Figures 1 and 7 clearly seen in the provided

video (available online at www.interscience.wiley.com/

journal/cav). Figure 6 shows a comparison between the

simulation running with the HSP columns turned on

and off. In the case with HSP columns turned off the

simulation is purely using the 2D Navier–Stokes for

simulation results, and any terrain to fluid interactions

are only at the shoreline and at the very surface of the

fluid.

Level of Detail provides notable performance

improvements as can be seen in Table 1. Even the

modest LOD optimizations we have implemented make

a significant difference to the frame rate and to the

number of polygons rasterized per second. All screen-

shots and timings were produced on an off-the-shelf

dual-core Athlon XP 3800þ computer with an nVidia

8600GT graphics card and 4GBRAM.However, the code

has not been parallelized or GPU optimized, meaning

that only one of the two cores on the CPU has been

directly used. Most of example river beds used in this

paper have been imported from DEM files of real rivers.

Conclusion

We have developed an efficient approach to rendering

large-scale fluid flows over arbitrary terrains with a

relatively high level of realism. By combining an

impulse driven 2D Navier–Stokes simulation with

multi-tier hydrostatic pressure columns we have

created a low computational-cost fluid solver that

provides sufficient 3D information to simulate a river

in real-time. We then employ procedural wave

generation to produce an animated texture which is

advected through the fluid simulation. This produces a

highly detailed fluid surface representation that

exhibits many of the visual elements that are

characteristic of rivers. Our technique is applicable to

real-time and interactive simulation scenarios and has

been designed with rigid-body physics objects in mind.

We feel that this work is therefore a major step forward

in the area of real-time river rendering for interactive

applications.

FutureWork

This work affords many avenues of interesting further

research. Our current implementation does not simulate

non-planar fluid surfaces, though the method could be

augmented to do so since pressure information is

available directly from the simulation at every cell. This

system could also easily integrate with a foam/

particulate engine for waterfalls and large sprays. Other

work could also examine alternate procedural texture/

wave generationmethods. Another enhancementwould

be the addition of two-way rigid-body to fluid

interactions. As previously noted, we designed the

system with this in mind by building the API from the

ground up to allow individual scene objects to have full

access to the fluid simulator’s velocity and advection

information.

Further work could explore improvements to Level of

Detail rendering for rivers. Our system currently uses

only basic geometry LOD on the terrain and no

geometric LOD on the river surface itself. Although

the river sections are split into LOD patches, this is only

for the purpose of changing detail levels within the fluid

simulation algorithm. We believe that adding a

sophisticated geometry LOD algorithm would allow

the simulation and rendering to operate at an even

higher frame rate.

Figure 7. Real-time rendering of long river section.

Level of detail FPS Poly’s per second

Fully disabled 63 61million
Texture advection only 74 71million
Navier^Stokes only 111 107 million
Fully enabled 120 115 million

Table 1. Comparison of the simulation running
with different types of LOD enabled
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