
Cache-Oblivious Planar Shortest Paths

Hema Jampala? and Norbert Zeh?

Faculty of Computer Science, Dalhousie University,
6050 University Ave, Halifax, NS B3H 1W5, Canada

Email: {jampala,nzeh}@cs.dal.ca

Abstract. We present an efficient cache-oblivious implementation of
the shortest-path algorithm for planar graphs by Klein et al., and prove
that it incurs no more than O

`
N

B1/2−ε + N
B

log N
´

block transfers on a
graph with N vertices. This is the first cache-oblivious algorithm for this
problem that incurs o(N) block transfers.

1 Introduction

The single-source shortest-path (SSSP) problem is a fundamental combinatorial
optimization problem with numerous applications. Let G = (V,E) be a directed
graph with vertex set V and edge set E; let s ∈ V be a distinguished vertex, called
the source vertex ; and let ω : E → R+ be an assignment of non-negative real
weights to the edges of G. The SSSP-problem is to find, for every vertex v ∈ V ,
the distance d(v) from s to v, that is, the weight of a minimum-weight (shortest)
path from s to v. This problem is well-studied in the RAM-model. The classical
algorithm for this problem is Dijkstra’s algorithm [15], which has seen many
improvements (e.g.,[19, 21–23]). In particular, on planar graphs, much progress
has been made: Frederickson [17] proposes an algorithm that takes O(N

√
log N)

time, pioneering the idea to use separator decompositions to speed up shortest-
path computations. Klein et al. [19] present a non-trivial refinement of Freder-
ickson’s approach that uses a hierarchy of nested separator decompositions to
solve SSSP in planar directed graphs in linear time.

More recently, the SSSP-problem has been studied in memory hierarchy mod-
els, which take the varying access times of different levels of cache, main memory,
and disk into account. Such algorithms can be cache-aware or cache-oblivious.
The former require knowledge of the parameters of the different levels of mem-
ory and often explicitly transfer data between the different levels; the latter are
oblivious of these parameters, but help the default paging algorithm by laying
out the data appropriately and accessing it in a local fashion.

The most widely used model for the design of cache-aware algorithms is
the I/O-model of Aggarwal and Vitter [1]. This model assumes a memory hi-
erarchy consisting of two levels: the lower level has size M ; data is transferred
between the two levels in blocks of B consecutive data items. The complexity
? Research supported by the Natural Sciences and Engineering Research Council of

Canada and by the Canadian Foundation for Innovation.

of an algorithm is the number of blocks transferred (I/Os). Algorithms that
perform a small number of I/Os are usually referred to as I/O-efficient algo-
rithms. The strength of the I/O-model is its simplicity, while it still adequately
models the situation when the I/Os between two levels of the memory hier-
archy dominate the running time of the algorithm, which is often the case in
large-scale applications. Complexities that arise often in I/O-efficient algorithms
are the sorting bound, sort(N) = Θ

(
N
B logM/B

N
B

)
I/Os [1, 18], the permuta-

tion bound, perm(N) = Θ(min(N, sort(N))) I/Os [1], and the scanning bound,
scan(N) = Θ(N/B) I/Os.

Solving interesting problems using cache-aware algorithms for multi-level hi-
erarchies is cumbersome, because it is necessary to tune the algorithms to the
sizes and block sizes of all levels of memory. Cache-oblivious algorithms provide
an elegant solution to this problem. They are designed to be I/O-efficient without
knowing M or B; that is, they are formulated in the RAM-model and analyzed in
the I/O-model, assuming that the memory transfers are performed by an optimal
offline paging algorithm. Since the analysis holds for any block and memory sizes,
it holds for all levels of a multi-level memory hierarchy (see [18] for details). Thus,
the cache-oblivious model elegantly combines the simplicity of the I/O-model
with a coverage of the entire memory hierarchy. The bounds for sorting and
scanning are the same as in the I/O-model [9, 18], whereas perm(N) = sort(N)
in the cache-oblivious model [11]. Since any internal-memory algorithm is by defi-
nition cache-oblivious, but usually incurs a substantial number of block transfers,
we refer to an algorithm as cache-oblivious in this paper if it is cache-oblivious
in the sense of the definition and incurs o(T (N)) block transfers, where T (N) is
the computation time of the best internal-memory algorithm.

Previous work on graph algorithms for memory hierarchies has focused main-
ly on I/O-efficient algorithms, motivated by a number of large-scale applications
that have to deal with massive graphs, such as geographic information systems,
web modelling, and data mining of phone call databases. The obtained results
include a large number of algorithms for planar graphs, such as O(sort(N))-
I/O algorithms for computing connected components [13], minimum spanning
trees [13], and strongly connected components [8]; breadth-first search (BFS) [3]
and undirected depth-first search (DFS) [5]; single-source shortest paths [3]; and
topological sorting [6, 7]. Directed planar DFS is studied in [8], and an optimal
O(N2/B)-I/O all-pairs shortest path algorithm is presented in [4].

Recently, a number of cache-oblivious graph algorithms have been obtained
for general graphs, including algorithms for computing connected components
and minimum spanning trees [2], directed breadth-first search and depth-first
search [2], undirected breadth-first search [12], and undirected shortest paths
[12, 14]. All these algorithms are obtained from I/O-efficient algorithms for these
problems by designing cache-oblivious data structures that can replace the cache-
aware ones in these algorithms. This strategy does not seem to work for most
of the specialized algorithms for planar graphs, mentioned above: Their depen-
dence on B is not hidden in data structures; and many of them exploit that
computation in internal memory is free in the I/O-model, by performing Ω(BN)

computation in main memory. In a multi-level hierarchy, this extra computation
may incur block transfers at lower cache levels, thereby leading to an excessive
number of block transfers. The internal-memory computation can often be re-
duced. For example, for shortest paths, it can be reduced to O(n · polylog(B)),
using results from [16]; but these algorithms are not easily made cache-oblivious.
Nevertheless, a number of cache-oblivious algorithms for planar graphs exist. Us-
ing cache-oblivious data structures from [2, 10], the I/O-efficient algorithms for
connectivity, biconnectivity, and minimum spanning trees [13], and for topolog-
ically sorting planar directed acyclic graphs [7] can be made cache-oblivious,
without asymptotically increasing their complexities.

2 New Result

We make the first progress towards solving the SSSP-problem cache-obliviously
in planar graphs, by analyzing the number of block transfers incurred by a cache-
efficient implementation of the algorithm of [19]. We assume that a suitable
multi-level separator decomposition of the graph is given. We consider finding
such a decomposition the central open problem in the design of cache-oblivious
algorithms for planar graphs, because separators also have played a central role
in the design of I/O-efficient algorithms for planar graphs. In Sec. 7, we suggest
one approach that may lead to a cache-oblivious algorithm for this problem. Our
result is summarized in the following theorem.

Theorem 1. The SSSP-problem in a planar directed graph G with N vertices
and non-negative edge weights can be solved using a cache-oblivious algorithm
that incurs O

(
N

B1/2−ε + N
B log N

)
block transfers, for any constant ε > 0, provided

that a suitable multi-level separator decomposition of G is given.

In this paper, we assume that every vertex in G has in-degree at most 2 and
out-degree at most 2. A simple transformation described, for instance, in [20]
achieves this. The discussion of the algorithm is divided into several sections.
In Sec. 3, we discuss the necessary terminology regarding graph separators. We
outline the linear-time SSSP-algorithm of [19] in Sec. 4. We show in Sec. 5 how
to implement this algorithm in a cache-efficient manner. The analysis of the
algorithm is provided in Sec. 6. Open problems are discussed in Sec. 7.

3 Separator Decompositions

The algorithm of [19], as many other SSSP-algorithms for planar graphs, uses a
separator decomposition to organize its computation. Next we define the required
partition and discuss its representation.

Definition. For a planar graph G = (V,E) and an integer parameter r > 0, an
r-partition of G is a pair (S, {G1, G2, . . . , Gh}) with the following properties:
(i) S is a subset of V of size O(N/

√
r). (ii) The graphs G1, G2, . . . , Gh are edge-

disjoint subgraphs of G whose union is G and such that any two such graphs

Gi and Gj share only vertices in S. (iii) Every graph Gi, 1 ≤ i ≤ h, contains
at most r edges and at most

√
r vertices from S. We call the vertices in S

separator vertices. The set of vertices in S that are contained in a graph Gi are
the boundary of Gi.

Given a vector r = (r0, r2, . . . , rk), a recursive r-partition P of G consists
of a sequence of partitions of G, (P0,P1, . . . ,Pk), with the following properties:
(i) Each Pi is an ri-partition of G. (ii) For two consecutive partitions Pi =
(Si, {G1, G2, . . . , Gs}) and Pi+1 = (Si+1, {G′

1, G
′
2, . . . , G

′
t}), Si ⊃ Si+1 and, for

every graph Gj in Pi, there exists a graph G′
` in Pi+1 such that Gj ⊆ G′

`.
In this paper, a recursive r-partition will always satisfy r0 = 1 and rk = |E|;

that is, the lowest level of the partition splits G into its edges, and the highest
level consists of the entire graph.

Representation. A recursive r-partition P can be represented quite naturally by
a rooted tree. The root of the tree is the single subgraph in Pk, which is G. For
a node corresponding to a graph R in Pi, i > 0, its children represent the graphs
in Pi−1 that are subgraphs of R. The leaves represent the edges of G. We call
this tree the partition tree of P. The subgraphs of G corresponding to the nodes
in this tree are referred to as regions. The edges of G, which correspond to the
leaves of the tree, are atomic regions, as they cannot be split any further. The
level of a region R is the index i such that R is a graph in Pi. We define ancestry
of regions to be the ancestry of the corresponding nodes in the partition tree.

4 Outline of the Algorithm

The algorithm of [19] is a variant of Dijkstra’s algorithm, implemented using a
hierarchy of priority queues associated with the regions of a recursive r-partition
of G (see Alg. 1). The entries in the priority queue Q(R) of region R are the
children of R; the priority of such a child R′ is the minimum tentative distance
of the source vertices of all unrelaxed edges in R′. Initially, the priorities of
the regions containing out-edges of s are 0 and those of the rest are +∞. The
algorithm chooses the child with minimal priority from Q(G) and recurses on
this child. If the child is non-atomic, it repeats this process; otherwise it relaxes
the edge (u, v) in this region and updates the priorities of all regions containing
the out-edges of v. Procedure Shortest-Paths is called on G until all edges are
relaxed, that is, the priority of G itself is +∞.

If every invocation of this procedure on a non-atomic region were to return
after the first recursive call it makes on one of its children, this algorithm would
be Dijkstra’s algorithm. However, the procedure returns from a recursive call
on a level-i region R only after all edges in the region have been relaxed or αi

recursive calls have been made on children of R, for a suitable parameter αi.
By keeping the algorithm focused on a region for some time, once a recursive

call has been made on this region, Klein et al. limit the number of priority queue
operations on large priority queues (that is, priority queues attached to regions
at higher levels) and obtain a linear time bound for their algorithm. The other

Shortest-Paths(R)
1 . R is the region on which the current invocation operates.
2 j ← level(R)
3 if j = 0
4 then Relax the edge (u, v) in R, that is, set d(v) = min(d(v), d(u) + ω(u, v)).
5 if this changes the distance of v from s
6 then Change the priority of every out-edge (v, w) of v to d(v).
7 Change the priority of every ancestor of (v, w) whose priority is

greater than d(v) to d(v).
8 Change the priority of (u, v) to ∞.
9 else i← 0

10 while the minimum entry in Q(R) is not ∞ and i < αj

11 do R′ ← Delete-Min(Q(R))
12 Shortest-Paths(R′)
13 Let the priority of R′ in Q(R) be the minimum priority in Q(R′).
14 i← i + 1

Algorithm 1: Outline of the shortest-path algorithm. This procedure is called
repeatedly with the whole graph G as the argument until all edges are relaxed.

advantage this approach has is that it avoids “jumping around randomly”; that
is, once the algorithm focuses on a subgraph that fits into cache, it stays focused
on this subgraph for a while. The computation inside the subgraph does not incur
any block transfers after the whole subgraph has been loaded into the cache. To
take full advantage of this, however, the algorithm has to be implemented using
cache-oblivious data structures, and the parameters in the algorithm have to be
chosen differently, which increases the amount of computation to O(N log N).
In Sec. 7, we argue that, while a reduction of the log-factor may be possible, it
cannot be eliminated entirely.

5 Cache-Oblivious Implementation

In [19], Algorithm 1 is used more or less verbatim to obtain a linear running
time. The updates of the priorities of all relevant regions in Lines 6 and 7 are
performed using a so-called GlobalUpdate operation. This operation traverses
the path from region (v, w) to the lowest common ancestor of regions (u, v) and
(v, w) in the partition tree and performs the updates described in Lines 6 and 7.

A cache-efficient algorithm cannot use this strategy because the updates of
atomic regions alone would require Θ(N) block transfers in the worst case. But
we can exploit that the recursive calls in the algorithm correspond to a traversal
of the partition tree: The correct priority of a region R has to be known only by
the time the traversal visits its parent R′ because only then this information is
required to extract the correct child to be visited from Q(R′). In order to reach
R′, we have to traverse the path from the current region (u, v) to R′. Thus, if the
relaxation of edge (u, v) affects the priority of R, we can carry this update along
the path from (u, v) to R′ and apply it to Q(R′) immediately before the next
Delete-Min operation is to be performed on Q(R′). The details are as follows:

Every invocation I on a region R collects all updates on atomic regions
outside of R that are triggered by descendants of I and passes them to its
parent invocation I ′ when it returns. Let R′ be the region of I ′. Then I ′ inspects
the updates received from I. Every update on an atomic region outside of R′

is scheduled to be passed to the parent of I ′. Updates on atomic regions inside
R′ are scheduled to be sent to the appropriate children of R′ when the next
invocations on these children are made. When an invocation on R′ makes a
recursive call on one of these children, R′′, the updates scheduled to be sent
to R′′ are applied to Q(R′′) and then scheduled to be sent to the appropriate
children of R′′, based on which child contains the edge affected by each update.

Line 5 presents a similar problem, with a similar solution: We cannot afford
to access vertex v to test whether the relaxation of edge (u, v) decreases d(v). To
avoid this, we store d(v) with both in-edges (u1, v) and (u2, v) of v. When one
in-edge, say (u1, v), decreases the distance, it informs the other in-edge, (u2, v),
by sending an Update-Target message to (u2, v). Again, the correct distance of
v has to be known to region (u2, v) only when the next invocation on this region
is made; that is, Update-Target messages can be delivered in the same fashion
as Update messages for the out-edges of v.

We implement this strategy using the following data structures: We use a
stack S to collect and pass updates to ancestors of the current region. We as-
sociate a cache-oblivious buffered repository tree (BRT) B(R) [2] with every
region, which we use to collect all updates to be sent from R to its children.
The tree B(R) serves yet another purpose: Since the updates to be performed
on Q(R) are in fact updates on atomic regions, and it is too costly to identify
the child of R affected by every update, we store atomic regions in Q(R). When
retrieving the minimum entry (u, v) from Q(R), we have to (1) determine the
child R′ of R that contains edge (u, v), in order to make a recursive call on R′,
and (2) remove all edges in R′ from Q(R), in order to effectively set the priority
of R′ to +∞. Using the BRT, we can achieve both: Assume that the leaves of
the partition tree are numbered left to right and that every internal node has
been labelled with the interval of numbers of its descendant leaves. (This can be
achieved in a preprocessing step.) We associate with every leaf of a BRT B(R),
which corresponds to a region R′, the interval associated with R′ and with every
internal node the union of the intervals of its children. This is sufficient to decide,
for every update on an atomic region, to which leaf in the BRT it should be sent
and to use any atomic region contained in a child R′ as the key for an Extract
operation that identifies R′ and retrieves all updates on descendants of R′. Once
the updates on R′ are retrieved, they can be deleted from Q(R). The details of
the cache-oblivious implementation are shown in Alg. 2.

From our discussion, it follows that the modifications do not change the
sequence of edge relaxations performed by the algorithm. Hence, the algorithm
remains correct. We summarize this in the following lemma:

Lemma 1. Procedure CO-Shortest-Paths terminates with the label d(v) of every
vertex v set to its distance from s in G.

CO-Shortest-Paths(R, U)
1 . R is the region on which the current invocation operates; U is an array of Update

operations provided by the parent invocation.
2 j ← level(R)
3 if j = 0
4 then Update d(u) and d(v) using the minimum priorities of the Update and

Update-Target operations in U , respectively.
5 Relax the edge (u, v) in R, that is, set d(v) = min(d(v), d(u) + ω(u, v)).
6 if Line 5 changes the distance of v from s
7 then Insert an Update((v, w), d(v)) operation into S, for every out-

edge (v, w) of v; mark this operation as inserted by region R.
8 Insert an Update-Target((u′, v), d(v)) operation into S, where

(u′, v) is the other in-edge of v; mark this operation as inserted
by region R.

9 Change the priority of (u, v) to ∞ and return region (u, v) with
priority ∞, for insertion into the parent’s priority queue.

10 else Perform the updates in U on Q(R) and insert them into B(R).
11 i← 0
12 while the minimum entry in Q(R) is not ∞ and i < αj

13 do (u, v)← Delete-Min(Q(R))
14 Identify the child R′ of R that contains edge (u, v) and extract all

updates on descendants of R′ from B(R).
15 Store these updates in an array U ′ and delete all regions affected

by these updates from Q(R).
16 CO-Shortest-Paths(R′, U ′); let (x, y) be the edge returned by this

recursive call, and let p be its priority.
17 Insert edge (x, y) into Q(R), with priority p, and into B(R).
18 Extract all updates from S that have been inserted by R′. Re-insert

the updates on edges outside of R and mark them as inserted by
R. Apply all other updates to Q(R) and insert them into B(R).

19 i← i + 1
20 Return the minimum-priority entry in Q(R) for insertion into the parent’s

priority queue.

Algorithm 2: Cache-oblivious implementation of the shortest-path algorithm.

6 Analysis

In this section, we analyze the number of block transfers incurred by the al-
gorithm. One of the keys to minimizing the number of block transfers is an
appropriate layout of the data structures in memory. We describe this layout in
Sec. 6.1. We also describe the paging strategy we use in our analysis; the optimal
paging strategy cannot do worse than ours. In Sec. 6.2, we show that our paging
strategy incurs at most the number of block transfers stated in Thm. 1.

6.1 Memory Layout and Space Bound

The partition, including the associated data structures, is laid out in memory
as follows: We number the nodes of the partition tree in a depth-first manner.

For every node representing a region R of size r, we allocate space for Q(R),
B(R), and a buffer space H(R) of size 3a1/2ar1−1/2a, for some constant 1 <
a ≤ 2 defined in Sec. 6.2, which holds the buffers associated with the nodes in
B(R). If we refer to every region by its number, we arrange these structures in
the order Q(1), B(1),H(1), Q(2), B(2),H(2), The space for stack S succeeds
these data structures and buffer spaces for the regions in the partition.

The space allocated for every data structure is fixed, that is, the memory
layout is static. Preallocating space for the BRT’s and priority queues is easy
because we can bound their sizes by O(r1/a) and O(r1−1/2a), respectively. For
the BRT, excluding buffers, this follows because we will show in Sec. 6.2 that the
number of children of R is O(r1−1/a), and B(R) contains one leaf per child. For
the priority queue, we observe that an edge (atomic region) stored in Q(R) is
either incident to a boundary vertex of a child of R or it is the value returned by
the last recursive call to a child of R. The number of entries of the first type is
bounded by the number of edges incident to boundary vertices of children of R,
which is O(r1−1/2a). For entries of the second type, we observe that each such
entry is removed before the next recursive call to the child that inserted the entry.
Hence, there can be at most one such entry per child of R in Q(R), that is, at most
O(r1−1/a) = O(r1−1/2a) entries. In order to bound the buffer space required by
the BRT, we exploit that, similar to Q(R), B(R) cannot store updates on more
than O(r1−1/2a) atomic regions, which allows us to use a variant of the BRT
with limited buffer space. This variant is discussed in the next paragraph.

Another way to look at the above space bound is that every level uses space
proportional to the number of boundary vertices at the next lower level. Since
the number of boundary vertices at level 0 is O(N), and the number of boundary
vertices per level decreases by at least a constant factor as we proceed towards
the root (see Sec. 6.2), we obtain the following lemma:

Lemma 2. The layout of the partition tree, including priority queues, BRT’s,
and buffer spaces associated with its nodes, uses linear space.

A BRT with limited buffer space. In order to limit the buffer space for every
BRT, we exploit that, if there is more than one update pending on an atomic
region, it suffices to perform the update with minimum priority. We partition
the buffer space for the BRT of R into three regions of size t = a1/2ar1−1/2a,
called the sorted, unsorted, and root buffer space. The root buffer space holds
the root buffer. The unsorted buffer space holds buffers for all non-root nodes
as in [2]. The sorted buffer space stores additional buffers, one per leaf, whose
entries are sorted by the atomic regions they affect. As will become clear from
the following discussion, the sorted buffer space can never overflow. As long as
neither the root buffer nor the unsorted buffer space overflows, we operate on
the BRT as described in [2], except that an Extract operation needs to read out
an additional leaf buffer in the sorted buffer space.

When either the root buffer or the unsorted buffer space overflows, we sort
the contents of these buffer spaces and then merge them with the contents of the
sorted buffer space. If there are duplicate entries in the resulting list, we keep

only the one with minimum priority. Hence, the resulting list has size at most t
and completely fits into the sorted buffer space.

The cost of all BRT operations, excluding the cost of compacting the buffers
when the root buffer or unsorted buffer space overflows, remains O

(
log N

B

)
for

Insert operations andO(log N+K/B) for Extract operations. Next we argue that
the cost of buffer compaction is O

(
log t
B

)
amortized per element, if t ≥ B: The

cost of sorting the contents of the unsorted and root buffer space is O(sort(t′)),
where t′ is the number of elements in these two buffer spaces. The rest of the
compaction takes two scans of O(t) data, which requires O(t/B) block transfers.
This is O

(
log t
B

)
amortized per element if we can prove that t′ ≥ t/ log t. To do

so, observe that every element, as it is propagated down the tree, requires us to
allocate one memory cell at each level in the BRT, log t in total. Hence, it takes
t′ ≥ t/ log t elements to make the unsorted or root buffer space overflow.

A paging strategy. We permanently keep the top two blocks of S in cache. For
every invocation on a region of size at most B, we load the part of the data
structure into memory that corresponds to the region and its descendants. We
call such an invocation small. The same argument that establishes the linear
space bound in Lem. 2 implies that the size of this portion of the data structure
is O(B); and it is stored consecutively in memory. Hence, such an invocation
costs O(1) block transfers, and the descendant invocations do not incur any
further block transfers, except for stack operations. For any invocation on a
region of size greater than B, we load the first block of Q(R) and the last block
of the root buffer of B(R) into cache. Thus, excluding the cost of priority queue,
BRT, and stack operations, each such invocation costs O(1) I/Os. We call such
an invocation large.

6.2 Counting Block Transfers

It remains to analyze the number of block transfers performed by our paging al-
gorithm. We start by choosing suitable region sizes r1, r2, . . . , rk and parameters
α1, α2, . . . , αk. In order to obtain the complexity stated in Thm. 1, we choose

rj = aj · 2aj/(a−1) and αj = 2aj−1/2,

where a = 1/(1− ε) > 1. The height of the recursive partition is the minimum k
such that rk ≥ 3N ; thus, the height of the partition is no more than loga((a −
1) log 3N) = O(log log N). We can divide the block transfers incurred by the
algorithm into 4 groups, depending on which part of the algorithm triggers them:

T1(N): The cost of loading buffer blocks for large invocations and complete
data structures for small invocations. We call these block transfers invocation
swaps.

T2(N): The cost of priority queue operations and Insert operations on BRT’s.
T3(N): The cost of Extract operations on BRT’s.
T4(N): The cost of stack operations.

We prove that T1(N) = O
(

N
B1/2−ε

)
, T2(N) = O

(
N
B log N

)
, T3(N) = O

(
N

B1/2−ε +
N
B log log N

)
, and T4(N) = O

(
N
B log log N

)
. Summing these four terms, we ob-

tain the following lemma:

Lemma 3. Algorithm 2 incurs O
(

N
B1/2−ε + N

B log N
)

block transfers.

Next we sketch how to derive the above bounds for T1(N) through T4(N).
Details will be provided in the full paper.

Invocation swaps. It suffices to count the number of invocations whose parent
regions have size at least B because each such invocation incurs O(1) block
transfers, and these are the only invocations that incur block transfers. Klein
et al. [19] classify invocations as truncated or non-truncated. The former is an
invocation that returns because all edges in the region have been relaxed. The
latter returns because αj recursive calls on children of the current region have
been made. We denote the number of truncated level-j invocations by S′j and the
total number of level-j invocations by Sj . Using a non-trivial charging scheme,
Klein et al. prove that the number of truncated level-j invocations is

S′j ≤
∑
i≥j

O(βij ·N/
√

ri), 1

where βij =
∏i

k=j+1 αk. Each non-truncated invocation at level j gives rise to
αj invocations at level j− 1. Hence, the total number of invocations at level j is

Sj ≤
Sj−1

αj
+ S′j .

Note that all level-0 invocations are truncated, that is, S0 = S′0. Using our choice

of parameters αi, we have βij = 2ai/(2(a−1))

2aj/(2(a−1)) . Substituting this in the expressions
for S′j and Sj , we obtain that S′j = O(N/

√
rj) and Sj = O((j + 1)aj/2N/

√
rj).

Since the rj increase doubly exponentially, we have
∑

i≥j Si = O(Sj). Hence,
it suffices to argue that, for the maximum j0 such that rj0 ≤ B, we obtain
Sj0 = O

(
N

B1/2−ε

)
. For this j0, we have rj0+1 = aj0+1 · 2aj0+1/(a−1) > B, that

is, rj0 ≥ (rj0+1/a)1/a = Ω(B1/a). On the other hand, we have j0 ≤ loga((a −
1) log B) = O(log log B) because rj0 ≤ B. Hence, T1(N) = O(

∑
i≥j0

Si) =

O
(

N
√

log B log log B
B1/2a

)
= O

(
N

B1/2−ε

)
.

Priority queue operations and insertions into BRT’s. The cost of a priority
queue operation or an Insert operation on a BRT of a level-j region is O

(log rj

B

)
.

The number of priority queue operations is bounded by the number of insertions
into the BRT. Hence, it suffices to bound the cost of the latter.

1 They prove S′
j ≤

P
i≥j O(βij ·Nf(ri)/ri), where f(ri) is a bound on the boundary

size of every level-i region. We use optimal planar separators; hence, f(ri) = O(
√

ri).

Every insertion into a BRT is the result of the relaxation of an edge (u, v).
Such a relaxation triggers updates of the priorities of both out-edges of v and
their ancestors and an Update-Target operation on the other in-edge of v. We
argue about the cost of updates on the out-edges; the cost of the Update-Target
operations can be bounded in a similar manner. In the worst case, the lowest
common ancestor of edge (u, v) and an out-edge (v, w) of v is the root. Then the
update of (v, w) traverses all levels in the partition and triggers one insertion
at every level. Hence, the cost per level-0 invocation is at most

∑
j≥0O

(log rj

B

)
,

which is O
(

log rk

B

)
= O

(
log N

B

)
because the graph sizes rj increase doubly expo-

nentially. Hence, the total cost of priority queue operations and BRT insertions
is T2(N) = O

(
S0
B log N

)
= O

(
N
B log N

)
.

Extractions from BRT’s. Every Extract operation on the BRT of a level-j re-
gion costs O(log ri + K/B) block transfers, where K is the number of extracted
elements. Every extracted element must have been inserted before, and we have
argued that every level-0 invocation triggers at most three insertions per level.
The number of extract operations at level j equals the number of invocations at
level j−1. Hence, T3(N) = O(

∑
i>j0

Si−1 log ri)+O
(

S0
B log log N

)
. Using similar

arguments as the ones we used to bound the cost of invocation swaps, this sim-
plifies to T3(N) = O(Sj0 log Ba) +O

(
N
B log log N

)
= O

(
N

B1/2−ε + N
B log log N

)
.

Stack operations. Every update incurs at most a constant number of stack
operations at every level. Hence, the cost of all stack operations is T4(N) =
O

(
S0
B log log N

)
= O

(
N
B log log N

)
.

7 Open Problems

The most interesting open questions are the following: (1) Can the required
separator decomposition be computed cache-obliviously? (2) Can theO

(
N

B1/2−ε

)
-

term in the complexity of the algorithm be reduced to o(N/B1/2)? (3) Can the
O

(
N
B log N

)
-term be reduced toO(N/B) (the equivalent of the linear time bound

obtained in [19]).
To answer question (1), we believe that the contraction-based separator al-

gorithm of [20] can be extended to compute the desired partition: At every
contraction level, use the (by a constant factor suboptimal) separator produced
at the previous level to compute a BFS-tree of the current level. Then use this
BFS-tree to obtain an optimal separator for the current level (which is constant-
factor suboptimal for the next level), and iterate.

The answer to question (2) may be yes, but not using purely separator-based
ideas because these algorithms trade-off the number of times a region is loaded
into cache against a certain amount of wasteful computation in each region.
While the I/O-model can ignore the latter, a cache-oblivious algorithm cannot
and must therefore balance this trade-off, which is what our choice of parameters
in the algorithm of [19] achieves. The answer to question (3) is most definitely
no because this would violate the Ω(perm(N)) lower bound for shortest paths
[13], which is Ω(sort(N)) in the cache-oblivious model.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Comm. ACM, pp. 1116–1127, 1988.

2. L. Arge, M. A. Bender, E. Demaine, B. Holland-Minkley, and J. I. Munro. Cache-
oblivious priority queue and graph algorithm applications. Proc. 34th STOC, pp.
268–276, 2002.

3. L. Arge, G. S. Brodal, and L. Toma. On external-memory MST, SSSP and multi-
way planar graph separation. J. Alg., 53:186–206, 2004.

4. L. Arge, U. Meyer, and L. Toma. External memory algorithms for diameter and
all-pairs shortest-paths on sparse graphs. Proc. 31st ICALP, LNCS 3142, pp. 146–
157. Springer-Verlag, 2004.

5. L. Arge, U. Meyer, L. Toma, and N. Zeh. On external-memory planar depth first
search. J. Graph Alg. and Appl., 7(2):105–129, 2003.

6. L. Arge and L. Toma. Simplified external memory algorithms for planar DAGs.
Proc. 9th SWAT, LNCS 3111, pp. 493–503. Springer-Verlag, 2004.

7. L. Arge, L. Toma, and N. Zeh. I/O-efficient algorithms for planar digraphs. Proc.
15th SPAA, pp. 85–93. 2003.

8. L. Arge and N. Zeh. I/O-efficient strong connectivity and depth-first search for
directed planar graphs. Proc. 44th FOCS, pp. 261–270, 2003.

9. G. S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping. Proc. 29th
ICALP, LNCS 2380, pp. 426–438. Springer-Verlag, 2002.

10. G. S. Brodal and R. Fagerberg. Funnel heap—a cache oblivious priority queue.
Proc. 13th ISAAC, LNCS 2518, pp. 219–228. Springer-Verlag, 2002.

11. G. S. Brodal and R. Fagerberg. On the limits of cache-obliviousness. Proc. 35th
STOC, pp. 307–315, 2003.

12. G. S. Brodal, R. Fagerberg, U. Meyer, and N. Zeh. Cache-oblivious data structures
and algorithms for undirected breadth-first search and shortest paths. Proc. 9th
SWAT, LNCS 3111, pp. 480–492. Springer-Verlag, 2004.

13. Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S.
Vitter. External-memory graph algorithms. Proc. 6th SODA, pp. 139–149, 1995.

14. R. A. Chowdhury and V. Ramachandran. Cache-oblivious shortest paths in graphs
using buffer heap. Proc. 16th SPAA, pp. 245–254, 2004.

15. E. W. Dijkstra. A note on two problems in connection with graphs. Num. Math.,
1:269–271, 1959.

16. J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest
paths, near linear time. Proc. 42nd FOCS, pp. 232–241, 2001.

17. G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with
applications. SIAM J. Comp., 16:1004–1022, 1987.

18. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. Proc. 40th FOCS, pp. 285–297, 1999.

19. P. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest path algorithms
for planar graphs. J. Comp. Sys. Sci., 55:3–23, 1997.

20. A. Maheshwari and N. Zeh. I/O-optimal algorithms for planar graphs using sepa-
rators. Proc. 13th SODA, pp. 372–381, 2002.

21. S. Pettie and V. Ramachandran. Computing shortest paths with comparisons and
additions. Proc. 13th SODA, pp. 267–276, 2002.

22. M. Thorup. Undirected single source shortest paths with positive integer weights
in linear time. J. ACM, 46:362–394, 1999.

23. M. Thorup. Floats, integers, and single source shortest paths. J. Alg., 35:189–201,
2000.

