
Towards Neural Network Recognition
 Of

Handwritten Arabic Letters

By
Tim Klassen

A Project Submitted to the
Faculty of Computer Science

In Partial Fulfill ment of the Requirements

For the Degree of

MASTER OF COMPUTER SCIENCE (M.C.Sc.)

Major Subject: Computer Science

APPROVED:

Dr. Malcolm Heywood, Supervisor

Dr. Nur Zincir-Heywood, Committee Member

Dalhousie University
Hali fax, Nova Scotia 2001

 ii

Table of Contents

List of Figures ___v

List of Equations___v

List of Tables___v

1. Introduction ___1

1.1. Overview ___1

1.2. Summary of Hypothesis___2

2. Background Information _________________________________ 2

2.1. On-line Character Recognition___2
2.1.1. Character Recognition__2
2.1.2. On-line vs. Off -line __3

2.2. Arabic Characters ___4
2.2.1. Overview of Arabic Characters___4
2.2.2. Arabic Alphabet___5

2.3. SOM (Self-Organizing Maps) __7

2.4. Perceptron Learning __10

2.5. Summary__13

3. Review of State of the Art ________________________________14

3.1. Overview __14

3.2. Al-Sheik, Al-Taweel : Hierarchical Rule-based Approach ___________________14

3.3. El-Emami, Usher : Segmented Structural Analysis Approach_________________14

3.4. Bouslama, Amin: Structural and Fuzzy Approach__________________________15

3.5. Alimi, Ghorbel: Template matching and Dynamic Programming Approach ____15

3.6. El-Wakil and Shoukry: Hierarchical Template Matching and k-nearest Neighbor
Classification Approach ___16

3.7. Alimi: Evolutionary Neuro-Fuzzy Approach ______________________________16

3.8. Summary - Strengths and Weaknesses of Previous Work ___________________17
3.8.1. Hierarchical Rule-based Approach ___17
3.8.2. Segmented Structural Analysis Approach______________________________________17
3.8.3. Structural and Fuzzy Approach __18
3.8.4. Template Matching and Dynamic Programming Approach ________________________18
3.8.5. Hierarchical Template Matching and k-nearest Neighbor Approach _________________18
3.8.6. Evolutionary Neuro-Fuzzy Approach ___18

4. Case for Neural Network Approach____________________18

 iii

4.1. Purpose statement __18

4.2. Justification of Approach __19

5. Conceptual Model ___20

5.1. Overview of Conceptual Model__20

5.2. Data Collection ___22
5.2.1. Tablet and Monitor Specifications__22
5.2.2. Data Set __22
5.2.3. WinTab __24
5.2.4. Introduction of Noise__24

5.3. File Representation ___25
5.3.1. Persistent Storage __25
5.3.2. Extendable Format__25
5.3.3. Data Format for system __26

5.4. Segmentation __27
5.4.1. Letter Segmentation___27
5.4.2. Stroke Segmentation __28

5.5. Cr itical Point Extraction ___29

5.6. Normalization of Data ___31
5.6.1. Scaling Normalization___31
5.6.2. Translation Normalization__33
5.6.3. Time Normalization___34
5.6.4. Rotation Normalization__35
5.6.5. Skew Normalization __35

5.7. Feature Extraction __36
5.7.1. Purpose of Feature Extraction ___36
5.7.2. Suitabil ity of SOM for Feature Extraction______________________________________36
5.7.3. General SOM Feature Extractor Design _______________________________________36
5.7.4. Two SOM Model___37
5.7.5. One SOM Model ___38
5.7.6. Feature Vector Normalization ___39

5.8. Classification___40
5.8.1. Perceptron __40
5.8.2. Multi-Layer Perceptron __40
5.8.3. Genetic Programming ___41
5.8.4. Class-wise Partitioning __41
5.8.5. Pruning __42

5.9. Output __43

5.10. Summary __44

6. Experimental Measurements____________________________44

6.1. Results of Experiments __45
6.1.1. Trial 1 – No partitioning or pruning __45
6.1.2. Trial 2 – Partition and Pruning on Training Set__________________________________ 46
6.1.3. Trial 3 – Partitioning and Pruning on Validation Set______________________________47

 iv

6.1.4. Effectiveness of Partitioning and Pruning______________________________________47
6.1.5. Test Set Analysis___48

6.2. Proof of concept __49

6.3. Comparing Perceptrons with Other Classifiers ____________________________49

6.4. Comparing NNHALR with Previous Systems______________________________50

6.5. Summary__51

7. Conclusions __52

7.1. Conclusions drawn__52

7.2. Summary of contr ibutions__53

7.3. Future Research __53

7.4. Real-wor ld applications of the concept ___________________________________53

7.5. Summary__54

References___55

Appendix A – Informed Consent Form_____________________57

Appendix B – Experimental Tables _________________________58

 v

List of Figures

Figure 1 - Examples of off-line(left) and on-line(right) handwriting inputs ..3
Figure 2- Letters of the Isolated Arabic Alphabet ..4
Figure 3 - Recognition classes..5
Figure 4 - Similar Normalized shapes in the same class ..6
Figure 5- Samples of Various Arabic Letter Forms ...7
Figure 6 - Unfolding of the Self-Organizing Map..8
Figure 7 - Neighborhood of 1 in red; of 2 in blue and of 3 in purple...9
Figure 8 - Simple Perceptron..10
Figure 9 - XOR is a non-linear problem...12
Figure 10 - NNHALR system...21
Figure 11 - Jitter (left) on a small screen; Smoother (right) on a larger screen..22
Figure 12 - Extra control codes in data collection..24
Figure 13 - Data Collection Dialog Box...26
 Figure 14 - Segmentation into Matlab files... 28
Figure 15 - Calculating Line of Sight ...29
Figure 16 - Critical Point Density – Original Letter(Left); Critical Points extracted with Delta=10 (right) 31
Figure 17 - Variance in Superimposed Letter Classes..33
Figure 18 - Normalizing Letter data...33
Figure 19 - Two SOM Model ..37
Figure 20 - One SOM Model..38
Figure 21 - 2SOM 70 vs 1 SOM 60..39
Figure 22 - Remove Node Algorithm...43
Figure 23 - Trial #1 Training and Validation Confusion Matrix .. 46
Figure 24- Trial#1 Test Set Confusion Matrix ...47

List of Equations

Equation 1-General Hebbian Learning...9
Equation 2 - Simplified SOM equation..9
Equation 3 - SOM Updating...9
Equation 4 - Perceptron Output to delimiter... 11
Equation 5- Simplified Perceptron Output ... 11
Equation 6 -Perceptron Weight Updating Rules ..11
Equation 7 – Alif Detector ..Err or ! Bookmark not defined.
Equation 8 – Feature Normalization...40

List of Tables

Table 1 - Phases of a Pattern Recognition System ...20
Table 2 -Breakdown of Data Sets by Class.. 23
Table 3 - Nationali ty and Gender Breakdown of NNHALR Data set ..27
Table 4 - Test data for selection of parameter Delta...30
Table 5 - Errors with Class-Wise Partitioning on Training Set .. 42
Table 6 - Errors with Class-Wise Partitioning on Validation Set ... 42
Table 7 – Trials in Arabic Letter Experiments...45
Table 8 - Recognition Accuracy Results..46
Table 9 - Relative Effectiveness of Partitioning and Pruning...48
Table 10 – Summary of Previous Approaches...50
Table 11 – Average Calculations of Scale.. 58

 1

1. Introduction

1.1. Overview

On-line character recognition is a challenging problem. Much of the diff iculty

stems from the fact that pattern recognition is a complex process that cannot be solved

completely by analytical methods

Many applications in hand-held computing and digital signatures and verification

use on-line character recognition. As computers become increasingly ubiquitous and

mobile, the interfaces have been rapidly shrinking. However, as the technology that

powers these hand-held and portable devices miniaturizes components, one component

has severe limitations on size reduction.

The standard computer keyboard cannot shrink to the size of hand-held devices

such as personal digital assistants or cell phones and still be useable. The need for a

natural interface that can scale gracefully with the shrinking size of personal digital

assistant platforms becomes apparent. A small stylus or pen and electronic tablet are a

suitable solution for most hand-held devices. Handwriting is a vital process for this

interface to be useful.

Thirty years of research has gone into producing on-line Latin or Asian language

letter recognition systems. However, very littl e has been done in Arabic until recently.

Most of the current Arabic letter recognition systems do not allow for noisy data input.

Hand-held computing must make this allowance because of the environment for using

such a device. Handhelds are typically used while in moving vehicles or walking where

the probabilit y of noise being introduced into the writing process is high.

In this work, we introduce a novel Arabic letter recognition system that can be

adapted to the demands of hand-held and digital tablet applications. Our system uses

neural networks for feature extraction and classification. Linear networks are employed

as classifiers because of the low computational overhead during training and recall .

 2

1.2. Summary of Hypothesis

The objective of this project is to demonstrate a framework for giving good

recognition accuracy to on-line Arabic letter input using an unsupervised learning method

(Self-Organizing Maps – see Section 2.3) for feature extraction (see Section 5.7) and a

supervised learning method (Perceptrons - see Section 2.4) for classification (see Section

5.8). Good recognition accuracy means that the system will scale well for many writers,

classify eff iciently, and have the potential to be robust in the presence of noisy data input.

This system should also be robust to scale, position and rotation and be computationally

eff icient.

2. Background Information

2.1. On-line Character Recognition

2.1.1. Character Recognition

The primary task of alphabet character recognition is to take an input character

and correctly assign it as one of the possible output classes. This process can be divided

into two general stages: feature selection and classification. Feature selection is criti cal

to the whole process since the classifier will not be able to recognize from poorly selected

features. Lippman gives criteria to choose features by:

“ Features should contain information required to distinguish between
classes, be insensitive to irrelevant variabilit y in the input, and also be
limited in number to permit efficient computation of discriminant functions
and to limit the amount of training data required.” [1]

Often the researcher does this task manually, but a neural network approach allows the

network to automatically extract the relevant features.

There are many possible types of classifiers: statistical (Bayesian), symbolic

(Rule Induction, Genetic Programming), and hyperplane (multi -layer perceptron).

 3

Statistical classifiers need to have a priori knowledge of the features to classify.

Symbolic and hyperplane classifiers can theoretically combine feature extraction and

classifiers in one step. A SOM/perceptron1 combination is a two-stage system, with the

SOM clustering to extract pertinent features and the perceptron participating as a linear

classifier. (More about SOMs in Section 2.3 and perceptrons in Section 2.4)

 Due to the different characteristics in performance, we compare 1) a perceptron

2) a multi -layer perceptron (see Section 5.8.2) and 3) genetic programming (see Section

5.8.3) for classification.

2.1.2. On-line vs. Off-line

There are two kinds of input for character recognition: off -line and on-line. Off -

line character recognition takes a raster image from a scanner, digital camera or other

digital input source. The image is binarized using a threshold technique if it is color or

gray-scale so that the image pixels are either on (1) or off (0). The rest of the pre-

processing is similar to the on-line version with two key differences: Off -line processing

happens after the writing of characters is complete and the scanned image is pre-

processed. Secondly, off -line inputs have no temporal information associated with the

image. The system is not able to infer any relationships between pixels or the order in

1 Self-Organizing Feature Map

Figure 1 - Examples of off -line(left) and on-line(r ight) handwr iting inputs

 4

which strokes were created. Its knowledge is limited to whether a given pixel is on or

off .

 On-line character recognition accepts (x,y) coordinate pairs from an electronic

pen touching a pressure-sensitive digital tablet. On-line processing happens in real-time

while the writing is taking place. Also, relationships between pixels and strokes are

supplied due to the implicit sequencing of on-line systems that can assist in the

recognition task (see Figure 1).

2.2. Arabic Characters

2.2.1. Overview of Arabic Characters

Arabic is a language spoken by Arabs in over 20 countries, and roughly

associated with the geographic region of the Middle East and North Africa, but is also

spoken as a second language by several Asian countries in which Islam is the principle

religion (e.g. Indonesia). However, non-Semitic languages such as Farsi, Urdu, Malay,

and some West African languages such as Hausa have adopted the Arabic alphabet for

writing 2. Due to the cursive nature of the script, there are several characteristics that

2 “Arabic Language” entry, Encarta Encyclopedia CD-ROM, 1999.

Figure 2- Letters of the Isolated Arabic Alphabet

 5

make recognition of Arabic distinct from the recognition of Latin scripts or Chinese (see

Figure 2) 3. The following section summarizes the nature of these differences.

2.2.2. Arabic Alphabet

Arabic has 28 letters in the alphabet. It is based on 18 distinct shapes that vary

according to their connection to preceding or following letters. Using a combination of

dots and symbols above and below these shapes, the full complement of 28 consonants

can be constructed. Our system recognizes 15 distinct shapes or classes (see Figure 3)

because the assumption is made that certain classes are similar enough, that they will

look the same after normalization (see Figure 4).

Figure 3 - Recognition classes

3 graphic from http://www.arabic2000.com/arabic/alphabet.html

 6

Arabic is a cursive language. There are no capital letters and some letters are not

connected to the letters that follow them (letters in blue in Figure 2). Thus, words cannot

be segmented based on pen-up/pen-down information or space between letters. Block or

hand printed letters do not exist in Arabic. Moreover, the cursive nature of the language

makes recognition more diff icult. In summary,

Many researchers have been working on cursive script recognition for
more than three decades. Nevertheless, the field remains one of the most
challenging problems in pattern recognition and all the existing systems
are still li mited to restricted applications [2] .

Arabic is written from right to left. Since the proposed application area provides

letters in an isolated form, segmentation is assumed and direction of writing is not an

issue. However, if our system automatically segmented words for recognition,

knowledge of the direction of writing would assist in segmentation and recognition.

Figure 4 - Similar Normalized shapes in the same class

 7

Arabic has four forms for each letter depending on the position of the letter in

each word. These are initial, medial, final and isolated (see Figure 5)4. A more

generalized system would need to train 60 separate classes rather than 15 classes (for

isolated letters) to accommodate all four forms for each letter.

A key difference between Latin scripts and Arabic is the fact that many letters

only differ by a dot(s) but the primary stroke is exactly the same. Out of the 15 classes

for isolated letters, 10 classes have 2 or more letters that vary by only a dot(s) or symbol.

This highlights the need for a good feature extractor/classifier for the secondary stroke(s).

The system detailed in this work addresses the recognition of primary strokes, and makes

recommendations regarding the recognition of secondary strokes.

2.3. SOM (Self-Organizing Maps)
Unsupervised learning is useful for feature extraction because it finds

relationships between raw data points and clusters them together. These relationships or

patterns in data become features of the data set. Self-Organizing Maps are a neural

network example of unsupervised learning.

This section will give a brief overview of Self-Organizing Feature Maps (or

SOMs). Teuvo Kohonen first introduced SOMs in 1982. They are defined as follows:

The self-organizing map (SOM) is a new powerful software tool for the
visualization of high-dimensional data. It converts complex, nonlinear
statistical relationships on a low-dimensional display. As it therefore

4 Taken from www.sakkal.com/ArtArabicCalli graphy.html

Figure 5- Samples of Var ious Arabic Letter Forms

 8

compresses information while preserving the most important topological
and metric relationships of the primary data elements on the display, it
may also be thought to produce some kind of abstraction[3] .

Two key features of the SOM are its abilit y to visualize high-dimensional data as

well as abstract statistical relationships from data that may not be seen manually. It

differs from general competitive learning algorithms because it is topologically ordered.

Neighboring neurons will have similar features in the input space. Figure 6 depicts the

unfolding of the ‘map’ as training progresses in an SOM in this application.

The competitive process of modified Hebbian5 learning trains a SOM.

Equation 1 shows how the weight of a neuron j (wj) is adapted through the

learning process where η is the learning rate, x is the input, y is the post-synaptic output,

and the modification term g(yj) which is a ‘f orgetting’ f unction of the neuron’s output

that prevents neuron saturation [4]. If we set the learning rate and the forgetting function

to be the same variable, Equation 1 simpli fies to Equation 2.

5 Hebbian learning compares pre and post-synaptic activities in a neuron. If the input and output are
correlated, the weight is increased. If the input and output are not correlated, decrease the weight.

Figure 6 - Unfolding of the Self-Organizing Map

 9

Equation 1-General Hebbian Learning

jjj
j wygxy

dt

dw
)(−=η

Equation 2 - Simpli fied SOM equation

î



 −

=
)(

)(

,0

),(

xi

xijj

outsidejif

insidejifwx

dt

dw

λ
λη

Procedurally, neurons are created and linked together in a chosen topology and

initialized with random weighting. Each neuron is presented with the same data pattern

and the neuron with the smallest Euclidean distance between its weight and that data

pattern (see Equation) becomes the winning neuron. The weights used in calculating the

distance inside the winning neurons’ neighborhood are updated to incrementally

minimize the distance between pattern and weights (see Equation 3).

Equation 3 - SOM Updating

î



 ∈−+

=+
otherwisenw

njifnwxnnw
nw

j

xijj

j),(

)()],([)()(
)1(

)(λη

Figure 7 - Neighborhood of 1 in red; of 2 in blue and of 3 in purple

 10

Two key parameters control the learning process: the neighborhood function

λ i(x) which determines the radius around the winning neuron i for a given input x inside

which the neighboring neuron’s weights are adapted (see Figure 7)and the learning rate

η(n)at epoch n, which determines how much of a jump the neurons in the neighborhood

of the winning neuron take toward the input vector. In order to ensure a topological

ordering of the neurons at convergence, as well as stabilit y during learning, the

neighborhood and learning rate adaptively shrink over time. Thus, by the end of the

training process, the neighborhood consists of just the winning neuron and the learning

rate approaches zero. For more information, see Haykin [5] or Kohonen [6].

2.4. Perceptron Learning
The role of supervised learning in a pattern recognition problem is in training the

classifier. Input is passed into the classifier along with a target label. If the classification

does not match the target label, the weights can be adjusted so that the input is correctly

classified. The supervised learning technique used in this work as a classifier is a

perceptron. In effect the assumption is made that linear discriminants will be suff icient.

By doing so we gain a very simple learning rule which lends itself to real-time learning in

handheld computing divices.

Figure 8 - Simple Perceptron

Xm

w3

w2

X1

y

w1

wm

P
X3

X2

b

 11

Perceptrons are simple neurons with a fixed number of inputs and matching

weights for each input (see Figure 8). The output is binary and a perceptron has a

threshold or bias, b, which provides the boundary between the two output classes.

Equation 4 - Perceptron Output to delimiter

∑
=

+=
m

i
ii bxwv

1

In Equation 4, the result v is the input for the delimiter6. Substituting the bias (b) as the

first input simpli fies Equation 4 to give Equation 5. This equation assumes that

Equation 5- Simpli fied Perceptron Output

)()()()()(
0

nxnwnxnwnv T
m

i
ii

�== ∑
=

x0(n) = 1, w0(n) = b(n) and that there are n training samples. This defines the hyperplane

decision surface between the binary output classes (C1 and C2) .

The weights are updated according to Equation 7 -Perceptron Weight Updating

Rules . If the weights are correctly classified, the new weights are unchanged. However,

if the classification was incorrect, the weights are moved toward training input x

modulated by a learning rate η(n). This learning rate may be fixed or decay over time.

6 The delimiter is a function which usually decides that an output is in Class 1 if it is positive and Class 2 if
it is negative

Equation 7 -Perceptron Weight Updating Rules

wi(n+1) = wi (n) if wTx(n) > 0 and x(n) belongs to class C1

wi (n+1) = wi (n) if wTx(n) ≤ 0 and x(n) belongs to class C2

wi (n+1) = wi (n) – η(n)x(n) if wTx(n) > 0 and x(n) belongs to class C2

wi (n+1) = wi (n) + η(n)x(n) if wTx(n) ≤ 0 and x(n) belongs to class C1

Equation 6 - Perceptron weight updating Rules

 12

 A simple perceptron works properly if the classes are linearly separable.

Linearly separable classes do not have any quadratic, cubic, or higher order terms in the

equation defining the solution. This means that the classes in m dimensions must be far

enough apart that a hyperplane surface in m-1 dimensions can separate them. If this

cannot be accomplished then the solution is non-linear and a perceptron will not correctly

separate the classes. XOR is a classic example of a non-linear problem that cannot be

solved by a perceptron. Looking at Figure 9, there is no way to draw a straight line that

separates the ‘x’ symbols and circle symbols.

Figure 9 - XOR is a non-linear problem

If the problem has a non-linear solution, a multi -layer perceptron (MLP) with

hidden layers can be used. However, MLP suffers from getting trapped in local error

minima as well as lengthy learning times as the number of inputs or nodes increase.

Stated differently:

Since back-propagation learning is basically a hill climbing technique, it
runs the risk of being trapped in a local minimum where every small
change in synaptic weights increases the cost function. But somewhere
else in the weight space there exists another set of synaptic weights for
which the cost function is smaller than the local minimum in which the
network is stuck…In principle, neural networks such as multi -layer
perceptrons …have to overcome the scaling problem, which addresses the
issue of how well the network behaves …as the computational task
increases in size and complexity [5] .

 Learning is simple and eff icient for a perceptron and it should be chosen if the

problem has a linear solution. For more information on perceptrons, see Haykin [5].

 13

2.5. Summary

On-line character recognition is divided into two phases: feature selection and

classification. Determining representative features is very important in the recognition

process. On-line processes are done in real-time and have implicit sequencing and

temporal information encoded into the input.

The Arabic alphabet, which is used by other cultures besides Arabs, has 28

characters that can be described with 15 primary stroke classes. Recognizing Arabic

letters differs from recognizing Asian languages or Latin script languages 7.

Self-Organizing Maps (SOMs) are a competitive learning process with the

property that they are topologically ordered. They typically allow the user to visualize

higher-dimension input vectors in 1- or 2-D space and automatically select features

capable of representing the input space. The learning rate and neighborhood function

decay over time so that the learning algorithm converges. SOMs are used in this system

as a feature extractor.

Perceptrons are neurons, which have an arbitrary number of inputs, weights and a

bias term with a binary output. These are trained to tune the weights towards a given

input pattern by a fixed or variable learning rate if the perceptron misclassifies that input

pattern. Perceptrons are a good choice for solving linear problems. If the problem is

non-linear, then multi-layer perceptrons can be used to solve it, at the expense of further

uncertainty in the training process (local minima). Perceptrons are used in this system as

the primary classifier.

7 Asian languages tend to be block and stroke-based characters while Latin languages are cursive but have
letter classes which are distinguishable by more than dots or a symbol. Arabic is cursive with high
connectivity between letters.

 14

3. Review of State of the Art

3.1. Overview

Pattern recognition is a well-established field of study and character recognition

has long been seen as one of its important contributions. However, Arabic character

recognition has been one of the last major languages to receive attention 8. This is due, in

part, to the cursive nature of the task (see comments in Section 2.2.2). Two common

themes have driven much of the work in on-line Arabic character recognition. The first is

a hierarchical division of the input letter space to simpli fy the problem. The second

theme is heuristically defined rules for classification or feature selection, which tend to be

data and writer dependent. Now we will t ake a look at most of the earlier works by

method. After looking at all the approaches, we will discuss the strengths and weaknesses

of each method and summarize findings in Table 10 in Section 6.4.

3.2. Al-Sheik, Al-Taweel : Hierarchical Rule-based Approach

Al-Sheik and Al-Taweel assumed a reliable segmentation stage, which divided

letters into the 4 groups of letters (initial, medial, final and isolated) as discussed in

Section 2.2.2. The recognition system depended on a hierarchical division by the number

of strokes. One stroke letters were classified separately from two stroke letters etc.

Ratios between extrema and position of dots in comparison to the primary stroke were

defined heuristically on the data set to produce a rule-based classification. Recognition

rates for isolated letters were reported at 100% [7]. It was unclear from the paper whether

these results were on the training or test set.

3.3. El-Emami, Usher: Segmented Structural Analysis Approach

El-Emami and Usher were trying to recognize postal address words after

segmenting them into letters. They used a structural analysis method for selecting

features of Arabic characters. The classification used a decision tree. In pre-processing,

8 An early work by Amin. et al. was only published in 1980.

 15

they segmented using Belaid and Haton’s method for finding extreme curvature. Some

of the features extracted during this segmentation process were direction codes, slope and

presence of dot flags. A new input needed to search three decision trees for the primary

stroke and also for the upper and lower dots. The decision tree was hand-tweaked to find

the best parameters to fit the data set, which possibly could have led to overfitting [8].

The system was trained on 10 writers with a set of 120 postal code words with a

total of 13 characters. They used one tester who had a recognition rate of 86%. They

instructed him to change his writing style to account for a weakness in the system and

obtained 100% accuracy [9].

3.4. Bouslama, Amin: Structural and Fuzzy Approach

Bouslama and Amin produced a hybrid system that combined structural and fuzzy

techniques. Structural analysis discriminated between various letter classes to be

recognized and fuzzy logic allowed for variabilit y in people’s handwriting within the

same class. Sampling was done on the input data points by comparing tangent angles at

various points along the line. Endpoints were kept automatically. The first point that had

a tangent difference bigger than a threshold θ became the next sampled point. The

authors chose basic shapes such as curves, loops, lines and dots as good features for

discriminating between letter classes. These were constructed using geometric and

structural relationships between the sampled points. After fuzzifying 9 the features, fuzzy

‘ If-then rules’ were created heuristically by the authors, following a study of the data set.

These fuzzy rules could distinguish letters from combinations of these fuzzy features and

allowed for fuzzy membership in a letter class instead of binary membership to cover the

variabilit y in handwriting between authors. No test or accuracy results were listed [10].

3.5. Alimi, Ghorbel: Template matching and Dynamic Programming
Approach

Alimi and Ghorbel showed how to minimize error in an on-line recognition

system for isolated Arabic characters using template matching and dynamic programming

 16

with assumed segmentation. the reference bank of prototypes was prepared after

smoothing, normalization and coding the data coordinates into a parametric

representation of angles. When new data was presented to the system, the distance

between the prototype and new data string was minimized using dynamic programming.

The number of prototypes was varied to see the effect on recognition rates. As expected,

more prototypes gave better accuracy. The optimum was at 9 prototypes with 96%

accuracy on test data for one author [9].

3.6. El-Wakil and Shoukry: Hierarchical Template Matching and k-
nearest Neighbor Classification Approach

El-Wakil and Shoukry used stable features to hierarchically reduce the number of

letter class considered based on template matching. The stable features were: 1) the

number of dots 2) relative position of the dots compared with the primary stroke 3)

number of secondary strokes and 4)slope of secondary stroke. A k-nearest neighbor

classifier then used primary strokes encoded as a primitive of angular directions in the

stroke to determine the closest class. Recognition accuracy varied with the length of

primitive strings but the optimal string length gave an accuracy of 84% by testing 7

writers on sets of 60 characters. Weighting the features manually by their relative

importance gave a maximum accuracy of 93% [11].

3.7. Alimi: Evolutionary Neuro-Fuzzy Approach

Alimi set forth a complete system that segmented letters according to an

understanding of the way that humans write. Given that an Arabic letter can have at most

6 strokes and that a stroke is defined as an asymmetric bell -shaped function of curvili near

velocity with the speed tapering off at the end of the stroke, a system can automatically

segment a letter into sub-strokes, which define that letter. Each character can be

represented as 6 feature vectors. If the character has less than 6 strokes, the empty

strokes are zeroed out.

9 A fuzzified feature allows for a degree of membership instead of just in or out of class.

 17

This set of feature vectors was given to a fuzzy beta radial basis function neural

network to recognize various letters. The strokes were overlapped to give all possible

combinations of strokes into letters.

 These overlapped outputs were passed to a genetic algorithm to robustly

recognize words. Through a series of mutations and crossovers, the letters were

segmented out and recognized. Reported accuracy was 89% without dot and diacritical

information [12].

3.8. Summary - Strengths and Weaknesses of Previous Work

3.8.1. Hierarchical Rule-based Approach

This approach had an excellent recognition rate and a good divide-and-conquer

strategy by reducing the classes through hierarchical rules. It also attempted to classify all

of the forms of Arabic letters and used a large data set. However, this approach would be

extremely sensitive to noisy data in terms of the number of strokes since the hierarchy

was built on counting the exact number of strokes. That is to say, when using a tablet for

data entry, stylus bounce is often experienced on the hard surface. In addition, using

ratios of extrema is probably optimized for the particular data set and might not

generalize well .

3.8.2. Segmented Structural Analysis Approach

This approach also had good accuracy and attempted to automatically segment

words. However, the method was sensitive to rotation and was tested on a limited input

data set and a limited output classification set. The third experiment gave 100% accuracy

results on one writer who was coached to alter his style to avoid weaknesses in the

system. Before this alteration, the system was recognizing at 86% accuracy. Overfitting

was a concern since the parameters were tweaked to give 100% accuracy on the training

set.

 18

3.8.3. Structural and Fuzzy Approach

This system had perfect training results. 44 fuzzy rules were constructed to

describe the training set completely. However, the fuzzy rules used were quite heuristic

as seen by the author’s quote: “These rules are obtained heuristically from the study of

many handwritten samples.” [10] The paper did not list any test set accuracy results.

3.8.4. Template Matching and Dynamic Programming Approach

Alimi and Ghorbel produced good test results at 96%. However, they only used

one test subject who varied his handwriting across the prototypes. This approach did not

give enough variety in authors. It was not evident whether this approach generalized well

or not.

3.8.5. Hierarchical Template Matching and k-nearest Neighbor Approach

Like many other systems the authors showed good recognition results. Also, li ke

many other systems, this approach’s stable features were sensitive to noise and might not

generalize well since the results were based on a test set of 60 characters alone.

3.8.6. Evolutionary Neuro-Fuzzy Approach

This approach was more robust, possibly due to the use of a genetic algorithm. It

also segmented in a novel way using curvili near velocity. The test set was constrained to

only one word and a small subset of 7 different letters. The system was also writer

dependent and so might have problems with scaling to more writers.

4. Case for Neural Network Approach

4.1. Purpose statement

As mentioned in the introduction, this research will show on-line average Arabic

character recognition rates above 80% and training recognition rates above 90% using

neural networks for feature extraction and classification with multiple unconstrained

 19

writers. Linear networks will be emphasized, where this represents the lowest

computational overhead during both training and recall , hence suitable for hand held

devices – the target application device.

4.2. Justification of Approach

Past work in the area of on-line Arabic character recognition has focused on

structural/hierarchical methods which create features based on the a priori identification

of the number of strokes, type of strokes and shape of strokes. This work clusters co-

ordinates in a stroke using a topologically ordered SOM that accounts for variations in

handwriting and should handle noise robustly in practice (providing that the training set

is suitably varied). This is a novel use of neural networks in general and SOMs in

particular to solve the on-line Arabic handwriting recognition problem. The only other

neural network approach to on-line Arabic character recognition is Alimi ’s approach

using beta Radial Basis Functions and Genetic Programming. Our system classifies with

a perceptron because of its training eff iciency and simplicity as a linear classifier.

Arabic is a major world language spoken by 186 milli on people (2001 estimate)10.

Very littl e research has gone into character recognition in Arabic due to the diff iculty of

the task and lack of researchers interested in this field. As the Arab world becomes

increasingly computerized 11 and mobile, and technology becomes increasingly

ubiquitous, the need for a natural interface becomes apparent. Typing is not a natural

user-friendly interface. Voice recognition is more complex, computationally expensive

and prone to interference from the environment, leaving handwriting recognition as a

viable alternative.

Palm-held computing is on the rise. A keyboard is too big for a palm-held

computer so a stylus and tablet system for interaction requires a much smaller interface.

Hence the need for handwriting recognition.

10 see http://www.al-bab.com/arab/language/lang.htm.
11 See http://www.ditnet.co.ae/itnews/newsmay99/newsmay77_table.html for Arab World increase in
Internet users during a 4 month period

 20

Palm12 introduced an Arabic interface for their palm computer in 2000. However,

originally, it had a script that the user needed to learn in Arabic li ke Graff iti for English.

In 2001, Palm Pilot realized the importance of customized script by introducing Nukoush.

“ Even though we have tested our Graffiti database after consulting with
over 25 users from different countries to come up with the best designed
hand-writing technique, we feel that this is not enough, so we created
Nukoush” . 13

Our system goes one step beyond Nukoush since it does not require the user to

create prototype letters but can use the weighted system out of the box. Customized

prototype letters will im prove the recognition rates for a given user but our system will

generalize better than a Palm with a customized Nukoush interface. Moreover, use of a

perceptron classifier provides for fast additional real-time training to give user specific

fine-tuning of the classification stage.

 In the following section, we will l ook at the conceptual model of our system and

explore its details.

5. Conceptual Model

5.1. Overview of Conceptual Model

Any pattern recognition system can be divided into a number of distinct stages:

Data collection, Storage, Segmentation, Input reduction, Normalization, Feature

Extraction and Classification. The goal of the overall system is to correctly classify the

pattern being analyzed. Each stage has unique goals that enhance that possibilit y (see

Table 1). Figure 10 shows the phases of the Neural Network Handwritten Arabic Letter

Recognition (NNHALR) system described in this paper.

Table 1 - Phases of a Pattern Recognition System

Pattern Recognition Phase Goal of Phase

Data Collection To accurately record raw data while
minimizing quantization errors

12 Palm is a popular hand-held Personal Digital Assistant for basic mobile tasks such as note-taking, email
and scheduling.
13 Palm’s Arabic site: http://www.arabicpalm.com/APOS.htm#Nukoush

 21

File Storage To make the data persistent so that
experiments can be repeated on the data
with an extensible format.

Segmentation To divide or separate data input into
defined, clearly understood blocks or
segments.

Sampling To decrease the size of the input data with
a resulting decrease in complexity for
training while minimizing loss of accuracy.

Normalization To make the inputs invariant to such things
as rotation, scale and translation.

Feature Extraction To further reduce the input space by
grouping inputs into relevant features

Classification To correctly classify the input as one of the
output classes

Figure 10 - NNHALR system

Sampling/
Cr itical
Points

Normal-
ization

Feature
Extraction/

SOM

.pendown
212 312
213 312
.penup

File
Storage

Data
Collection

-1 -1
212 312
213 312
-2 -2

Seg-
mentation

Classifi-
cation /

Perceptron

 22

5.2. Data Collection

5.2.1. Tablet and Monitor Specifications

Data collection for the NNHALR system was done using a digital tablet to collect

Arabic letter samples from Arabic writers. The digital tablet used was a Wacom

Graphire Model ET-0405-U with a resolution accuracy of 23 points/cm. The active

surface is 9.2 x 12.8 cm. It has a sampling frequency of 100 points/sec. The monitor

used was a 13 inch Optiquest by Viewsonic at 1024x768 pixel resolution. The data

capture application screen was set to the size of the monitor to standardize the input space

and to smooth the data samples. Earlier data samples were collected from a smaller data

capture application screen and the results were subject to significant amounts of jitter as

the user attempted to fit handwriting to the small monitor screen window space (see

Figure 11).

Figure 11 - Jitter (left) on a small screen; Smoother (r ight) on a larger screen

5.2.2. Data Set

The data set for the NNHALR system needed to be large enough to cover the

variabilit y in handwritten Arabic. There are major intra-class differences between the

ways that various volunteers write the same letter in Arabic. We decided that the data set

400 450 500 550 600

200

250

300

350

400

450

500
90 100 110 120 130 140

40

50

60

70

80

90

100

 23

should have 200 instances of each of the 28 letter classes. This would require 20

volunteers writing 10 complete iterations of the alphabet.

Most of these authors were students from the Faculty of Computer Science at

Dalhousie University while a few were from the Hali fax community at large and their

data samples were collected over the period of April -June 2001. Writer 2 was not

included in any of the experimental tests since the data was collected on the small data

capture application screen and hence the output was very jittery. The writers signed an

informed consent form indicating their willi ngness to participate in this voluntary study

(see Appendix A for a sample form)

After the first volunteer, it became apparent that 10 iterations were excessive

since this volunteer rushed to get through and the last iterations were written in a sloppy

handwriting style. The number of expected iterations was reduced to 5, which gave a

better mix of letter styles. They were well written at the beginning and sloppier towards

the end. This gave an ideal of 2800 letters with 20 volunteers x 5 iterations x 28 letters.

The volunteers were asked to go through the whole alphabet 5 times rather than

consecutively writing each letter 5 times. This gave the volunteer time to “ forget” the

way that they wrote a given letter.

Actually, 2769 samples were collected since there was a bug with the data

collection program which wrote data collected from a sample directly to disk and if the

volunteer entered the data very quickly, it would drop a letter occasionally as it was

writing previous data to the disk. Also the program was designed to reject any data items

which did not have matching control codes. (see Table 2 for a breakdown of actual letters

in the data set)

Table 2 -Breakdown of Data Sets by Class

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Train 54 237 179 120 120 120 117 120 119 119 119 60 58 59 55

Validation 40 160 120 79 80 79 80 79 78 79 80 40 40 39 40

Test 23 98 74 50 50 48 50 50 50 50 49 25 25 25 25

 24

5.2.3. WinTab

 The data collection program was a custom C program for Windows using the

WinTab specification14. WinTab is a standard interface for pointing devices to

communicate with Windows. This permitted raw x and y coordinates to be taken directly

from the digital tablet. Implicit in this data collection was a sequence t, which aided in

letter recognition later on.

5.2.4. Introduction of Noise

 There was some noise introduced in the data collection phase in the form of

additional pen-up and pen-down signals (see Figure 12). These were artifacts 15 of the

pen bouncing on the hard surface of the digital tablet as the volunteers wrote the letter.

14 See www.pointing.com for details of the WINTAB specification.

Figure 12 - Extra control codes in data collection

Additional Pen –up/
Pen-down Ar tifacts

 25

They were realistic and the NNHALR system should handle them in the future, but for

now, the data was manually cleaned to exclude additional pen-up and pen-down signals.

Note, that many of the previous works in the field will not robustly handle noise like

these extra control signals, since they do a count of the number of strokes as a feature

which is used to recognize the letter.

 Another artifact introduced in normal handwriting was hooks. Many systems

dehook the handwriting before recognition but a neural network method includes the

hooks in the training set and therefore the samples do not need dehooking.

 The quantization artifacts introduced were minimal since the resolution accuracy

was 23 points/cm on a 9.2 x 12.8 cm writing space. This gives a quantization error of

0.5% in the x direction and 0.4% in the y direction. Errors from other factors far

outweigh any quantization effects. The resolution of the Palm hand-held is 0.035 cm

which gives similar quantization effects.

5.3. File Representation

5.3.1. Persistent Storage
Our system needed persistent data storage. This way, the raw data was accessible

at any time for training and testing purposes. Eventually, the system will handle real-

time on-line data but this can be simulated using files as the source instead of a writer

using the digital tablet. Upon completion, only the weights of the feature extraction and

classification phases would be stored persistently.

5.3.2. Extendable Format

15 In this paper, the terms noise and artifacts are used interchangeably.

 26

The data was stored in a format that could be easily understood by other

handwriting recognition programs. The UNIPEN 16 standard for cursive handwriting was

chosen to accomplish this. This format has become the worldwide-accepted standard for

storing cursive handwriting data. The NNHALR system needed the data in a Matlab-

compatible format, so it received an additional conversion for this purpose but many

programs are written to read UNIPEN data directly. Matlab17 provided the application

and algorithm development environment for processing further phases of the recognition

process including neural network feature extraction and classification.

5.3.3. Data Format for system

Each volunteer’s data was stored in one large Unipen-compliant file. This file had

a header section with fields such as gender, handedness, country of origin and age

16 details on UNIPEN can be found at http://hwr.nici.kun.nl/unipen/
17 For more about Matlab, see www.mathworks.com

Figure 13 - Data Collection Dialog Box

 27

range(see Figure 13). After the file header, there was a letter label header. This was

followed by pen-up/pen-down control code information and x and y coordinate

information generated from the pen on the digital tablet. This process was repeated for

each letter in the iteration set. Table 3 lists the data set subdivided by gender and country

of origin to give an idea of even distribution of the data.

Table 3 - Nationali ty and Gender Breakdown of NNHALR Data set

 Egypt KSA Kuwait Other Palestine Syria Totals

Male 4 2 3 1 4 0 14

Totals 7 3 4 3 6 2 25

Female 3 1 1 2 2 2 11

5.4. Segmentation

5.4.1. Letter Segmentation

Segmentation occurs at two levels. In a more general recognition system, words must be

segmented into letters and then letters into strokes. In order for the pattern recognition

system to recognize Arabic letters correctly, robust letter segmentation is needed. Since

the NNHALR system only processes isolated Arabic letters, letter segmentation is

assumed. However, the system does need to pre-process the archived UNIPEN format. A

custom segmentation program, written in C, which separated the

 28

 Figure 14 - Segmentation into Matlab files

UNIPEN file for each volunteer into individual files for each letter and converted

the UNIPEN format into Matlab-ready format was used (see Figure 14).

5.4.2. Stroke Segmentation

Stroke segmentation is done automatically by pen-up and pen-down control codes

provided by the tablet. In the absence of noise, an automatic segmentation program could

simply count strokes and divide the letter into its respective primary and secondary

strokes 18. These would then be sent to separate SOMs for feature extraction. However,

since the data samples included extra pen-up and pen-down control codes as artifacts in

the data collection process, the primary and secondary strokes were manually separated

with the goal of automating the process later on.

 This task is simpli fied because there is a definite order to the strokes. The

primary stroke is almost always written before any secondary strokes. Thus, in an

18 A primary stroke is the first and longest stroke. It represents the body of the letter. The secondary
stroke(s) is any strokes that follow in the same letter.

 -1 -1
 286 184
 285 182
 285 181
 285 182
 285 184
 284 185
 . .
 . .
 . .
 438 315
 438 316
 437 316
 435 317
 -2 -2

.VERSION 1.0

.DATA_SOURCE Tim Klassen
Dalhousie University
.DATA_CONTACT Tim Klassen
 Dalhousie University
 email: klassen@cs.dal.ca
.DATA_ID Arabic
.COORD X Y
.HIERARCHY CHARACTER.
#################################
############

.DATE May 6 2001
.SEX F
.HAND R
.COUNTRY Other
.AGE +30
#################################
############
.SEGMENT Letter: HAH Unicode:
062D

.PEN_DOWN
 286 184
 285 182
 285 181
 285 182
 285 184
 284 185
 . .
 . .
 . .
 438 315
 438 316
 437 316
 435 317
.PEN_UP

Matlab-ready
control codes

Y
Coordinates

X
Coordinates

 29

automated system, the Primary SOM can receive the first stroke. If it recognizes, then

the secondary strokes are sent to the Secondary SOM. However, if the Primary SOM is

undecided about the first stroke, then there is possibly noise and the second stroke is sent

to the Primary SOM. This procedure is repeated until the Primary SOM gives a positive

identification of a stroke using a threshold φ. This threshold could be defined as a degree

of confidence in the winning classification.

Many of the systems looked at in Section 3 depend on a count of the strokes as a

key feature to be fed to the classifier. This creates a problem if the data is noisy. Our

system should deal with this effectively since the feature extraction does not depend on

control codes or stroke counting after segmentation.

5.5. Critical Point Extraction

The next phase reduces the data input space in order to minimize the training

requirements by considering only the important features of a letter instead of every data

point. This reduction is accomplished by extracting criti cal points from the data. Using

the algorithm put forward by Lee and Pan for tracing and representation of on-line

signatures [13], we extracted the criti cal points. We found that using the procedure for

ChkLOS was suff icient to extract enough criti cal points to provide competitive

classification accuracy.

Figure 15 - Calculating L ine of Sight

 30

ChkLOS stands for Check Line of Sight and checks to see if an intermediate point

is in Line of Sight of a line between two endpoints (see Figure 15). Note that in part a) of

Figure 15, the blue dot is LOS of the blue line while in part b), the green dot is not LOS

of the blue line. This procedure will give criti cal points at all endpoints and any curvature

variation greater than a threshold δ.

This threshold can be varied to give different numbers of criti cal points. If δ is

set to zero, then all the points are given. If δ is set high, then only a few criti cal points

will be calculated. What is the right number of criti cal points for reducing the input space

while retaining the important data points to create features? Tejwani says:

 “T he human apparently places heavy emphasis on features that are
formed by criti cal points that are symmetrically opposite about an axis
and features that are extracted from adjacent criti cal points from the
shape.” [14]

Since cursive handwriting is not a closed shape, there generally is not symmetry

about an axis. However, at high points of curvature there should be a concentration of

criti cal points while straighter sections of stroke will have significantly less criti cal points

(see Figure 16). Table 4 shows experimental data for choosing a δ threshold of 10 which

minimized the average number of data points and the standard deviation of the number of

data points.

Table 4 - Test data for selection of parameter Delta

Delta Values for CheckLOS
 Mean Standard

Deviation

 Min Max Mean Min Max Mean
Delta = 1 10.48 32.89 20.92 3.61 9.93 6.42
Delta = 2 10.23 32.04 20.51 3.46 9.59 6.25
Delta = 5 9.77 29.71 19.34 3.15 8.53 5.77
Delta=10 8.83 25.97 17.36 2.63 7.58 5.17

 31

Delta = 10 8.83 25.97 17.36 2.63 7.58 5.17

5.6. Normalization of Data

 Once these criti cal points have been extracted, the data needs to be normalized so

that the letters will be the same size and in the same position.

5.6.1. Scaling Normalization

People have great variabilit y in their handwriting. Some write small l etters and

others write larger letters. Scaling reduces or enlarges the size of the letters to a pre-

defined size. In our system, the predefined size is given by the mean of the average

difference between the maximum and minimum in the x and y directions across all

volunteers.

 Table 11 in Appendix B shows the resulting averages. After rounding the mean x

and mean y values to 175, the scaled box size for the data is 175x175 pixels. One of the

side effects of scaling the letter data is that the minima and maxima in the x and y

directions touch the edge of the scaling box. An analysis of the data shows that this works

well for all l etters except for the letter Ali f which is tall and thin (similar to the letter ‘ l’

in the Latin alphabet). We modified the scaling algorithm to only scale in the y direction

Figure 16 - Cr itical Point Density – Or iginal Letter(Left); Cr itical Points extracted with Delta=10
(r ight)

 32

but leave the x direction untouched for Ali f. This scaled Ali f was then centered in the unit

box. This gave marked improvement in Ali f recognition accuracy 19 .

However, this process must be automated so that the algorithm automatically

detects an ali f. Comparing the ratio of the difference in extrema in the x

direction divided by the difference in extrema in the y direction accomplishes this. If

these ratios are greater than some threshold γ (defined heuristically), the letter is not an

ali f (see Equation 7). This leads to the interesting case of classifying the letter to extract

the features before classifying the letter.

Equation 7 – Ali f Detector

î



≤
>

=
−
−=

thresholdrifalif

thresholdrifalifnot

yy

xx
r

)min()max(

)min()max(

19 Choosing a threshold of 0.25 doesn’ t classify about 11% of the Ali fs on average but doesn’ t misclassify
any other letters. This means that 89% of Ali fs are now normalized for height but not width.

 33

5.6.2. Translation Normalization

Now that the feature extraction stage will see data scaled to the same size, we

need to give it data that is translated to the same spot relative to the origin. Since we

have chosen negative numbers as control codes in the data, we do not want to introduce

negative coordinate numbers about the origin which are no longer distinct from these

control codes. Therefore, the unit box which all l etters are translated into, has completely

Figure 17 - Var iance in Superimposed Letter Classes

Figure 18 - Normalizing Letter data

0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

160

180

Scaling

Translation

 34

positive coordinates.20 Translating within this box enhances the similarities along the

edge while translating about the centroid would enhance the similarities close to the

centroid. This process should be selected to reflect the greatest variance in the data set.

Figure 17 shows the variance in letters normalized to a unit box where the greatest

variance is along the edges of the unit box. Figure 18 gives a typical letter before and

after scaling and translation.

 The NNHALR system was scaled across the entire letter before segmentation.

This gives a wider variety in input and should lead to more robust feature extraction.

However, an alternative scaling technique would be to scale after segmentation which

should give better recognition accuracy across the data set.

5.6.3. Time Normalization

As stated earlier, one of the advantages of on-line character recognition is that

temporal information such as sequence and length of time to produce strokes is implicit.

Sequence information was used in our system to give the feature extraction stage

additional temporal information about a coordinate within a stroke. The Wacom

Graphire tablet records pen input at a maximum rate of 100 points/second 21. However,

some volunteers write at a different pace than others and may even write at a different

pace from themselves at a given time. This is li kely to distract the learning process from

identifying robust features (i.e. represents a source of ‘ noise’) . We therefore, need to

normalize the sequence information over the unit interval in order to compare different

strokes.

However, following normalization with time across the unit interval (ie. t ∈

[0,1]), the SOM did not separate well i n the temporal direction. Since the interval along

the other axis (x and y co-ordinates) was much larger, the SOM only performed well i n

the coordinate direction. Normalizing time with t ∈ [0,100] corrected that problem. This

means that the first endpoint is t = 0 and the last endpoint is t =100 for each letter. Time

normalization is divided across strokes so that if a letter has 2 strokes, the first or primary

20 0 to 175 in the x direction and 0 to 175 in the y direction

 35

stroke will be lower in the time-normalized sequence and the second or secondary stroke

will have higher time-normalized sequence numbers.

It remains to be seen what the effect on secondary strokes is, but it seems to work

well on primary strokes. A possible variation for trying to improve recognition accuracy

is to set the temporal horizon at max(t) =100 for each stroke rather than each letter since

letters without secondary strokes will have a different temporal horizon than letters with

secondary strokes. One hundred was arbitrarily chosen as a unit interval because it was

the nearest order of magnitude to the magnitude of the scaled x & y maxima.

5.6.4. Rotation Normalization

Making a data set rotation-invariant is another typical normalization. It was

assumed that the SOM would handle slight variations in rotation and produce robust

features since the SOM is topologically ordered grouping similar rotation orientated

letters together. However, Writer 26 wrote all of the data on the slant and the

performance on recognition (39%) was the worst of any of the test data.

In addition, this writer also introduced some new patterns previously unseen but

this effect was not suff icient to account for this level of poor recognition. A slight

modification on the system would be to rotate the data by some small random angle about

a Gaussian curve. This favors small random changes in rotation while allowing for more

extreme rotational change. This would give a new data set with more robust invariance to

rotation. Another possible solution was to use an algorithm to detect the longest axis

about which to rotate the letter and normalize it with respect to the origin. It was decided

that this method was too computationally intensive.

5.6.5. Skew Normalization

Skew22 is stretching or shrinking an object. Italicized letters are an example of

skew. Again, the assumption was that the SOM would handle the skew in letters because

of its topological ordering properties and natural variations in skew in the data set.

21 Wacom Graphire Users Manual p. 108.
22 Skew and slant are used interchangeably in this paper.

 36

5.7. Feature Extraction

5.7.1. Purpose of Feature Extraction

The purpose of feature extraction is two-fold: to realize that not all data points are

equally relevant or useful for pattern recognition and, in the case of neural networks,

further reduction of the data input space to keep the network sizes computationally

tractable. Usually in on-line character recognition, the features are manually chosen.

Examples include number of strokes, position of strokes, curvili near velocity, or maxima

and minima.

5.7.2. Suitability of SOM for Feature Extraction

A neural network approach to feature extraction allows automatic selection of

relevant features. These features may be obvious, or subtler unseen relationships

between the data points. Further study could extract which features the SOM found

important to discriminate different Arabic letter classes. A possible tool for this would be

dendrogram interpretations of features.

The hypothesis is that SOM chooses relevant features for later classification. Our

research will show the veracity of this hypothesis with the understanding that an SOM

can not account for variations in data which it has not trained on.

5.7.3. General SOM Feature Extractor Design

There are a number of parametric considerations in designing a SOM network.

One needs to know how large to make the network and for how many epochs (complete

cycles through the training data) to train the network. This can only be determined

empirically. There were two indicators used. The output from the SOM was used as a

raw classifier and plotted on a confusion matrix. Classification was done by measuring

the minimum distance between each node of the data pattern and the average feature

vectors for each class. Perfect classification leads to a unique monotonically increasing

“step” pattern between class label and classification. Two indicators were used to

determine the suitabilit y of a given SOM configuration based on this raw classifier rate:

 37

the gross misclassification rate and the “clumpiness” of the misclassifications 23. In other

words, how many errors did it make and how consistently did it misclassify them? Was

it ordered or random?

5.7.4. Two SOM Model

In order to decide on a particular configuration for a SOM, we experimented with

various configurations and arrangements of neurons and noticed that when a square SOM

was used, the neurons were organized in a rectangular shape. Since the edge neurons

were not being activated, a rectangular arrangement of neurons was chosen (see Figure

6).

The next phase in training the SOM configurations was to recognize that various

Arabic letter classes favored one configuration over another and to train a number of

23 “Clumpiness” indicates whether a given misclassification was consistently misclassified (above a
threshold) or whether it is randomly misclassified.

Figure 19 - Two SOM M odel

-1 –1 –1
21 12 7
22 12 10
23 14 12
-2 -2 -2

-1 –1 –1
21 12 7
22 12 10
23 14 12
-2 -2 -2

-1 –1 –1
21 12 7
22 12 10
23 14 12
-2 -2 -2

Normalized

Reduced
Data Set

x t

35 Node
SOM

24 Node
SOM

t
t

y

-0.238
-0.217
 0.238
-0.412
-0.234
 0.634
-0.833
-0.238
 0.854
-0.432

Feature
Vector

-0.238
-0.217
 0.238
-0.412
-0.234
 0.634
-0.833
-0.238
 0.854
-0.432

Feature
Vector

-0.238
-0.217
 0.238
-0.412
-0.234
 0.634
-0.833
-0.238
 0.854
-0.432

Feature
Vectors

 38

SOM networks to cover the spectrum of Arabic letter classification. This would prove

useful in partitioning later on (see Section 5.8.4).

The first SOM model was a pair of SOM, one SOM for X coordinates & T (time)

inputs and the second SOM for Y coordinates & T(time) inputs. The first SOM was 35

nodes in a 7x5 arrangement. The second SOM was 24 nodes in a 6 x 4 arrangement (see

Figure 19). In the model, primary data strokes are fed simultaneously to the dual SOM,

data pair by data pair, and a winner node is determined based on the SOM equation given

in Equation 2. When these winning nodes are activated, the cumulative scores in the

corresponding output vector offset are incremented. After all the data pairs have

randomly been entered in the SOM, the two SOM output feature vectors are joined

together to create a new output feature vector of 59 outputs per pattern. The other 2 SOM

architecture tried was 70 nodes, 35 nodes for X & T and 35 nodes for Y & T.

5.7.5. One SOM Model

The second SOM model is a single SOM with three dimensions (X,Y & T) as

inputs. This one had 60 nodes in a 10x6 arrangement (see Figure 20). In this manner, we

Figure 20 - One SOM M odel

-1 –1 –1
21 12 7
22 12 10
23 14 12
-2 -2 -2

-1 –1 –1
21 12 7
22 12 10
23 14 12
-2 -2 -2

-1 –1 –1
21 12 7
22 12 10
23 14 12
-2 -2 -2

Normalized

Reduced
Data Set

x

60 Node
SOM

y

-0.238
-0.217
 0.238
-0.412
-0.234
 0.634
-0.833
-0.238
 0.854
-0.432

Feature
Vector

-0.238
-0.217
 0.238
-0.412
-0.234
 0.634
-0.833
-0.238
 0.854
-0.432

Feature
Vector

-0.238
-0.217
 0.238
-0.412
-0.234
 0.634
-0.833
-0.238
 0.854
-0.432

Feature
Vectors

t

 39

could compare directly how a 59-node pair of SOMs and a 60 node SOM performed

respectively.

It was determined that the 2 SOM network extracted features better than the 1

SOM network. X&T needed 35 nodes while Y&T needed 24 nodes. 5000 epochs was

chosen as a suitable duration for training. Training for more epochs (7500) did not really

improve the misclassification scores or the “clumpy” nature of the misclassifications.

Figure 21 shows the difference in classification accuracy between 2 SOM 70 and

1 SOM 60 by letter class. Any difference below zero indicates better performance by 2

SOM 70. Class 2 is the deciding class for overall accuracy difference on the training set.

5.7.6. Feature Vector Normalization

The outputs from the feature vector are normalized according to Equation 8. The

j th element in the i th output vector is decremented by the mean and divided by the

standard deviation for that vector. This helps the classifier to train better by placing 68%

Figure 21 - 2SOM 70 vs 1 SOM 60

2 SOM 70 vs 1 SOM 60 on Training Set

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Class Label

D
if

fe
re

n
ce

 in
 E

rr
o

rs

 40

of the data within a single standard deviation of the mean (zero) and 99% within three

standard deviations [15].

Equation 8 – Feature Normalization

std
i

ijinorm
ji P

PP
P

−
= ,

,

5.8. Classification

5.8.1. Perceptron

A perceptron, which takes the normalized SOM outputs as inputs, is trained for

each of the 15 classes. The input ranges are the normalized max and min from each SOM

node. We trained the perceptron for 500 epochs on the inputs from the 1st,3rd and 5th

samples from each of the first 20 writers. This accounted for the “sloppy” factor where

the writers would write faster and sloppier as the trial experiment progressed. Originally,

we had been training on the 1st,2nd and 3rd samples and found that the data was more

likely to overfit neat handwriting. The training error goal varied with the different SOM

architecture inputs. With each group of perceptrons, we took the lowest training error in

the first 500 epochs and saved the weights at that point.

In training the group of perceptrons, we modified the original transfer function of

the network from hardlim to purelin 24 to give the output described in Section 5.9.

5.8.2. Multi-Layer Perceptron

Recall from the discussion in Section 2.5 that multi -layer perceptrons were useful

for solving non-linear problems. To test the hypothesis that the classification of Arabic

handwritten letters was a non-linear problem and therefore was too diff icult for a

24 Hardlim is a transfer function that outputs 1 for any outputs above zero and 0 for all outputs below zero.
Purelin gives the output as it is without any changes.

 41

perceptron to solve, we used the same outputs from a SOM and classified using a set of

MLPs, with one MLP for each SOM network. The results are discussed in Section 6.3.

5.8.3. Genetic Programming

Genetic programming uses mutation and crossover to search a population of

encoded symbolic solutions to solve the classification problem. Genetic programs use the

instruction set (+, -, *, %, sine, cosine, sqrt in this case) to create programs that will

correctly classify a given data set with a given recognition rate. This provides a

comparison with the classification accuracy of the perceptron using an alternative, more

robust non-linear learning algorithm than that of the MLP.

The results are discussed in Section 6.3. For more information about genetic

programming, see Koza[16] for the seminal paper in the field and Tomassi [17] for a

concise introduction to GP .

5.8.4. Class-wise Partitioning

After trying the above three different SOM/perceptron architectures, it was noted

that classification performance varied class-wise across different SOM configurations. A

new system could therefore be composed by partitioning25 the various architecture’s

based on the best class-wise classifications, as identified on training or validation data,

for a better overall recognition rate.

The lowest expected error rate for each class was chosen (see colored entries in

Table 5 and Table 6) and a committee of experts was established. Based on training or

validation error performance, a given SOM/ perceptron combination would be chosen for

a particular class. These class selections would then be “fixed” so that the classification

would be based on the SOM/perceptron’s most discriminant classes. In the case of a tie

between class-wise classification errors, the SOM architecture which had the lowest

25 Partitioning is the process of recognizing which SOM performs best on a given letter class and
‘combining’ those nodes to create a new ‘single’ SOM. This SOM could be manually created by
combining neurons from the other SOMs but we simulated this.

 42

overall error rate was chosen. Partitioning on training(Table 5) gave a different result

than partitioning on validation (Table 6).

Table 5 - Err ors with Class-Wise Par titioning on Training Set

By Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

Err ors

2 SOM 59 3 75 9 23 19 63 3 3 22 11 16 1 4 0 8 260

2 SOM 70 6 17 9 11 28 17 8 2 18 19 52 2 4 2 7 202

1 SOM 60 5 97 69 22 19 15 11 6 9 25 8 4 6 4 7 307

Partitioned 3 17 9 11 19 15 3 2 9 11 8 1 4 0 7 119

Table 6 - Err ors with Class-Wise Par titioning on Validation Set

By Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

Err ors

2 SOM 59 13 68 15 30 18 46 10 9 19 15 15 6 13 5 12 294

2 SOM 70 14 16 19 15 24 15 22 5 16 29 40 9 19 3 13 259

1 SOM 60 6 82 52 17 25 20 10 12 18 24 12 9 6 13 15 321

Partitioned 6 16 15 15 18 15 10 5 16 15 12 6 6 3 12 170

5.8.5. Pruning

One problem encountered using Class-wise partitioning was that a committee of

experts increased the number of SOM neurons three-fold to 189 neurons. Given the

intended application base, ideally the system needed to be smaller. Pruning the nodes

provided a chance to get rid of non-productive nodes and improve error rates at the same

time.

 43

Using the fact that each SOM/perceptron combination performed well on a subset

of the classes, an algorithm (see Figure 22) was implemented that attempted removing

each SOM node and simulating the classification result for those classes in the perceptron

network. Zeroing out the input for that node simulated removing a node. The node that

reduced the original error by the most was permanently zeroed out. As long as the error

decreased or stayed the same, nodes would continue to be removed. In Section 6.1.4, we

will discuss the effectiveness of partitioning and pruning.

5.9. Output

The purelin output from the perceptrons gave various levels of activation of the

different class output neurons for a given input sample. Ideally, the correct class should

be positive while all other class output activations are negative. However, there were two

other possibiliti es that occurred: 1) there was more than one positive output 2) there were

no positive outputs. The rule for deciding which class won was to take the maximum

activation level and declare that class as the winner, even if all classes had negative

Figure 22 - Remove Node Algor ithm

[removednodes] = removenode(network,data set,target set,initialbaseerror)

initialize variables
while errorchange >= 0
 adjust errorchange
 zero out the best node for reducing error
 for i = 1 to size of data set
 zero out the ith row
 run data set through network
 find errors in classification
 compare against partitioned classes for error count
 end
 select new node which has the largest negative errorchange
 store node index to removednodes
end

return;

 44

activation. Using a purelin transfer function and the maximum rule for winning

classification led to some misclassifications whereas a hardlim rule [39] would have

classified the pattern as undecided. However, it also classified some negative activations

correctly since the correct class was closest to a positive activation .

5.10. Summary

A handwriting recognition system has many phases that assist in transforming raw

x & y co-ordinates into a classification decision. Preprocessing of the data includes

segmentation, representation, sampling and normalization. The next major stage is

feature selection. In our system, this was done by an SOM architecture to automatically

select discriminant features. The last major stage is classification. These results went

through an optimization stage of class-wise partitioning and pruning. Section 6.3

compares the performance of a perceptron, a multi -layer perceptron and a genetic

programming algorithm as classifiers.

6. Experimental Measurements

Our experiments were conducted on the Arabic handwriting of 25 independent

writers who contributed a total of 3461 isolated Arabic letters as detailed in Section 5.2

(see Table 2 for breakdown by class). These letters were then processed as described in

Section 5. The experiments had 3 trials on 3 disjoint data sets: 1) training (1656 letters) 2)

validation (1113 letters) and 3) test (692 letters). The validation set was composed of

letters that were written by the same authors as the test set but not seen in testing. The test

set was written by 5 authors that were totally ‘unseen’ in the training process.

There were four procedures done in our experiments: training, partitioning (see

Section 5.8.4), pruning (see Section 5.8.5) and testing. The first trial trained on the

training set and tested on the validation set and test set without partitioning or pruning.

The second trial trained, partitioned and pruned on the training set and then tested on the

validation set and test set. The third trial trained on the training set, partitioned and

pruned on the validation set and tested on the test set (see Table 7).

 45

Table 7 – Tr ials in Arabic Letter Experiments

 Training Set Validation Set Test Set

Train
� � �

Partition � �

Prune � �

Test
�

�
�

� �

6.1. Results of Experiments

The first experiment was to simply train the 3 SOM architectures on the training

set and test on all three sets without any optimizations. The results are displayed in

Section 6.1.1.

This became the baseline for later optimizations. The baseline for recognition accuracy

was defined as the average accuracy of the validation and test set of the best

SOM/perceptron architecture without partitioning or pruning. We found that choosing an

error goal for each SOM/perceptron architecture during the 5000 epochs perceptron

training time improved the accuracy across training, validation and test. Using this

output as a baseline, we then ran trials #1-3 and compared results. (see Table 8).

6.1.1. Trial 1 – No partitioning or pruning

 46

The best SOM for recognition accuracy is the 2 SOM 70 node. On training, it

recorded an accuracy of 88%. On validation, it had recognition accuracy of 77%. On

test it had an accuracy of 64%. Figure 24 and Figure 25 show the respective confusion

matrices for Trial 1 across the training, validation and test sets.

6.1.2. Trial 2 – Partition and Pruning on Training Set

The training accuracy results were 94%. The validation accuracy results for

partition and pruning on training set were 82% for class-wise partitioning only and 84%

for partitioning and pruning based on the training set. The test accuracy results were 77%

on training pruning and partitioning. Partitioning on the training set selected 6 nodes from

the 59 SOM, 6 nodes from the 70 SOM and 3 nodes from the 60 SOM (refer to Table 5).

Pruning on the training set reduced the 59 SOM to 53 nodes, the 70 SOM to 63 nodes,

and the 60 SOM to 42 nodes. This was a total of 158 nodes or a reduction of 16% in the

number of nodes after pruning. Pruning also reduced the number of errors by 1%.

Table 8 - Recognition Accuracy Results

 Train Validation Test Average

Baseline – No training goal 83% 75% 63% 69%

Figure 24 - Tr ial #1 Training and Validation Confusion Matr ix

 47

Trial #1 – No optimizations

with training goal

88% 77% 64% 72%

Trial #2 – Partition/Prune on Training 94% 84% 77% 80%

Trial #3 – Partition/Prune on Validation 90% 89% 79% 85%

Average 92% 83% 73% 79%

Genetic Programming 92% 77% 72% 74.5%

6.1.3. Trial 3 – Partitioning and Pruning on Validation Set

The validation accuracy results were 89% after partitioning and pruning on the

validation set and 85% after only partitioning. The test accuracy results were 79% based

on validation set pruning and partitioning. Partitioning on the validation set selected 6

nodes from the 59 SOM, 6 nodes from the 70 SOM, and 3 nodes from the 60 SOM.

Pruning on the validation set reduced the 59 SOM to 43 nodes, the 70 SOM to 63 nodes,

and the 60 SOM to 42 nodes. This was a total of 148 nodes or a reduction of 22% in the

number of nodes. Pruning also reduced the number of errors by 4%.

6.1.4. Effectiveness of Partitioning and Pruning

Figure 25- Tr ial#1 Test Set Confusion Matr ix

 48

We have generally shown the effectiveness of class-wise partitioning and pruning.

What is the relative effectiveness of partitioning and pruning based on training compared

with being based on validation data?

When the training set is used for partitioning, there are 4 classes in the test set

where partitioning doesn’ t choose the lowest error rate for a total of 7 errors. This makes

a differential of 1%. When the validation set is used for partitioning, there are 2 classes in

the test set where partitioning doesn’ t choose the lowest error rate for a total of 4 errors.

This would only reduce errors by 0.57%. Clearly, partitioning on a data set that is

different from the training set is optimal over partitioning on the same set as training.

When the training set is used for pruning, there are 156 errors instead of 222

errors without pruning for a total error decrease of 9.5% over the test set. When the

validation set is used for pruning, there are 148 errors instead of 198 errors without

pruning for a total error decrease of 7.2% over the test set.

Pruning the data set results in a decrease in error rate. We also notice that pruning

on the validation set is optimal by 8 errors over pruning on the training set (these finding

are summarized in Table 9).

Table 9 - Relative Effectiveness of Par titioning and Pruning

 Training Set Validation Set

After Partitioning

Non-optimal classes 4 2

Additional errors 7 4

After Pruning

Total Errors in Test set 156 or 23% 148 or 21%

6.1.5. Test Set Analysis

Looking at a breakdown of the test set results, we notice that three out of the five

test writers had accuracy above 80%. Writer 26 was excluded because she wrote all her

letters on a slant which resulted in an accuracy of 39.3%. (try rotating her data later)

 49

Writer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

Error

Accuracy

22 4 0 1 4 1 1 3 0 0 1 1 0 1 0 1 18 87.1%

23 1 2 2 1 5 0 0 2 5 2 0 0 4 0 1 25 82.1%

24 2 3 1 3 2 6 2 2 2 4 6 1 3 2 1 34 70.6%

25 0 4 12 4 5 5 5 1 10 3 0 0 3 0 2 54 60.3%

27 4 5 0 4 1 1 1 0 0 0 0 0 2 1 0 19 86.3%

6.2. Proof of concept

Our initial claim was: “This research will show on-line average Arabic character

recognition rates above 80% and training recognition rates above 90% using neural

networks for classification and feature extraction with multiple unconstrained writers.”

Part of the data collection process was to instruct the writers to write isolated

letters “as they normally would” (see Section 5.2.2). This gave our data set the desired

unconstrained nature.

We had 25 sets of data that we trained and tested on to show multiple writers.

Our average recognition rate for validation and test sets was 71.8% in Trial #1, 80.1% in

Trial #2 and 85.1% in Trial #3 for a total average of 79%. The training recognition rate

was 88% in Trial#1, and 94% in Trial #2 and 90% in Trial #3 for an average of 92% 26.

6.3. Comparing Perceptrons with Other Classifiers

Perceptrons are quick to train and suitable for linear problems. The assumption

for this project was that the problem could be solved linearly. To check this hypothesis,

non-linear classifiers (Genetic Programming and Multi -layer perceptrons) were compared

with perceptrons.

26 Calculations were done as follows : The average recognition rate is the average of the averages between
validation and test sets across the 3 trials.

 50

Genetic Programming (GP) is an evolutionary machine learning strategy that uses

cross-overs and mutations to create a program of mathematical operations on a data

population to produce the “fittest” population as discussed in Section 5.8.3. It was tested

on the poorest performing SOM network, SOM 60. Genetic Programming had a positive

example average of 92% for the training set, 77% for the validation set, and 72% for the

test set. Perceptrons had a positive example average of 81 % for the training set, 71% for

the validation set and 54% for the test set. Multi -layer Perceptrons (MLPs) had a positive

example average of 94% for the training set, 73% for the validation set and 60% for the

test set. The detailed results can be found in Appendix B : Tables 12-14.

GP had better test set results than the perceptron and is more robust in a noisy

environment. However, the perceptron scored better for the validation set which is the

closest simulation to a PDA with a single user. Multi -Layer Perceptrons overfitted on the

training set and did poorly on the validation and test set.

The perceptron classifiers also overfitted on negative examples. A technique to

overcome this is to weight the positive examples more heavily.

6.4. Comparing NNHALR with Previous Systems

Table 10 – Summary of Previous Approaches

Approach Segmentation Writers Sensitive to

Noise

Classes Data Set Recognition

Accuracy

Hierarchical Rule-

Based

No ? Yes 60 1200 100%

Segmented Structural

Analysis

Yes 1 Yes 13 50 words 86%

Structural / Fuzzy No ? Yes 28 ? 100%

Template/Dynamic No 1 No? 28 28 x 20

copies

96%

 51

copies

k-nearest Neighbor No 7 Yes 60 28 x 7 84%

Evolutionary Neuro-

Fuzzy

Yes 1 No 7 100

words

89%

NNHALR No 25 No 15 3461 78%

 Table 10 summarizes previous approaches in handwritten Arabic letter

recognition. Since none of these systems were applied on the same data set, and many of

these systems were not tested on independent and extensive test sets, it is not a fair match

to compare how these systems did against each other as well as our system. However, to

give a rough estimate of relative performance, we have included this table for

completeness.

6.5. Summary

Three experiments were conducted on a base-lined set of data which had a

training goal for each network and was divided so that the 1st ,3rd and 5th samples from

each writer became the training set and the 2nd and 4th samples became the validation set.

5 writers contributed extra samples that were used in the test set but not seen in the

training of the networks.

The experiment trials were: 1) no partitioning and pruning of the data 2)

partitioning and pruning on the training set and 3) partitioning and pruning on the

validation set. The best test results came from partitioning and pruning on the validation

set for a recognition accuracy of 79%.

Looking at the test set analysis, 3 of the 5 test writers were above 80%. A 6th

writer was excluded from the test set because the writer wrote every letter on the slant

and test results for her were poor at 39%. Rotating her characters should rectify this

problem and give better recognition results.

 52

Class-wise partitioning and pruning both proved to be useful optimizations for

improving recognition accuracy. The initial claim was validated in the training set and

was within 1% of being validated in the average of the validation and test sets.

Genetic programming provides a robust non-linear solution to the worst network.

MLPs perform well on the training set but tend to overfit and have poorer validation and

test results. This points to further investigation of non-linear solutions. However, this

needs to be weighed off against the speed of the perceptron for on-line adaption in

personal digital assistant computing platforms.

7. Conclusions

7.1. Conclusions drawn

We can conclude that our Neural Network approach to recognizing Arabic

Handwritten Letters is proved as a viable concept. Further refinement of the networks

will certainly produce higher recognition accuracy while increasing the robustness of the

solution.

The Arabic language has some distinctions from Asian or Latin-script languages

that make it a unique recognition problem. Our system accounts for some of these in the

separation of primary and secondary strokes into separate recognition tasks and the SOM

handling extra control codes.

Many of the previous approaches to Arabic cursive character recognition involved

hierarchical reduction of the complexity of the problem and heuristic rules for feature

selection which would not react well to noisy input.

Further work is necessary to explore non-linear classifiers and optimizing linear

solutions.

Also, to complete the Arabic letter recognition process, the NNHALR system

should handle secondary strokes. This can be done by manually segmenting the

secondary strokes initially and creating another SOM feature extractor/perceptron

classifier combination and training it for secondary strokes. The results from secondary

 53

stroke classification could then be used to analyze the output from the primary stroke

classification. The secondary stroke classifier only needs to recognize 4 classes: hat, line,

dot and hamza (an s-shaped symbol) (see Figure 2). It could assist recognition for the

primary stroke classifier by excluding letters which did not have the classified secondary

stroke. This would cause the system to classify the data for the runner-up class and likely

improve recognition accuracy.

7.2. Summary of contributions
• Arabic handwritten isolated letter UniPen-compliant data set of 3469 letters

• Self-Organizing Feature Map network tuned to produce relevant features for Arabic
recognition from data coordinates while reducing the input space

• Perceptron network tuned to recognize the 15 letter class shapes

• Robust automated feature selection in the SOM

• Potential of robustness in the presence of noise

7.3. Future Research

• Secondary Strokes Feature Extractor/Classifier

• Automatic segmentation of primary and secondary strokes

• Test assumption about similar letter classes

• Change temporal horizon for primary and secondary strokes

• Check robustness in noisy setting and with different random initializations

• Determine which features the SOM finds important using a dendrogram

• Explore non-linear classifiers

• Try translating data about the centroid instead of extrema

• Normalize scale after segmentation

• Bias the data towards positive examples

7.4. Real-world applications of the concept

 54

• Palm interface for Arabic, which like Nukoush, has a customizable Grafitti script but

can also work well for other people

• Handwriting tutorial for children

• Arabic input for computers where people do not know how to type

• Cell phone input

7.5. Summary

Arabic handwriting recognition is a diff icult problem but our hope is that the

NNHALR system will be a step towards a neural network approach to robustly solve it.

The concept is proved as a possibilit y. Now, it remains for further research to build on

this foundation and work towards automatic segmentation and recognition of Arabic

words.

 55

References

[1] Lippmann, R. “Pattern Classification using Neural Networks” , IEEE
Communications Magazine, p. 48, November 1989.

[2] Amin, A. “Arabic Character Recognition” , Handbook of Character Recognition and
Document Image Analysis, World Scientific Publishing Company, 1997, pp. 398.

[3] Kohonen, T., Oja E., Simula Olli , Visa A., and Kangas, J. “Engineering Applications
of the Self-Organizing Map”, Proceedings of the IEEE, vol. 84, no. 10, p. 1358,October
1996.

[4] Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice-Hall , New
Jersey, USA.1994. Chapter 10.5: Self-Organizing Feature-Mapping Algorithm.

[5] Haykin, S., Neural Networks: A Comprehensive Foundation, (2nd Edition),Prentice-
Hall , New Jersey, USA.1999. Chapter 3.8,3.9:Perceptrons.

[6] Kohonen, T. “The Self-Organizing Map”, Proceedings of the IEEE, Vol. 78. No. 9,
pp.,1464-1480, September 1990.

[7] El-Sheik, T.S. and El-Taweel, S.G., “Real-Time Arabic Handwritten Character
Recognition” ,Pattern Recognition, volume 23 (1990), number 12 , pp. 1323-1332.

[8] Al-Emami, S. and Usher, M. “On-Line Recognition of Handwritten Arabic
Characters” , IEEE Transactions on Pattern Analysis and Machine Intelli gence, Vol. 12,
No. 7, July 1990. pp. 704-710.

[9] Alimi , A. and Ghorbel, O. “The Analysis of Error in an On-Line Recognition System
of Arabic Handwritten Characters” , Proceedings of ICDAR 1995, 14-16 August 1995,
Montreal, Canada. pp. 890-893.

[10] Bouslama, F. and Amin, A., “Pen-based Recognition System of Arabic Character
Utili zing Structural and Fuzzy Techniques” , 1998 Second International Conference on
Knowledge-Based Intelli gent Electronic Systems, 21-23 April 1998, Adelaide, Australia.
Editors, L.C. Jain and R.K. Jain, pp 76-85.

[11] El-Wakil ,M. and Shoukry, A., “On-Line Recognition of Handwritten Isolated Arabic
Characters” , Pattern Recognition, vol. 22, no.2, pp. 97-105, February 1989.

 56

[12] Alimi , A., “An Evolutionary Neuro-Fuzzy Approach to Recognize On-Line Arabic
Handwriting” , Proceedings of the 4th International Conference Document Analysis and
Recognition (ICDAR '97), pp. 382-386, 1997.

[13] Lee, S. and Pan, J. “Off line Tracing and Representation of Signatures” ,IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 22, No.4, pp. 755-771, July/August
1992.

[14] Tejwani, Y. and Jones, R. “Machine Recognition of Partial Shapes using Feature
Vectors” , IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-15, No. 4, p.
510, July/August 1985.

[15] Rui Y., Haung T.S., Mehrotra S., “Content-based image retrieval with relevance
feedback in MARS”,Proceedings of the International Conference on Image Processing
(1997), Vol 2, pp 815-818.

[16] Koza J.R., “Hierarchical genetic algorithms operating on populations of computer
programs”, Proceedings of the 11th International Joint Conference on Genetic
Algorithms, Sridharan N.S. (ed), 1989, pp 768-774.

[17] Tomassini M., “Evolutionary Algorithms.” in Towards Evolvable Hardware,
Lecture Notes in Computer Science - 1062, Sanchez E., Tomassini M., (eds). Springer-
Verlag, 1996, pp 19-47.

 57

Appendix A – Informed Consent Form

Data Collection for Cursive Arabic Alphabet Recognition

Principal Investigators:
Tim Klassen Dr. Malcolm Heywood
Faculty of Computer Science Faculty of Computer Science
Dalhousie University Dalhousie University

We invite you to take part in a research study at Dalhousie University. Taking part in this study is
voluntary and you may withdraw from the study at any time. There will be no repercussion from
choosing not to participate in this study. The study is described below.
This description tells you what you will be asked to do and includes any risks or inconvenience
you might experience. Participating in the study may not benefit you directly but we may be able
to learn how to recognize custom Arabic script and incorporate that into the design of new hand-
held recognition software. There is no compensation for participating in this study and you may
terminate your participation in the study at any time without prejudice. You should discuss any
questions you have about this study with either of the principal investigators.

The purpose of this study is to recognize custom Arabic letters written on a digital tablet. The
study consists of a single session of 15-20 minutes where you will be asked to fill i n a dialog box
with information consisting of your gender, handedness, age range and country of origin. Then
you will be asked to write the letters of the Arabic alphabet 5 times. These entries will be
recorded in a file. All personal and identifying data will be kept confidential. Only the user code
will be used by the computer system and the informed consent form will be kept in a secure
place.

In the event that you have any diff iculties with, or wish to voice concern about, any aspect of
your participation in this study, you may contact the Human Research Ethics/Integrity
Coordinator at the Dalhousie University Off ice of Human Research Ethics and Integrity for
assistance. The phone number is (902)494-1462.

I have read the explanations about this study. I am at least 18 years of age. I have been given the
opportunity to discuss it and my questions have been answered to my satisfaction. I hereby
consent to take part in the study. However, I realize that my participation is voluntary and that I
am free to withdraw from the study at any time.

Par ticipant: Researcher:
Name:_____________________________ Name:_______________________

Signature:__________________________ Signature:____________________

Date:______________________________ Date: ________________________

 58

Appendix B – Experimental Tables

Table 11 – Average Calculations of Scale

Table 12 - Genetic Programming Class Results for SOM 60

 Training Validation Test
 Combined Positive Negative Combined Positive Negative Combined Positive Negative

1 82% 100% 81% 82% 90% 82% 75% 78% 75%
2 78% 89% 76% 81% 79% 82% 76% 70% 77%
3 72% 94% 70% 82% 80% 82% 75% 74% 75%
4 72% 82% 71% 77% 71% 78% 75% 68% 76%
5 79% 86% 78% 88% 93% 88% 85% 90% 85%
6 67% 94% 66% 76% 83% 75% 79% 75% 79%
7 75% 100% 74% 81% 85% 81% 82% 76% 82%
8 77% 93% 75% 88% 72% 89% 84% 76% 85%
9 77% 100% 75% 77% 89% 76% 75% 72% 75%

10 73% 93% 71% 75% 89% 74% 74% 76% 73%
11 77% 81% 76% 74% 48% 76% 78% 53% 80%
12 72% 92% 71% 73% 68% 74% 76% 40% 77%
13 75% 100% 74% 82% 73% 82% 76% 84% 75%
14 77% 88% 77% 89% 74% 89% 77% 76% 90%

Writer Average X Average Y
1 168 185
3 74 73
4 157 154
5 53 56
6 318 318
7 121 131
8 72 104
9 91 108

10 264 253
11 170 161
12 87 83
13 140 143
14 265 261
15 336 297
16 82 75
17 211 182
18 120 125
19 284 275
20 159 190
21 313 347

Averages 174.25 176.05

 59

15 76% 100% 75% 81% 63% 82% 84% 72% 84%
Totals 75% 93% 74% 80% 77% 80% 78% 72% 79%

Table 13 - Multi-Layer Perceptron Results with Training Par titioning/Pruning

 Training Validation Test
 Combined Positive Negative Combined Positive Negative Combined Positive Negative

1 99% 87% 100% 98% 75% 99% 97% 61% 98%
2 100% 100% 100% 93% 78% 96% 90% 67% 93%
3 100% 97% 100% 96% 78% 98% 94% 66% 97%
4 99% 88% 99% 95% 66% 97% 92% 52% 95%
5 99% 97% 99% 95% 70% 97% 91% 54% 94%
6 99% 94% 100% 96% 56% 99% 94% 33% 98%
7 100% 98% 100% 97% 91% 98% 96% 72% 97%
8 100% 96% 100% 97% 81% 99% 96% 60% 99%
9 100% 97% 100% 96% 65% 98% 94% 50% 98%

10 99% 92% 100% 97% 68% 99% 95% 56% 98%
11 99% 97% 99% 95% 71% 97% 92% 53% 95%
12 100% 93% 100% 99% 88% 100% 98% 76% 99%
13 100% 91% 100% 98% 58% 99% 97% 52% 99%
14 99% 93% 100% 98% 79% 99% 98% 80% 99%
15 100% 93% 100% 98% 68% 99% 97% 60% 98%

Totals 99% 94% 100% 96% 73% 98% 95% 60% 97%

Table 14 - Perceptron Results by Class with Training Par titioning/Pruning

 Training Validation Test
 Combined Positive Negative Combined Positive Negative Combined Positive Negative

1 99% 91% 100% 97% 70% 99% 97% 52% 99%
2 94% 93% 94% 93% 90% 93% 92% 86% 93%
3 99% 96% 99% 97% 84% 98% 97% 80% 99%
4 98% 90% 99% 96% 78% 97% 93% 68% 95%
5 97% 86% 98% 96% 78% 97% 95% 64% 97%
6 91% 97% 90% 89% 92% 88% 92% 73% 94%
7 98% 97% 98% 96% 88% 97% 95% 78% 96%
8 99% 98% 99% 98% 94% 98% 97% 90% 98%
9 93% 96% 93% 92% 81% 93% 92% 74% 94%

10 98% 91% 98% 96% 80% 97% 95% 82% 96%
11 91% 92% 91% 89% 88% 89% 88% 80% 89%
12 99% 100% 99% 96% 80% 99% 98% 100% 98%
13 99% 86% 100% 97% 97% 99% 97% 48% 99%
14 99% 95% 99% 96% 92% 99% 98% 88% 98%
15 99% 93% 99% 97% 70% 98% 96% 67% 97%

Totals 97% 93% 97% 95% 84% 96% 95% 77% 96%

