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1. Introduction 

1.1. Overview  
 

On-line character recognition is a challenging problem. Much of the diff iculty 

stems from the fact that pattern recognition is a complex process that cannot be solved 

completely by analytical methods 

Many applications in hand-held computing and digital signatures and verification 

use on-line character recognition. As computers become increasingly ubiquitous and 

mobile, the interfaces have been rapidly shrinking.  However, as the technology that 

powers these hand-held and portable devices miniaturizes components, one component 

has severe limitations on size reduction.   

The standard computer keyboard cannot shrink to the size of hand-held devices 

such as personal digital assistants or cell phones and still be useable.  The need for a 

natural interface that can scale gracefully with the shrinking size of personal digital 

assistant platforms becomes apparent. A small stylus or pen and electronic tablet are a 

suitable solution for most hand-held devices.  Handwriting is a vital process for this 

interface to be useful.  

Thirty years of research has gone into producing on-line Latin or Asian language 

letter recognition systems.  However, very littl e has been done in Arabic until recently. 

Most of the current Arabic letter recognition systems do not allow for noisy data input.  

Hand-held computing must make this allowance because of the environment for using 

such a device.  Handhelds are typically used while in moving vehicles or walking where 

the probabilit y of noise being introduced into the writing process is high. 

In this work, we introduce a novel Arabic letter recognition system that can be 

adapted to the demands of hand-held and digital tablet applications.  Our system uses 

neural networks for feature extraction and classification. Linear networks are employed 

as classifiers because of the low computational overhead during training and recall . 
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1.2. Summary of Hypothesis 
 

The objective of this project is to demonstrate a framework for giving good 

recognition accuracy to on-line Arabic letter input using an unsupervised learning method 

(Self-Organizing Maps – see Section 2.3) for feature extraction (see Section 5.7) and a 

supervised learning method (Perceptrons - see Section 2.4) for classification (see Section 

5.8 ). Good recognition accuracy means that the system will scale well for many writers, 

classify eff iciently, and have the potential to be robust in the presence of noisy data input. 

This system should also be robust to scale, position and rotation and be computationally 

eff icient.  

 

2. Background Information 

2.1.  On-line Character Recognition 

2.1.1. Character Recognition 
 

The primary task of alphabet character recognition is to take an input character 

and correctly assign it as one of the possible output classes. This process can be divided 

into two general stages: feature selection and classification. Feature selection is criti cal 

to the whole process since the classifier will not be able to recognize from poorly selected 

features.  Lippman gives criteria to choose features by: 

 

“ Features should contain information required to distinguish between 
classes, be insensitive to irrelevant variabilit y in the input, and also be 
limited in number to permit efficient computation of discriminant functions 
and to limit the amount of training data required.” [1]  

 
Often the researcher does this task manually, but a neural network approach allows the 

network to automatically extract the relevant features.   

There are many possible types of classifiers: statistical (Bayesian), symbolic 

(Rule Induction, Genetic Programming), and hyperplane (multi -layer perceptron). 
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Statistical classifiers need to have a priori knowledge of the features to classify.  

Symbolic and hyperplane classifiers can theoretically combine feature extraction and 

classifiers in one step. A SOM/perceptron1 combination is a two-stage system, with the 

SOM clustering to extract pertinent features and the perceptron participating as a linear 

classifier. (More about SOMs in Section 2.3 and  perceptrons in Section 2.4 ) 

 Due to the different characteristics in performance, we compare 1) a perceptron 

2) a multi -layer perceptron (see Section 5.8.2) and 3) genetic programming (see Section 

5.8.3) for classification.  

 

2.1.2. On-line vs. Off-line 
 

There are two kinds of input for character recognition: off -line and on-line.  Off -

line character recognition takes a raster image from a scanner, digital camera or other 

digital input source.  The image is binarized using a threshold technique if it is color or 

gray-scale so that the image pixels are either on (1) or off (0).  The rest of the pre-

processing is similar to the on-line version with two key differences: Off -line processing 

happens after the writing of characters is complete and the scanned image is pre-

processed.  Secondly, off -line inputs have no temporal information associated with the 

image. The system is not able to infer any relationships between pixels or the order in 

                                                           
1  Self-Organizing Feature Map 

Figure 1 - Examples of off -line(left) and on-line(r ight) handwr iting inputs 
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which strokes were created.  Its knowledge is limited to whether a given pixel is on or 

off .  

 On-line character recognition accepts (x,y) coordinate pairs from an electronic 

pen touching a pressure-sensitive digital tablet. On-line processing happens in real-time 

while the writing is taking place.  Also, relationships between pixels and strokes are 

supplied due to the implicit sequencing of on-line systems that can assist in the 

recognition task (see Figure 1). 

2.2.  Arabic Characters 

2.2.1. Overview of Arabic Characters 
 

Arabic is a language spoken by Arabs in over 20 countries, and roughly 

associated with the geographic region of the Middle East and North Africa, but is also 

spoken as a second language by several Asian countries in which Islam is the principle 

religion (e.g. Indonesia). However, non-Semitic languages such as Farsi, Urdu, Malay, 

and some West African languages such as Hausa have adopted the Arabic alphabet for 

writing 2.  Due to the cursive nature of the script, there are several characteristics that 

                                                           
2  “Arabic Language” entry, Encarta Encyclopedia CD-ROM, 1999. 

Figure 2- Letters of the Isolated Arabic Alphabet 



 5 

make recognition of Arabic distinct from the recognition of Latin scripts or Chinese  (see 

Figure 2) 3. The following section summarizes the nature of these differences. 

2.2.2. Arabic Alphabet 
 

Arabic has 28 letters in the alphabet. It is based on 18 distinct shapes that vary 

according to their connection to preceding or following letters. Using a combination of 

dots and symbols above and below these shapes, the full complement of 28 consonants 

can be constructed. Our system recognizes 15 distinct shapes or classes (see Figure 3) 

because the assumption is made that certain classes are similar enough, that they will 

look the same after normalization (see Figure 4). 

 

Figure 3 - Recognition classes 

                                                           
3  graphic from http://www.arabic2000.com/arabic/alphabet.html  
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Arabic is a cursive language.  There are no capital letters and some letters are not 

connected to the letters that follow them (letters in blue in Figure 2).  Thus, words cannot 

be segmented based on pen-up/pen-down information or space between letters.  Block or 

hand printed letters do not exist in Arabic. Moreover, the cursive nature of the language 

makes recognition more diff icult.  In summary, 

Many researchers have been working on cursive script recognition for 
more than three decades.  Nevertheless, the field remains one of the most 
challenging problems in pattern recognition and all the existing systems 
are still li mited to restricted applications [2] . 

 
Arabic is written from right to left.  Since the proposed application area provides 

letters in an isolated form, segmentation is assumed and direction of writing is not an 

issue.  However, if our system automatically segmented words for recognition, 

knowledge of the direction of writing would assist in segmentation and recognition. 

 

Figure 4 - Similar Normalized shapes in the same class 
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Arabic has four forms for each letter depending on the position of the letter in 

each word.  These are initial, medial, final and isolated (see Figure 5)4.  A more 

generalized system would need to train 60 separate classes rather than 15 classes (for 

isolated letters) to accommodate all four forms for each letter. 

A key difference between Latin scripts and Arabic is the fact that many letters 

only differ by a dot(s) but the primary stroke is exactly the same.  Out of the 15 classes 

for isolated letters, 10 classes have 2 or more letters that vary by only a dot(s) or symbol.  

This highlights the need for a good feature extractor/classifier for the secondary stroke(s).  

The system detailed in this work addresses the recognition of primary strokes, and makes 

recommendations regarding the recognition of secondary strokes. 

2.3. SOM (Self-Organizing Maps) 
Unsupervised learning is useful for feature extraction because it finds 

relationships between raw data points and clusters them together.  These relationships or 

patterns in data become features of the data set.  Self-Organizing Maps are a neural 

network example of unsupervised learning. 

This section will give a brief overview of Self-Organizing Feature Maps (or 

SOMs).  Teuvo Kohonen first introduced SOMs in 1982.  They are defined as follows: 

The self-organizing map (SOM) is a new powerful software tool for the 
visualization of high-dimensional data.  It converts complex, nonlinear 
statistical relationships on a low-dimensional display.  As it therefore 

                                                           
4 Taken from www.sakkal.com/ArtArabicCalli graphy.html 
 

Figure 5- Samples of Var ious Arabic Letter Forms 
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compresses information while preserving the most important topological 
and metric relationships of the primary data elements on the display, it 
may also be thought to produce some kind of abstraction[3] . 
 
Two key features of the SOM are its abilit y to visualize high-dimensional data as 

well as abstract statistical relationships from data that may not be seen manually. It 

differs from general competitive learning algorithms because it is topologically ordered.  

Neighboring neurons will have similar features in the input space. Figure 6 depicts the 

unfolding  of the ‘map’ as training progresses in an SOM in this application. 

The competitive process of modified Hebbian5 learning trains a SOM.   

Equation 1 shows how the weight of a neuron j (wj) is adapted through the 

learning process where η is the learning rate, x is the input, y is the post-synaptic output, 

and the modification term g(yj) which is a ‘f orgetting’ f unction of the neuron’s output 

that prevents neuron saturation [4].  If we set the learning rate and the forgetting function 

to be the same variable, Equation 1 simpli fies to  Equation 2.  

                                                           
5 Hebbian learning compares pre and post-synaptic activities in a neuron.  If the input and output are 
correlated, the weight is increased.  If the input and output are not correlated, decrease the weight. 

Figure 6 - Unfolding of the Self-Organizing Map 
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Equation 1-General Hebbian Learning  

jjj
j wygxy

dt

dw
)(−=η   

Equation 2 - Simpli fied SOM equation  
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Procedurally, neurons are created and linked together in a chosen topology and 

initialized with random weighting.  Each neuron is presented with the same data pattern 

and the neuron with the smallest Euclidean distance between its weight and that data 

pattern (see Equation) becomes the winning neuron.  The weights used in calculating the 

distance inside the winning neurons’ neighborhood are updated to incrementally 

minimize the distance between pattern and weights (see Equation 3).  

Equation 3 - SOM Updating 
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Figure 7 - Neighborhood of 1 in red; of 2 in blue and of 3 in purple 
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Two key parameters control the learning process: the neighborhood function 

λ i(x) which determines the radius around the winning neuron i for a given input x inside  

which the neighboring neuron’s weights are adapted ( see Figure 7)and  the learning rate 

η(n)at epoch n, which determines how much of a jump the neurons in the neighborhood 

of the winning neuron take toward the input vector. In order to ensure a topological 

ordering of the neurons at convergence, as well as stabilit y during learning, the 

neighborhood and learning rate adaptively shrink over time.  Thus, by the end of the 

training process, the neighborhood consists of just the winning neuron and the learning 

rate approaches zero.  For more information, see Haykin [5] or Kohonen [6]. 

2.4. Perceptron Learning 
The role of supervised learning in a pattern recognition problem is in training the 

classifier.  Input is passed into the classifier along with a target label.  If the classification 

does not match the target label, the weights can be adjusted so that the input is correctly 

classified.  The supervised learning technique used in this work as a classifier is a 

perceptron. In effect the assumption is made that linear discriminants will be suff icient. 

By doing so we gain a very simple learning rule which lends itself to real-time learning in 

handheld computing divices. 

Figure 8 - Simple Perceptron 
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Perceptrons are simple neurons with a fixed number of inputs and matching 

weights for each input (see Figure 8).  The output is binary and a perceptron has a 

threshold or bias, b, which provides the boundary between the two output classes.  

Equation 4 - Perceptron Output to delimiter 

∑
=

+=
m

i
ii bxwv

1
 

In Equation 4, the result v is the input for the delimiter6.  Substituting the bias (b) as the 

first input simpli fies Equation 4 to give Equation 5.  This equation assumes that  

Equation 5- Simpli fied Perceptron Output 

)()()()()(
0

nxnwnxnwnv T
m

i
ii

�== ∑
=

 

 

 

 

 

 

x0(n) = 1, w0(n) = b(n) and that there are n training samples. This defines the hyperplane 

decision surface between the binary output classes (C1 and C2 ) .   

The weights are updated according to Equation 7 -Perceptron Weight Updating 

Rules .  If the weights are correctly classified, the new weights are unchanged.  However, 

if the classification was incorrect, the weights are moved toward training input x 

modulated by a learning rate η(n). This learning rate may be fixed or decay over time.   

                                                           
6 The delimiter is a function which usually decides that an output is in Class 1 if it is positive and Class 2 if 
it is negative 

Equation 7 -Perceptron Weight Updating Rules  

wi(n+1) = wi (n)   if wTx(n) > 0 and x(n) belongs to class C1 

wi (n+1) = wi (n)   if wTx(n) ≤ 0 and x(n) belongs to class C2 

 
wi (n+1) = wi (n) –  η(n)x(n)  if wTx(n) > 0 and x(n) belongs to class C2 

wi (n+1) = wi (n) +  η(n)x(n)  if wTx(n) ≤ 0 and x(n) belongs to class C1 

 

Equation 6 - Perceptron weight updating Rules 
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 A simple perceptron works properly if the classes are linearly separable.  

Linearly separable classes do not have any quadratic, cubic, or higher order terms in the 

equation defining the solution.  This means that the classes in m dimensions must be far 

enough apart that a hyperplane surface in m-1 dimensions can separate them.  If this 

cannot be accomplished then the solution is non-linear and a perceptron will not correctly 

separate the classes.  XOR is a classic example of a non-linear problem that cannot be 

solved by a perceptron.  Looking at Figure 9, there is no way to draw a straight line that  

separates the ‘x’ symbols and circle symbols.  

 

Figure 9 - XOR is a non-linear problem 

If the problem has a non-linear solution, a multi -layer perceptron (MLP) with 

hidden layers can be used.  However, MLP suffers from getting trapped in local error 

minima as well as lengthy learning times as the number of inputs or nodes increase.  

Stated differently: 

Since back-propagation learning is basically a hill climbing technique, it 
runs the risk of being trapped in a local minimum where every small 
change in synaptic weights increases the cost function.  But somewhere 
else in the weight space there exists another set of synaptic weights for 
which the cost function is smaller than the local minimum in which the 
network is stuck…In principle, neural networks such as multi -layer 
perceptrons …have to overcome the scaling problem, which addresses the 
issue of how well the network behaves …as the computational task 
increases in size and complexity [5] . 
 
  Learning is simple and eff icient for a perceptron and it should be chosen if the 

problem has a linear solution.  For more information on perceptrons, see Haykin [5]. 
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2.5. Summary 
 

On-line character recognition is divided into two phases: feature selection and 

classification.  Determining representative features is very important in the recognition 

process.  On-line processes are done in real-time and have implicit sequencing and 

temporal information encoded into the input. 

The Arabic alphabet, which is used by other cultures besides Arabs, has 28 

characters that can be described with 15 primary stroke classes.  Recognizing Arabic 

letters differs from recognizing Asian languages or Latin script languages 7. 

Self-Organizing Maps (SOMs) are a competitive learning process with the 

property that they are topologically ordered.  They typically allow the user to visualize 

higher-dimension input vectors in 1- or 2-D space and automatically select features 

capable of representing the input space.  The learning rate and neighborhood function 

decay over time so that the learning algorithm converges. SOMs are used in this system 

as a feature extractor. 

Perceptrons are neurons, which have an arbitrary number of inputs, weights and a 

bias term with a binary output. These are trained to tune the weights towards a given 

input pattern by a fixed or variable learning rate if the perceptron misclassifies that input 

pattern.  Perceptrons are a good choice for solving linear problems.  If the problem is 

non-linear, then multi-layer perceptrons can be used to solve it, at the expense of further 

uncertainty in the training process (local minima).  Perceptrons are used in this system as 

the primary classifier.  

 

                                                           
7 Asian languages  tend to be block and stroke-based characters while Latin languages  are cursive but have 
letter classes which are distinguishable by more than dots or a symbol. Arabic is cursive with high 
connectivity between letters. 
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3. Review of State of the Art 

3.1.  Overview 
 

Pattern recognition is a well-established field of study and character recognition 

has long been seen as one of its important contributions. However, Arabic character 

recognition has been one of the last major languages to receive attention 8.  This is due, in 

part, to the cursive nature of the task (see comments in Section 2.2.2). Two common 

themes have driven much of the work in on-line Arabic character recognition.  The first is 

a hierarchical division of the input letter space to simpli fy the problem.  The second 

theme is heuristically defined rules for classification or feature selection, which tend to be 

data and writer dependent.  Now we will t ake a look at most of the earlier works by 

method. After looking at all the approaches, we will discuss the strengths and weaknesses 

of each method and summarize findings in Table 10 in Section 6.4. 

3.2. Al-Sheik, Al-Taweel : Hierarchical Rule-based Approach 
 

Al-Sheik and Al-Taweel assumed a reliable segmentation stage, which divided 

letters into the 4 groups of letters (initial, medial, final and isolated) as discussed in 

Section 2.2.2.  The recognition system depended on a hierarchical division by the number 

of strokes.  One stroke letters were classified separately from two stroke letters etc. 

Ratios between extrema and position of dots in comparison to the primary stroke were 

defined heuristically on the data set to produce a rule-based classification. Recognition 

rates for isolated letters were reported at 100% [7]. It was unclear from the paper whether 

these results were on the training or test set. 

3.3. El-Emami, Usher: Segmented Structural Analysis Approach  
 

El-Emami and Usher were trying to recognize postal address words after 

segmenting them into letters. They used a structural analysis method for selecting 

features of Arabic characters.  The classification used a decision tree.  In pre-processing, 

                                                           
8 An early work by Amin. et al. was only published in 1980. 
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they segmented using Belaid and Haton’s method for finding extreme curvature.  Some 

of the features extracted during this segmentation process were direction codes, slope and 

presence of dot flags.  A new input needed to search three decision trees for the primary 

stroke and also for the upper and lower dots.  The decision tree was hand-tweaked to find 

the best parameters to fit the data set, which possibly could have led to overfitting [8]. 

The system was trained on 10 writers with a set of 120 postal code words with a 

total of 13 characters.   They used one tester who had a recognition rate of  86%.  They 

instructed him to change his writing style to account for a weakness in the system and 

obtained 100% accuracy [9]. 

3.4. Bouslama, Amin: Structural and Fuzzy Approach 
 

Bouslama and Amin produced a hybrid system that combined structural and fuzzy 

techniques.  Structural analysis discriminated between various letter classes to be 

recognized and fuzzy logic allowed for variabilit y in people’s handwriting within the 

same class.  Sampling was done on the input data points by comparing tangent angles at 

various points along the line.  Endpoints were kept automatically. The first point that had 

a tangent difference bigger than a threshold θ became the next sampled point. The 

authors chose basic shapes such as curves, loops, lines and dots as good features for 

discriminating between letter classes.  These were constructed using geometric and 

structural relationships between the sampled points. After fuzzifying 9 the features, fuzzy 

‘ If-then rules’ were created heuristically by the authors, following a study of the data set. 

These fuzzy rules could distinguish letters from combinations of these fuzzy features and 

allowed for fuzzy membership in a letter class instead of binary membership to cover the 

variabilit y in handwriting between authors. No test or accuracy results were listed  [10]. 

3.5.  Alimi, Ghorbel: Template matching and Dynamic Programming 
Approach 

 
Alimi and Ghorbel showed how to minimize error in an on-line recognition 

system for isolated Arabic characters using template matching and dynamic programming 
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with assumed segmentation. the reference bank of prototypes was prepared after 

smoothing, normalization and coding the data coordinates into a parametric 

representation of angles. When new data was presented to the system, the distance 

between the prototype and new data string was minimized using dynamic programming. 

The number of prototypes was varied to see the effect on recognition rates.  As expected, 

more prototypes gave better accuracy.  The optimum was at 9 prototypes with 96% 

accuracy on test data for one author [9]. 

3.6.  El-Wakil and Shoukry: Hierarchical Template Matching and k-
nearest Neighbor Classification Approach  

 
El-Wakil and Shoukry used stable features to hierarchically reduce the number of 

letter class considered based on template matching. The stable features were: 1) the 

number of dots 2) relative position of the dots compared with the primary stroke 3) 

number of secondary strokes and 4)slope of secondary stroke. A k-nearest neighbor 

classifier then used primary strokes encoded as a primitive of angular directions in the 

stroke to determine the closest class. Recognition accuracy varied with the length of 

primitive strings but the optimal string length gave an accuracy of 84% by testing 7 

writers on sets of 60 characters. Weighting the features manually by their relative 

importance gave a maximum accuracy of 93% [11]. 

 

3.7.  Alimi: Evolutionary Neuro-Fuzzy Approach 
 

Alimi set forth a complete system that segmented letters according to an 

understanding of the way that humans write.  Given that an Arabic letter can have at most 

6 strokes and that a stroke is defined as an asymmetric bell -shaped function of curvili near 

velocity with the speed tapering off at the end of the stroke, a system can automatically 

segment a letter into sub-strokes, which define that letter.  Each character can be 

represented as 6 feature vectors.  If the character has less than 6 strokes, the empty 

strokes are zeroed out. 

                                                                                                                                                                             
9 A fuzzified feature allows for a degree of membership instead of just in or out of class. 
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This set of feature vectors was given to a fuzzy beta radial basis function neural 

network to recognize various letters.  The strokes were overlapped to give all possible 

combinations of strokes into letters. 

 These overlapped outputs were passed to a genetic algorithm to robustly 

recognize words.  Through a series of mutations and crossovers, the letters were 

segmented out and recognized. Reported accuracy was 89% without dot and diacritical 

information [12]. 

3.8.  Summary  - Strengths and Weaknesses of Previous Work 

3.8.1. Hierarchical Rule-based Approach 
 

This approach had an excellent recognition rate and a good divide-and-conquer 

strategy by reducing the classes through hierarchical rules. It also attempted to classify all 

of the forms of Arabic letters and used a large data set.  However, this approach would be 

extremely sensitive to noisy data in terms of the number of strokes since the hierarchy 

was built on counting the exact number of strokes. That is to say, when using a tablet for 

data entry, stylus bounce is often experienced on the hard surface.  In addition, using 

ratios of extrema is probably optimized for the particular data set and might not 

generalize well . 

3.8.2. Segmented Structural Analysis Approach 
 

This approach also had good accuracy and attempted to automatically segment 

words.  However, the method was sensitive to rotation and was tested on a limited input 

data set and a limited output classification set. The third experiment gave 100% accuracy 

results on one writer who was coached to alter his style to avoid weaknesses in the 

system. Before this alteration, the system was recognizing at 86% accuracy. Overfitting 

was a concern since the parameters were tweaked to give 100% accuracy on the training 

set. 
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3.8.3. Structural and Fuzzy Approach 
 

This system had perfect training results. 44 fuzzy rules were constructed to 

describe the training set completely. However, the fuzzy rules used were quite heuristic 

as seen by the author’s quote:  “These rules are obtained heuristically from the study of 

many handwritten samples.” [10] The paper did not list any test set accuracy results. 

3.8.4. Template Matching and Dynamic Programming Approach 
 

Alimi and Ghorbel produced good test results at 96%.  However, they only used 

one test subject who varied his handwriting across the prototypes.  This approach did not 

give enough variety in authors.  It was not evident whether this approach generalized well 

or not. 

3.8.5. Hierarchical Template Matching and k-nearest Neighbor Approach 
 

Like many other systems the authors showed good recognition results.  Also, li ke 

many other systems, this approach’s stable features were sensitive to noise and might not 

generalize well since the results were based on a test set of 60 characters alone. 

3.8.6. Evolutionary Neuro-Fuzzy Approach 
 

This approach was more robust, possibly due to the use of a genetic algorithm. It 

also segmented in a novel way using curvili near velocity.  The test set was constrained to 

only one word and a small subset of 7 different letters.  The system was also writer 

dependent and so might have problems with scaling to more writers. 

 

4. Case for Neural Network Approach 

4.1. Purpose statement 
 

As mentioned in the introduction, this research will show on-line average Arabic 

character recognition rates above 80% and training recognition rates above 90% using 

neural networks for feature extraction and classification with multiple unconstrained 
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writers. Linear networks will be emphasized, where this represents the lowest 

computational overhead during both training and recall , hence suitable for hand held 

devices – the target application device. 

4.2. Justification of Approach 
 

Past work in the area of on-line Arabic character recognition has focused on 

structural/hierarchical methods which create features based on the a priori identification 

of the number of strokes, type of strokes and shape of strokes.  This work clusters co-

ordinates in a stroke using a topologically ordered SOM that accounts for variations in 

handwriting and should handle noise robustly in practice (providing that the training set 

is suitably varied).  This is a novel use of neural networks in general and SOMs in 

particular to solve the on-line Arabic handwriting recognition problem.  The only other 

neural network approach to on-line Arabic character recognition is Alimi ’s approach 

using beta Radial Basis Functions and Genetic Programming. Our system classifies with 

a perceptron because of its training eff iciency and simplicity as a linear classifier.  

Arabic is a major world language spoken by 186 milli on people (2001 estimate)10. 

Very littl e research has gone into character recognition in Arabic due to the diff iculty of 

the task and lack of researchers interested in this field. As the Arab world becomes 

increasingly computerized 11 and mobile, and technology becomes increasingly 

ubiquitous, the need for a natural interface becomes apparent. Typing is not a natural 

user-friendly interface.  Voice recognition is more complex, computationally expensive 

and prone to interference from the environment, leaving handwriting recognition as a 

viable alternative. 

Palm-held computing is on the rise. A keyboard is too big for a palm-held 

computer so a stylus and tablet system for interaction requires a much smaller interface. 

Hence the need for handwriting recognition. 

 

                                                           
10 see http://www.al-bab.com/arab/language/lang.htm.  
11 See http://www.ditnet.co.ae/itnews/newsmay99/newsmay77_table.html for Arab World increase in 
Internet users during a 4 month period 
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Palm12 introduced an Arabic interface for their palm computer in 2000.  However, 

originally, it had a script that the user needed to learn in Arabic li ke Graff iti for English.  

In 2001, Palm Pilot realized the importance of customized script by introducing Nukoush.  

“ Even though we have tested our Graffiti database after consulting with 
over 25 users from different countries to come up with the best designed 
hand-writing technique, we feel that this is not enough, so we created 
Nukoush” . 13 

 
Our system goes one step beyond Nukoush since it does not require the user to 

create prototype letters but can use the weighted system out of the box.  Customized 

prototype letters will im prove the recognition rates for a given user but our system will 

generalize better than a Palm with a customized Nukoush interface. Moreover, use of a 

perceptron classifier provides for fast additional real-time training to give user specific 

fine-tuning of the classification stage. 

 In the following section, we will l ook at the conceptual model of our system and 

explore its details. 

5. Conceptual Model 

5.1.  Overview of Conceptual Model 
 

Any pattern recognition system can be divided into a number of distinct stages: 

Data collection, Storage, Segmentation, Input reduction, Normalization, Feature 

Extraction and Classification.  The goal of the overall system is to correctly classify the 

pattern being analyzed.  Each stage has unique goals that enhance that possibilit y (see 

Table 1).  Figure 10 shows the phases of the Neural Network Handwritten Arabic Letter 

Recognition (NNHALR) system described in this paper.  

Table 1 - Phases of a Pattern Recognition System 

Pattern Recognition Phase Goal of Phase 

Data Collection To accurately record raw data while 
minimizing quantization errors 

                                                           
12 Palm is a popular hand-held Personal Digital Assistant for basic mobile tasks such as note-taking, email 
and scheduling. 
13 Palm’s Arabic site:  http://www.arabicpalm.com/APOS.htm#Nukoush 
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File Storage To make the data persistent so that 
experiments can be repeated on the data 
with an extensible format. 

Segmentation To divide or separate data input into 
defined, clearly understood blocks or 
segments.   

Sampling To decrease the size of the input data with 
a resulting decrease in complexity for 
training while minimizing loss of accuracy.   

Normalization To make the inputs invariant to such things 
as rotation, scale and translation.   

Feature Extraction To further reduce the input space by 
grouping inputs into relevant features  

Classification To correctly classify the input as one of the 
output classes 

 

Figure 10 - NNHALR system 
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5.2. Data Collection 
 

5.2.1. Tablet and Monitor Specifications 
 

Data collection for the NNHALR system was done using a digital tablet to collect 

Arabic letter samples from Arabic writers.  The digital tablet used was a Wacom 

Graphire Model ET-0405-U with a resolution accuracy of 23 points/cm.  The active 

surface is 9.2 x 12.8 cm.  It has a sampling frequency of 100 points/sec.  The monitor 

used was a 13 inch Optiquest by Viewsonic at 1024x768 pixel resolution. The data 

capture application screen was set to the size of the monitor to standardize the input space 

and to smooth the data samples.  Earlier data samples were collected from a smaller data 

capture application screen and the results were subject to significant amounts of jitter as 

the user attempted to fit handwriting to the small monitor screen window space (see 

Figure 11 ).    

Figure 11 - Jitter (left) on a small screen; Smoother (r ight) on a larger screen 
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should have 200 instances of each of the 28 letter classes.  This would require 20 

volunteers writing 10 complete iterations of the alphabet.   

Most of these authors were students from the Faculty of Computer Science at 

Dalhousie University while a few were from the Hali fax community at large and their 

data samples were collected over the period of April -June 2001. Writer 2 was not 

included in any of the experimental tests since the data was collected on the small data 

capture application screen and hence the output was very jittery. The writers signed an 

informed consent form indicating their willi ngness to participate in this voluntary study 

(see Appendix A for a sample form) 

After the first volunteer, it became apparent that 10 iterations were excessive 

since this volunteer rushed to get through and the last iterations were written in a sloppy 

handwriting style. The number of expected iterations was reduced to 5, which gave a 

better mix of letter styles.  They were well written at the beginning and sloppier towards 

the end.  This gave an ideal of 2800 letters with 20 volunteers x 5 iterations x 28 letters. 

The volunteers were asked to go through the whole alphabet 5 times rather than 

consecutively writing each letter 5 times.  This gave the volunteer time to “ forget” the 

way that they wrote a given letter. 

Actually, 2769 samples were collected since there was a bug with the data 

collection program which wrote data collected from a sample directly to disk and if the 

volunteer entered the data very quickly, it would drop a letter occasionally as it was 

writing previous data to the disk. Also the program was designed to reject any data items 

which did not have matching control codes. (see Table 2 for a breakdown of actual letters 

in the data set) 

Table 2 -Breakdown of Data Sets by Class 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Train 54 237 179 120 120 120 117 120 119 119 119 60 58 59 55 

Validation 40 160 120 79 80 79 80 79 78 79 80 40 40 39 40 

Test 23 98 74 50 50 48 50 50 50 50 49 25 25 25 25 
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5.2.3. WinTab 
 

 The data collection program was a custom C program for Windows using the 

WinTab specification14.  WinTab is a standard interface for pointing devices to 

communicate with Windows.  This permitted raw x and y coordinates to be taken directly 

from the digital tablet. Implicit in this data collection was a sequence t, which aided in 

letter recognition later on.  

5.2.4. Introduction of Noise 
 

 There was some noise introduced in the data collection phase in the form of 

additional pen-up and pen-down signals (see Figure 12).  These were artifacts 15 of the 

pen bouncing on the hard surface of the digital tablet as the volunteers wrote the letter.  

                                                           
14 See www.pointing.com for details of the WINTAB specification. 

Figure 12 - Extra control codes in data collection 
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They were realistic and the NNHALR system should handle them in the future, but for 

now, the data was manually cleaned to exclude additional pen-up and pen-down signals.  

Note, that many of the previous works in the field will not robustly handle noise like 

these extra control signals, since they do a count of the number of strokes as a feature 

which is used to recognize the letter. 

 Another artifact introduced in normal handwriting was hooks.  Many systems 

dehook the handwriting before recognition but a neural network method includes the 

hooks in the training set and therefore the samples do not need dehooking. 

 The quantization artifacts introduced were minimal since the resolution accuracy 

was 23 points/cm on a 9.2 x 12.8 cm writing space. This gives a quantization error of  

0.5% in the x direction and 0.4% in the y direction.  Errors from other factors far 

outweigh any quantization effects. The resolution of the Palm hand-held is 0.035 cm 

which gives similar quantization effects. 

5.3. File Representation 

5.3.1. Persistent Storage 
Our system needed persistent data storage.  This way, the raw data was accessible 

at any time for training and testing purposes.  Eventually, the system will handle real-

time on-line data but this can be simulated using files as the source instead of a writer 

using the digital tablet.  Upon completion, only the weights of the feature extraction and 

classification phases would be stored persistently. 

5.3.2. Extendable Format 
 

                                                                                                                                                                             
15 In this paper, the terms noise and artifacts are used interchangeably. 
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The data was stored in a format that could be easily understood by other 

handwriting recognition programs.  The UNIPEN 16 standard for cursive handwriting was 

chosen to accomplish this.  This format has become the worldwide-accepted standard for 

storing cursive handwriting data. The NNHALR system needed the data in a Matlab-

compatible format, so it received an additional conversion for this purpose but many 

programs are written to read UNIPEN data directly. Matlab17 provided the application 

and algorithm development environment for processing further phases of the recognition 

process including neural network feature extraction and classification. 

5.3.3. Data Format for system 
 

Each volunteer’s data was stored in one large Unipen-compliant file. This file had 

a header section with fields such as gender, handedness, country of origin and age 

                                                           
16 details on UNIPEN can be found at http://hwr.nici.kun.nl/unipen/   
17 For more about Matlab, see www.mathworks.com 

Figure 13 - Data Collection Dialog Box 
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range(see Figure 13). After the file header, there was a letter label header.  This was 

followed by pen-up/pen-down control code information and x and y coordinate 

information generated from the pen on the digital tablet. This process was repeated for 

each letter in the iteration set.  Table 3 lists the data set subdivided by gender and country 

of origin to give an idea of even distribution of the data. 

Table 3 - Nationali ty and Gender Breakdown of NNHALR Data set 

 Egypt KSA Kuwait Other Palestine Syria Totals 

Male 4 2 3 1 4 0 14 

Totals 7 3 4 3 6 2 25 

Female 3 1 1 2 2 2 11 

5.4. Segmentation 

5.4.1. Letter Segmentation 
 

Segmentation occurs at two levels.  In a more general recognition system, words must be 

segmented into letters and then letters into strokes.  In order for the pattern recognition 

system to recognize Arabic letters correctly, robust letter segmentation is needed. Since 

the NNHALR system only processes isolated Arabic letters, letter segmentation is 

assumed.  However, the system does need to pre-process the archived UNIPEN format. A 

custom segmentation program, written in C, which separated the 
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 Figure 14 - Segmentation into Matlab files 
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18 A primary stroke is the first and longest stroke.  It represents the body of the letter.  The secondary 
stroke(s) is any strokes that follow in the same letter. 
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automated system, the Primary SOM can receive the first stroke.  If it recognizes, then 

the secondary strokes are sent to the Secondary SOM.  However, if the Primary SOM is 

undecided about the first stroke, then there is possibly noise and the second stroke is sent 

to the Primary SOM.  This procedure is repeated until the Primary SOM gives a positive 

identification of a stroke using a threshold φ.  This threshold could be defined as a degree 

of confidence in the winning classification. 

Many of the systems looked at in Section 3 depend on a count of the strokes as a 

key feature to be fed to the classifier.  This creates a problem if the data is noisy.  Our 

system should deal with this effectively since the feature extraction does not depend on 

control codes or stroke counting after segmentation. 

5.5. Critical Point Extraction 
 

The next phase reduces the data input space in order to minimize the training 

requirements by considering only the important features of a letter instead of every data 

point.  This reduction is accomplished by extracting criti cal points from the data.  Using 

the algorithm put forward by Lee and Pan for tracing and representation of on-line 

signatures [13], we extracted the criti cal points.  We found that using the procedure for 

ChkLOS was suff icient to extract enough criti cal points to provide competitive 

classification accuracy.   

 

Figure 15 - Calculating L ine of Sight 
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ChkLOS stands for Check Line of Sight and checks to see if an intermediate point 

is in Line of Sight of a line between two endpoints (see Figure 15). Note that in part a) of 

Figure 15, the blue dot is LOS of the blue line while in part b), the green dot is not LOS 

of the blue line. This procedure will give criti cal points at all endpoints and any curvature 

variation greater than a threshold δ.  

This threshold can be varied to give different numbers of criti cal points.  If  δ is 

set to zero, then all the points are given.  If δ is set high, then only a few criti cal points 

will be calculated. What is the right number of criti cal points for reducing the input space 

while retaining the important data points to create features?  Tejwani says: 

 “T he human apparently places heavy emphasis on features that are 
formed by criti cal points that are symmetrically opposite about an axis 
and features that are extracted from adjacent criti cal points from the 
shape.” [14] 

Since cursive handwriting is not a closed shape, there generally is not symmetry 

about an axis.  However, at high points of curvature there should be a concentration of 

criti cal points while straighter sections of stroke will have significantly less criti cal points 

(see Figure 16).  Table 4 shows experimental data for choosing a δ threshold of 10 which 

minimized the average number of data points and the standard deviation of the number of 

data points. 

Table 4 - Test data for selection of parameter Delta 

Delta Values for CheckLOS     
 Mean   Standard

Deviation 
  

 Min Max Mean Min Max Mean 
Delta = 1 10.48 32.89 20.92 3.61 9.93 6.42 
Delta = 2 10.23 32.04 20.51 3.46 9.59 6.25 
Delta = 5 9.77 29.71 19.34 3.15 8.53 5.77 
Delta=10 8.83 25.97 17.36 2.63 7.58 5.17 
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Delta = 10 8.83 25.97 17.36 2.63 7.58 5.17 

5.6. Normalization of Data 
 
 Once these criti cal points have been extracted, the data needs to be normalized so  

that the letters will be the same size and in the same position. 

5.6.1. Scaling Normalization 
 

People have great variabilit y in their handwriting.  Some write small l etters and 

others write larger letters.  Scaling reduces or enlarges the size of the letters to a pre-

defined size.  In our system, the predefined size is given by the mean of the average 

difference between the maximum and minimum in the x and y directions across all 

volunteers.  

 Table 11 in Appendix B shows the resulting averages. After rounding the mean x 

and mean y values to 175, the scaled box size for the data is 175x175 pixels. One of the 

side effects of scaling the letter data is that the minima and maxima in the x and y 

directions touch the edge of the scaling box. An analysis of the data shows that this works 

well for all l etters except for the letter Ali f which is tall and thin (similar to the letter ‘ l’ 

in the Latin alphabet).  We modified the scaling algorithm to only scale in the y direction 

Figure 16 - Cr itical Point Density – Or iginal Letter(Left); Cr itical Points extracted with Delta=10 
(r ight) 
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but leave the x direction untouched for Ali f. This scaled Ali f was then centered in the unit 

box.  This gave marked improvement in Ali f recognition accuracy 19 .  

However, this process must be automated so that the algorithm automatically 

detects an ali f. Comparing the ratio of the difference in extrema in the x 

direction divided by the difference in extrema in the y direction accomplishes this.  If 

these ratios are greater than some threshold γ (defined heuristically), the letter is not an 

ali f (see Equation 7).  This leads to the interesting case of classifying the letter to extract 

the features before classifying the letter.  

Equation 7 – Ali f Detector  
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19 Choosing a threshold of 0.25 doesn’ t classify about 11% of the Ali fs on average but doesn’ t misclassify 
any other letters. This means that 89% of Ali fs are now normalized for height but not width. 
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5.6.2. Translation Normalization 
 

Now that the feature extraction stage will see data scaled to the same size, we 

need to give it data that is translated to the same spot relative to the origin.  Since we 

have chosen negative numbers as control codes in the data, we do not want to introduce 

negative coordinate numbers about the origin which are no longer distinct from these 

control codes.  Therefore, the unit box which all l etters are translated into, has completely 

Figure 17 - Var iance in Superimposed Letter Classes 

Figure 18 - Normalizing Letter data 
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positive coordinates.20 Translating within this box enhances the similarities along the 

edge while translating about the centroid would enhance the similarities close to the 

centroid. This process should be selected to reflect the greatest variance in the data set. 

Figure 17 shows the variance in letters normalized to a unit box where the greatest 

variance is along the edges of the unit box.  Figure 18 gives a typical letter before and 

after scaling and translation. 

 The NNHALR system was scaled across the entire letter before segmentation.  

This gives a wider variety in input and should lead to more robust feature extraction.  

However, an alternative scaling technique would be to scale after segmentation which 

should give better recognition accuracy across the data set.  

5.6.3. Time Normalization 
 

As stated earlier, one of the advantages of on-line character recognition is that 

temporal information such as sequence and length of time to produce strokes is implicit. 

Sequence information was used in our system to give the feature extraction stage 

additional temporal information about a coordinate within a stroke.  The Wacom 

Graphire tablet records pen input at a maximum rate of 100 points/second 21.  However, 

some volunteers write at a different pace than others and may even write at a different 

pace from themselves at a given time. This is li kely to distract the learning process from 

identifying robust features (i.e. represents a source of ‘ noise’) .  We therefore, need to 

normalize the sequence information over the unit interval in order to compare different 

strokes.  

However, following normalization with time across the unit interval (ie. t ∈  

[0,1]), the SOM did not separate well i n the temporal direction. Since the interval along 

the other axis (x and y co-ordinates) was much larger, the SOM only performed well i n 

the coordinate direction.  Normalizing time with t ∈  [0,100] corrected that problem.  This 

means that the first endpoint is t = 0 and the last endpoint is t =100 for each letter.  Time 

normalization is divided across strokes so that if a letter has 2 strokes, the first or primary 

                                                           
20 0 to 175 in the x direction and 0 to 175 in the y direction 



 35 

stroke will be lower in the time-normalized sequence and the second or secondary stroke 

will have higher time-normalized sequence numbers.   

It remains to be seen what the effect on secondary strokes is, but it seems to work 

well on primary strokes.  A possible variation for trying to improve recognition accuracy 

is to set the temporal horizon at max(t) =100 for each stroke rather than each letter since 

letters without secondary strokes will have a different temporal horizon than letters with 

secondary strokes. One hundred was arbitrarily chosen as a unit interval because it was 

the nearest order of magnitude to the magnitude of the scaled x & y maxima. 

5.6.4. Rotation Normalization 
 

Making a data set rotation-invariant is another typical normalization.  It was 

assumed that the SOM would handle slight variations in rotation and produce robust 

features since the SOM is topologically ordered grouping similar rotation orientated 

letters together.  However, Writer 26 wrote all of the data on the slant and the 

performance on recognition (39%) was the worst of any of the test data.   

In addition, this writer also introduced some new patterns previously unseen but 

this effect was not suff icient to account for this level of poor recognition. A slight 

modification on the system would be to rotate the data by some small random angle about 

a Gaussian curve.  This favors small random changes in rotation while allowing for more 

extreme rotational change. This would give a new data set with more robust invariance to 

rotation.  Another possible solution was to use an algorithm to detect the longest axis 

about which to rotate the letter and normalize it with respect to the origin.  It was decided 

that this method was too computationally intensive. 

5.6.5. Skew Normalization  
 

Skew22 is stretching or shrinking an object.  Italicized letters are an example of 

skew.  Again, the assumption was that the SOM would handle the skew in letters because 

of its topological ordering properties and natural variations in skew in the data set. 

                                                                                                                                                                             
21 Wacom Graphire Users Manual p. 108. 
22  Skew and slant are used interchangeably in this paper. 
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5.7.   Feature Extraction 

5.7.1. Purpose of Feature Extraction 
 

The purpose of feature extraction is two-fold: to realize that not all data points are 

equally relevant or useful for pattern recognition and, in the case of neural networks, 

further reduction of the data input space to keep the network sizes computationally 

tractable.  Usually in on-line character recognition, the features are manually chosen.  

Examples include number of strokes, position of strokes, curvili near velocity, or maxima 

and minima.  

5.7.2. Suitability of SOM for Feature Extraction 
 

A neural network approach to feature extraction allows automatic selection of 

relevant features.  These features may be obvious, or subtler unseen relationships 

between the data points.  Further study could extract which features the SOM found 

important to discriminate different Arabic letter classes.  A possible tool for this would be 

dendrogram interpretations of features.  

The hypothesis is that SOM chooses relevant features for later classification.  Our 

research will show the veracity of this hypothesis with the understanding that an SOM 

can not account for variations in data which it has not trained on. 

5.7.3. General SOM Feature Extractor Design 
 

There are a number of parametric considerations in designing a SOM network.  

One needs to know how large to make the network and for how many epochs (complete 

cycles through the training data) to train the network.  This can only be determined  

empirically.  There were two indicators used.  The output from the SOM was used as a 

raw classifier and plotted on a confusion matrix.  Classification was done by measuring 

the minimum distance between each node of the data pattern and the average feature 

vectors for each class.  Perfect classification leads to a unique monotonically increasing  

“step” pattern between class label and classification.  Two indicators were used to 

determine the suitabilit y of a given SOM configuration based on this raw classifier rate: 
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the gross misclassification rate and the “clumpiness” of the misclassifications 23.  In other 

words, how many errors did it make and how consistently did it misclassify them?  Was 

it ordered or random?   

 

5.7.4. Two SOM Model 
 

In order to decide on a particular configuration for a SOM, we experimented with 

various configurations and arrangements of neurons and noticed that when a square SOM 

was used, the neurons were organized in a rectangular shape.  Since the edge neurons 

were not being activated, a rectangular arrangement of neurons was chosen (see Figure 

6). 

The next phase in training the SOM configurations was to recognize that various 

Arabic letter classes favored one configuration over another and to train a number of 

                                                           
23  “Clumpiness” indicates whether a given misclassification was consistently misclassified (above a 
threshold) or whether it is randomly misclassified. 

Figure 19  - Two SOM M odel 
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SOM networks to cover the spectrum of Arabic letter classification.  This would prove 

useful in partitioning later on (see Section 5.8.4). 

The first SOM model was a pair of SOM, one SOM for X coordinates & T (time) 

inputs and the second SOM for Y coordinates & T(time) inputs.  The first SOM was 35 

nodes in a 7x5 arrangement.  The second SOM was 24 nodes in a 6 x 4 arrangement (see 

Figure 19).  In the model, primary data strokes are fed simultaneously to the dual SOM, 

data pair by data pair, and a winner node is determined based on the SOM equation given 

in Equation 2.  When these winning nodes are activated, the cumulative scores in the 

corresponding output vector offset are incremented.  After all the data pairs have 

randomly been entered in the SOM, the two SOM output feature vectors are joined 

together to create a new output feature vector of 59 outputs per pattern. The other 2 SOM 

architecture tried was 70 nodes, 35 nodes for X & T and 35 nodes for Y & T. 

5.7.5. One SOM Model 
 

The second SOM model is a single SOM with three dimensions (X,Y & T) as 

inputs. This one had 60 nodes in a 10x6 arrangement (see Figure 20).  In this manner, we 

Figure 20 - One SOM M odel 
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could compare directly how a 59-node pair of SOMs and a 60 node SOM performed 

respectively. 

It was determined that the 2 SOM network extracted features better than the 1 

SOM network. X&T needed 35 nodes while Y&T needed 24 nodes.  5000 epochs was 

chosen as a suitable duration for training.  Training for more epochs (7500) did not really 

improve the misclassification scores or the “clumpy” nature of the misclassifications.  

Figure 21 shows the difference in classification accuracy between 2 SOM 70 and 

1 SOM 60 by letter class.  Any difference below zero indicates better performance by 2 

SOM 70.  Class 2 is the deciding class for overall accuracy difference on the training set.   

5.7.6. Feature Vector Normalization 
 

The outputs from the feature vector are normalized according to Equation 8.  The 

j th element in the i th output vector is decremented by the mean and divided by the 

standard deviation for that vector.  This helps the classifier to train better by placing 68% 

Figure 21 - 2SOM 70 vs 1 SOM 60 
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of the data within a single standard deviation of the mean (zero) and 99% within three 

standard deviations [15]. 

Equation 8 – Feature Normalization 

std
i

ijinorm
ji P

PP
P

−
= ,

,  

 

5.8.  Classification 

5.8.1.  Perceptron  
 

A perceptron, which takes the normalized SOM outputs as inputs, is trained for 

each of the 15 classes. The input ranges are the normalized max and min from each SOM 

node.  We trained the perceptron for 500 epochs on the inputs from the 1st,3rd and 5th 

samples from each of the first 20 writers.  This accounted for the “sloppy” factor where 

the writers would write faster and sloppier as the trial experiment progressed.  Originally, 

we had been training on the 1st,2nd and 3rd samples and found that the data was more 

likely to overfit neat handwriting. The training error goal varied with the different SOM 

architecture inputs.  With each group of perceptrons, we took the lowest training error in 

the first 500 epochs and saved the weights at that point.   

In training the group of perceptrons, we modified the original transfer function of 

the network from hardlim to purelin 24 to give the output described in Section 5.9. 

5.8.2.  Multi-Layer Perceptron 
 

Recall from the discussion in Section 2.5 that multi -layer perceptrons were useful 

for solving non-linear problems.  To test the hypothesis that the classification of Arabic 

handwritten letters was a non-linear problem and therefore was too diff icult for a 

                                                           
24 Hardlim is a transfer function that outputs 1 for any outputs above zero and 0 for all outputs below zero.  
Purelin gives the output as it is without any changes. 
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perceptron to solve, we used the same outputs from a SOM and classified using a set of 

MLPs, with one MLP for each SOM network. The results are discussed in Section 6.3. 

5.8.3. Genetic Programming 
 

Genetic programming uses mutation and crossover to search a population of 

encoded symbolic solutions to solve the classification problem. Genetic programs use the 

instruction set (+, -, *, %, sine, cosine, sqrt in this case) to create programs that will 

correctly classify a given data set with a given recognition rate. This provides a 

comparison with the classification accuracy of the perceptron using an alternative, more 

robust non-linear learning algorithm than that of the MLP. 

The results are discussed in Section 6.3.  For more information about genetic 

programming, see Koza[16] for the seminal paper in the field and Tomassi [17] for a 

concise introduction to GP . 

5.8.4. Class-wise Partitioning 
 

After trying the above three different SOM/perceptron architectures, it was noted 

that classification performance varied class-wise across different SOM configurations.  A 

new system could therefore be composed by partitioning25 the various architecture’s 

based on the best class-wise classifications, as identified on training or validation data, 

for a better overall recognition rate. 

The lowest expected error rate for each class was chosen (see colored entries in 

Table 5 and Table 6) and a committee of experts was established.  Based on training or 

validation error performance, a given SOM/ perceptron combination would be chosen for 

a particular class. These class selections would then be “fixed” so that the classification 

would be based on the SOM/perceptron’s most discriminant classes. In the case of a tie 

between class-wise classification errors, the SOM architecture which had the lowest 

                                                           
25 Partitioning is the process of recognizing which SOM performs best on a given letter class and 
‘combining’ those nodes to create a new ‘single’ SOM.  This SOM could be manually created by 
combining neurons from the other SOMs but we simulated this. 
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overall error rate was chosen.  Partitioning on training(Table 5) gave a different result 

than partitioning on validation (Table 6).  

Table 5 - Err ors with Class-Wise Par titioning on Training Set 

By Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total 

Err ors 

2 SOM 59 3 75 9 23 19 63 3 3 22 11 16 1 4 0 8 260 

2 SOM 70 6 17 9 11 28 17 8 2 18 19 52 2 4 2 7 202 

1 SOM 60 5 97 69 22 19 15 11 6 9 25 8 4 6 4 7 307 

Partitioned 3 17 9 11 19 15 3 2 9 11 8 1 4 0 7 119 

Table 6 - Err ors with Class-Wise Par titioning on Validation Set 

By Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total 

Err ors 

2 SOM 59 13 68 15 30 18 46 10 9 19 15 15 6 13 5 12 294 

2 SOM 70 14 16 19 15 24 15 22 5 16 29 40 9 19 3 13 259 

1 SOM 60 6 82 52 17 25 20 10 12 18 24 12 9 6 13 15 321 

Partitioned 6 16 15 15 18 15 10 5 16 15 12 6 6 3 12 170 

 

5.8.5. Pruning 
 

One problem encountered using Class-wise partitioning was that a committee of 

experts increased the number of SOM neurons three-fold to 189 neurons.  Given the 

intended application base, ideally the system needed to be smaller.  Pruning the nodes 

provided a chance to get rid of non-productive nodes and improve error rates at the same 

time.   
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Using the fact that each SOM/perceptron combination performed well on a subset 

of the classes, an algorithm (see Figure 22) was implemented that attempted removing 

each SOM node and simulating the classification result for those classes in the perceptron 

network. Zeroing out the input for that node simulated removing a node.  The node that 

reduced the original error by the most was permanently zeroed out.  As long as the error 

decreased or stayed the same, nodes would continue to be removed. In Section 6.1.4, we 

will discuss the effectiveness of partitioning and pruning. 

 

5.9. Output 
 

The purelin output from the perceptrons gave various levels of activation of the 

different class output neurons for a given input sample. Ideally, the correct class should 

be positive while all other class output activations are negative.  However, there were two 

other possibiliti es that occurred: 1) there was more than one positive output 2) there were 

no positive outputs.  The rule for deciding which class won was to take the maximum 

activation level and declare that class as the winner, even if all classes had negative 

Figure 22 - Remove Node Algor ithm 

 
[removednodes] = removenode(network,data set,target set,initialbaseerror) 
 
initialize variables 
while errorchange >= 0  
 adjust errorchange 
 zero out the best node for reducing error 
 for i = 1 to size of data set 
  zero out the ith row 
      run data set through network 
      find errors in classification 
      compare against partitioned classes for error count 
   end 
   select new node which has the largest negative errorchange   
 store node index to removednodes 
end  
 
return; 
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activation.  Using a purelin transfer function and the maximum rule for winning 

classification led to some misclassifications whereas a hardlim rule [39] would have 

classified the pattern as undecided.  However, it also classified some negative activations 

correctly since the correct class was closest to a positive activation . 

5.10. Summary 
 

A handwriting recognition system has many phases that assist in transforming raw 

x & y co-ordinates into a classification decision.  Preprocessing of the data includes 

segmentation, representation, sampling and normalization. The next major stage is 

feature selection.  In our system, this was done by an SOM architecture to automatically 

select discriminant features.  The last major stage is classification. These results went 

through an optimization stage of class-wise partitioning and pruning. Section 6.3 

compares the performance of a perceptron, a multi -layer perceptron and a genetic 

programming algorithm as classifiers.   

 

6. Experimental Measurements 
 

Our experiments were conducted on the Arabic handwriting of 25 independent 

writers who contributed a total of 3461 isolated Arabic letters as detailed in Section 5.2 

(see Table 2 for breakdown by class).  These letters were then processed as described in 

Section 5. The experiments had 3 trials on 3 disjoint data sets: 1) training (1656 letters) 2) 

validation (1113 letters) and 3) test (692 letters).  The validation set was composed of 

letters that were written by the same authors as the test set but not seen in testing. The test 

set was written by 5 authors that were totally ‘unseen’ in the training process.  

There were four procedures done in our experiments: training, partitioning (see 

Section 5.8.4), pruning (see Section 5.8.5) and testing. The first trial trained on the 

training set and tested on the validation set and test set without partitioning or pruning. 

The second trial trained, partitioned and pruned on the training set and then tested on the 

validation set and test set. The third trial trained on the training set, partitioned and 

pruned on the validation set and tested on the test set (see Table 7). 
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Table 7 – Tr ials in Arabic Letter Experiments 

 Training Set Validation Set Test Set 

Train 
� � �

   

Partition �  �   

Prune �  �   

Test  
�

�  
�

� �  

 

6.1. Results of Experiments 
 

The first experiment was to simply train the 3 SOM architectures on the training 

set and test on all three sets without any optimizations.  The results are displayed in 

Section 6.1.1.   

This became the baseline for later optimizations.  The baseline for recognition accuracy 

was defined as the average accuracy of the validation and test set of the best 

SOM/perceptron architecture without partitioning or pruning. We found that choosing an 

error goal for each SOM/perceptron architecture during the 5000 epochs perceptron 

training time improved the accuracy across training, validation and test.  Using this 

output as a baseline, we then ran trials #1-3 and compared results. (see Table 8).  

6.1.1. Trial 1 – No partitioning or pruning 
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The best SOM for recognition accuracy is the 2 SOM 70 node. On training, it 

recorded an accuracy of 88%.  On validation, it had recognition accuracy of 77%.  On 

test it had an accuracy of 64%. Figure 24 and Figure 25 show the respective confusion 

matrices for Trial 1 across the training, validation and test sets. 

6.1.2. Trial 2 – Partition and Pruning on Training Set 
 

The training accuracy results were 94%.  The validation accuracy results for 

partition and pruning on training set were 82% for class-wise partitioning only and 84% 

for partitioning and pruning based on the training set.  The test accuracy results were 77% 

on training pruning and partitioning. Partitioning on the training set selected 6 nodes from 

the 59 SOM, 6 nodes from the 70 SOM and 3 nodes from the 60 SOM (refer to Table 5).  

Pruning on the training set reduced the 59 SOM to 53 nodes, the 70 SOM to 63 nodes, 

and the 60 SOM to 42 nodes.  This was a total of 158 nodes or a reduction of 16% in the 

number of nodes after pruning. Pruning also reduced the number of errors by 1%. 

Table 8 - Recognition Accuracy Results 

 Train Validation Test Average 

Baseline – No training goal 83% 75% 63% 69% 

Figure 24 - Tr ial #1 Training and Validation Confusion Matr ix 
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Trial #1 – No optimizations  

with training goal 

88% 77% 64% 72% 

Trial #2 – Partition/Prune on Training 94% 84% 77% 80% 

Trial #3 – Partition/Prune on Validation 90% 89% 79% 85% 

Average 92% 83% 73% 79% 

Genetic Programming 92% 77% 72% 74.5% 

 

 

6.1.3. Trial 3 – Partitioning and Pruning on Validation Set 
 

The validation accuracy results were 89% after partitioning and pruning on the 

validation set and 85% after only partitioning.  The test accuracy results were 79% based 

on validation set pruning and partitioning.  Partitioning on the validation set selected 6 

nodes from the 59 SOM, 6 nodes from the 70 SOM, and 3 nodes from the 60 SOM. 

Pruning on the validation set reduced the 59 SOM to 43 nodes, the 70 SOM to 63 nodes, 

and the 60 SOM to 42 nodes.  This was a total of 148 nodes or a reduction of 22% in the 

number of nodes. Pruning also reduced the number of errors by 4%. 

6.1.4. Effectiveness of Partitioning and Pruning 
 

Figure 25- Tr ial#1 Test Set Confusion Matr ix 
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We have generally shown the effectiveness of class-wise partitioning and pruning.  

What is the relative effectiveness of partitioning and pruning based on training compared 

with being based on validation data?   

When the training set is used for partitioning, there are 4 classes in the test set 

where partitioning doesn’ t choose the lowest error rate for a total of 7 errors.  This makes 

a differential of 1%. When the validation set is used for partitioning, there are 2 classes in 

the test set where partitioning doesn’ t choose the lowest error rate for a total of 4 errors.  

This would only reduce errors by 0.57%.  Clearly, partitioning on a data set that is 

different from the training set is optimal over partitioning on the same set as training. 

When the training set is used for pruning, there are 156 errors instead of 222 

errors without pruning for a total error decrease of 9.5% over the test set. When the 

validation set is used for pruning, there are 148 errors instead of 198 errors without 

pruning for a total error decrease of 7.2% over the test set.  

Pruning the data set results in a decrease in error rate.  We also notice that pruning 

on the validation set is optimal by 8 errors over pruning on the training set (these finding 

are summarized in Table 9). 

Table 9 - Relative Effectiveness of Par titioning and Pruning 

 Training Set Validation Set 

After Partitioning 

Non-optimal classes 4 2 

Additional errors 7 4 

After Pruning 

Total Errors in Test set 156 or 23% 148 or 21% 

 

6.1.5. Test Set Analysis 
 

Looking at a breakdown of the test set results, we notice that three out of the five 

test writers had accuracy above 80%.  Writer 26 was excluded because she wrote all her 

letters on a slant which resulted in an accuracy of 39.3%. (try rotating her data later) 
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Writer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total 

Error 

Accuracy 

22 4 0 1 4 1 1 3 0 0 1 1 0 1 0 1 18 87.1% 

23 1 2 2 1 5 0 0 2 5 2 0 0 4 0 1 25 82.1% 

24 2 3 1 3 2 6 2 2 2 4 6 1 3 2 1 34 70.6% 

25 0 4 12 4 5 5 5 1 10 3 0 0 3 0 2 54 60.3% 

27 4 5 0 4 1 1 1 0 0 0 0 0 2 1 0 19 86.3% 

6.2. Proof of concept 
 

Our initial claim was: “This research will show on-line average Arabic character 

recognition rates above 80% and training recognition rates above 90% using neural 

networks for classification and feature extraction with multiple unconstrained writers.”   

Part of the data collection process was to instruct the writers to write isolated 

letters “as they normally would” (see Section 5.2.2).  This gave our data set the desired 

unconstrained nature. 

We had 25 sets of data that we trained and tested on to show multiple writers.  

Our average recognition rate for validation and test sets was 71.8% in Trial #1, 80.1% in 

Trial #2 and 85.1% in Trial #3 for a total average of 79%.  The training recognition rate 

was 88% in Trial#1, and 94% in Trial #2 and 90% in Trial #3 for an average of 92% 26. 

6.3. Comparing Perceptrons with Other Classifiers 
 

Perceptrons are quick to train and suitable for linear problems. The assumption 

for this project was that the problem could be solved linearly.  To check this hypothesis, 

non-linear classifiers (Genetic Programming and Multi -layer perceptrons) were compared 

with perceptrons.   

                                                           
26 Calculations were done as follows : The average recognition rate is the average of the averages between 
validation and test sets across the 3 trials. 
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Genetic Programming (GP) is an evolutionary machine learning strategy that uses 

cross-overs and mutations to create a program of mathematical operations on a data 

population to produce the “fittest” population as discussed in Section 5.8.3.  It was tested 

on the poorest performing SOM network, SOM 60. Genetic Programming had a positive 

example average of 92% for the training set, 77% for the validation set, and 72% for the 

test set.  Perceptrons had a positive example average of 81 % for the training set, 71% for 

the validation set and 54% for the test set. Multi -layer Perceptrons (MLPs) had a positive 

example average of 94% for the training set, 73% for the validation set and 60% for the 

test set.  The detailed results can be found in Appendix B : Tables 12-14. 

GP had better test set results than the perceptron and is more robust in a noisy 

environment.  However, the perceptron scored better for the validation set which is the 

closest simulation to a PDA with a single user. Multi -Layer Perceptrons overfitted on the 

training set and did poorly on the validation and test set.   

The perceptron classifiers also overfitted on negative examples.  A technique to 

overcome this is to weight the positive examples more heavily.  

6.4.  Comparing NNHALR with Previous Systems 

Table 10 – Summary of Previous Approaches 

Approach Segmentation Writers Sensitive to 

Noise 

Classes Data Set Recognition 

Accuracy 

Hierarchical Rule-

Based 

No ? Yes 60 1200 100% 

Segmented Structural 

Analysis 

Yes 1 Yes 13 50 words 86% 

Structural / Fuzzy No ? Yes 28 ? 100% 

Template/Dynamic No 1 No? 28 28 x 20 

copies 

96% 
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copies 

k-nearest Neighbor No 7 Yes 60 28 x 7  84% 

Evolutionary Neuro-

Fuzzy 

Yes 1 No 7 100 

words 

89% 

NNHALR  No 25 No 15 3461 78% 

 

 Table 10 summarizes previous approaches in handwritten Arabic letter 

recognition.  Since none of these systems were applied on the same data set, and many of 

these systems were not tested on independent and extensive test sets, it is not a fair match 

to compare how these systems did against each other as well as our system.  However, to 

give a rough estimate of relative performance, we have included this table for 

completeness. 

6.5.  Summary 
 

Three experiments were conducted on a base-lined set of data which had a 

training goal for each network and was divided so that the 1st ,3rd  and 5th samples from 

each writer became the training set and the 2nd and 4th samples became the validation set.  

5 writers contributed extra samples that were used in the test set but not seen in the 

training of the networks. 

The experiment trials were: 1) no partitioning and pruning of the data 2) 

partitioning and pruning on the training set and 3) partitioning and pruning on the 

validation set.  The best test results came from partitioning and pruning on the validation 

set for a recognition accuracy of 79%.   

Looking at the test set analysis, 3 of the 5 test writers were above 80%. A 6th 

writer was excluded from the test set because the writer wrote every letter on the slant 

and test results for her were poor at 39%.  Rotating her characters should rectify this 

problem and give better recognition results. 
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Class-wise partitioning and pruning both proved to be useful optimizations for 

improving recognition accuracy. The initial claim was validated in the training set and 

was within 1% of being validated in the average of the validation and test sets.  

Genetic programming provides a robust non-linear solution to the worst network.  

MLPs perform well on the training set but tend to overfit and have poorer validation and 

test results.  This points to further investigation of non-linear solutions.  However, this 

needs to be weighed off against the speed of the perceptron for on-line adaption in 

personal digital assistant computing platforms. 

 

7. Conclusions 
 

7.1.  Conclusions drawn 
 

We can conclude that our Neural Network approach to recognizing Arabic 

Handwritten Letters is proved as a viable concept.  Further refinement of the networks 

will certainly produce higher recognition accuracy while increasing the robustness of the 

solution.   

The Arabic language has some distinctions from Asian or Latin-script languages 

that make it a unique recognition problem.  Our system accounts for some of these in the 

separation of primary and secondary strokes into separate recognition tasks and the SOM 

handling extra control codes. 

Many of the previous approaches to Arabic cursive character recognition involved 

hierarchical reduction of the complexity of the problem and heuristic rules for feature 

selection which would not react well to noisy input. 

Further work is necessary to explore non-linear classifiers and optimizing linear 

solutions. 

Also, to complete the Arabic letter recognition process, the NNHALR system 

should handle secondary strokes.  This can be done by manually segmenting the 

secondary strokes initially and creating another SOM feature extractor/perceptron 

classifier combination and training it for secondary strokes. The results from secondary 
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stroke classification could then be used to analyze the output from the primary stroke 

classification.  The secondary stroke classifier only needs to recognize 4 classes: hat, line, 

dot and hamza (an s-shaped symbol) (see Figure 2 ). It could assist recognition for the 

primary stroke classifier by excluding letters which did not have the classified secondary 

stroke.  This would cause the system to classify the data for the runner-up class and likely 

improve recognition accuracy. 

7.2.  Summary of contributions 
•  Arabic handwritten isolated letter UniPen-compliant data set of 3469 letters 

•  Self-Organizing Feature Map network tuned to produce relevant features for Arabic 
recognition from data coordinates while reducing the input space 

 
•  Perceptron network tuned to recognize the 15 letter class shapes 

•  Robust automated feature selection in the SOM 

•  Potential of robustness in the presence of noise 

7.3.  Future Research 
 

•  Secondary Strokes Feature Extractor/Classifier 

•  Automatic segmentation of primary and secondary strokes 

•  Test assumption about similar letter classes 

•  Change temporal horizon for primary and secondary strokes 

•  Check robustness in noisy setting and with different random initializations 

•  Determine which features the SOM finds important using a dendrogram 

•  Explore non-linear classifiers 

•  Try translating data about the centroid instead of extrema 

•  Normalize scale after segmentation 

•  Bias the data towards positive examples  

7.4.  Real-world applications of the concept 
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•  Palm interface for Arabic, which like Nukoush, has a customizable Grafitti script but 

can also work well for other people 

•  Handwriting tutorial for children 

•  Arabic input for computers where people do not know how to type 

•  Cell phone input 

 

7.5. Summary 
 

Arabic handwriting recognition is a diff icult problem but our hope is that the 

NNHALR system will be a step towards a neural network approach to robustly solve it.  

The concept is proved as a possibilit y.  Now, it remains for further research to build on 

this foundation and work towards automatic segmentation and recognition of Arabic 

words.  
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Appendix A – Informed Consent Form 
 

Data Collection for Cursive Arabic Alphabet Recognition 

Principal Investigators: 
Tim Klassen     Dr. Malcolm Heywood 
Faculty of Computer Science   Faculty of Computer Science    
Dalhousie University    Dalhousie University 
 
We invite you to take part in a research study at Dalhousie University. Taking part in this study is 
voluntary and you may withdraw from the study at any time. There will be no repercussion from 
choosing not to participate in this study.  The study is described below. 
This description tells you what you will be asked to do and includes any risks or inconvenience 
you might experience.  Participating in the study may not benefit you directly but we may be able 
to learn how to recognize custom Arabic script and incorporate that into the design of new hand-
held recognition software.  There is no compensation for participating in this study and you may 
terminate your participation in the study at any time without prejudice.  You should discuss any 
questions you have about this study with either of the principal investigators. 
 
The purpose of this study is to recognize custom Arabic letters written on a digital tablet.  The 
study consists of a single session of 15-20 minutes where you will be asked to fill i n a dialog box 
with information consisting of your gender, handedness, age range and country of origin.  Then 
you will be asked to write the letters of the Arabic alphabet 5 times.  These entries will be 
recorded in a file.  All personal and identifying data will be kept confidential.  Only the user code 
will be used by the computer system and the informed consent form will be kept in a secure 
place.  
 
In the event that you have any diff iculties with, or wish to voice concern about, any aspect of 
your participation in this study, you may contact the Human Research Ethics/Integrity 
Coordinator at the Dalhousie University Off ice of Human Research Ethics and Integrity for 
assistance.  The phone number is (902)494-1462. 
 
I have read the explanations about this study.  I am at least 18 years of age.  I have been given the 
opportunity to discuss it and my questions have been answered to my satisfaction.  I hereby 
consent to take part in the study.  However, I realize that my participation is voluntary and that I 
am free to withdraw from the study at any time. 
 
Par ticipant:       Researcher: 
Name:_____________________________   Name:_______________________ 
 
Signature:__________________________  Signature:____________________ 
 
Date:______________________________  Date: ________________________ 
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Appendix B – Experimental Tables 
 

Table 11 – Average Calculations of Scale 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 12 - Genetic Programming Class Results for SOM 60 

 Training   Validation   Test   
 Combined Positive Negative Combined Positive Negative Combined Positive Negative 

1 82% 100% 81% 82% 90% 82% 75% 78% 75% 
2 78% 89% 76% 81% 79% 82% 76% 70% 77% 
3 72% 94% 70% 82% 80% 82% 75% 74% 75% 
4 72% 82% 71% 77% 71% 78% 75% 68% 76% 
5 79% 86% 78% 88% 93% 88% 85% 90% 85% 
6 67% 94% 66% 76% 83% 75% 79% 75% 79% 
7 75% 100% 74% 81% 85% 81% 82% 76% 82% 
8 77% 93% 75% 88% 72% 89% 84% 76% 85% 
9 77% 100% 75% 77% 89% 76% 75% 72% 75% 

10 73% 93% 71% 75% 89% 74% 74% 76% 73% 
11 77% 81% 76% 74% 48% 76% 78% 53% 80% 
12 72% 92% 71% 73% 68% 74% 76% 40% 77% 
13 75% 100% 74% 82% 73% 82% 76% 84% 75% 
14 77% 88% 77% 89% 74% 89% 77% 76% 90% 

Writer Average X Average Y
1 168 185
3 74 73
4 157 154
5 53 56
6 318 318
7 121 131
8 72 104
9 91 108

10 264 253
11 170 161
12 87 83
13 140 143
14 265 261
15 336 297
16 82 75
17 211 182
18 120 125
19 284 275
20 159 190
21 313 347

Averages 174.25 176.05
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15 76% 100% 75% 81% 63% 82% 84% 72% 84% 
Totals 75% 93% 74% 80% 77% 80% 78% 72% 79% 
 

Table 13 - Multi-Layer Perceptron Results with Training Par titioning/Pruning 

 Training   Validation   Test   
 Combined Positive Negative Combined Positive Negative Combined Positive Negative 

1 99% 87% 100% 98% 75% 99% 97% 61% 98% 
2 100% 100% 100% 93% 78% 96% 90% 67% 93% 
3 100% 97% 100% 96% 78% 98% 94% 66% 97% 
4 99% 88% 99% 95% 66% 97% 92% 52% 95% 
5 99% 97% 99% 95% 70% 97% 91% 54% 94% 
6 99% 94% 100% 96% 56% 99% 94% 33% 98% 
7 100% 98% 100% 97% 91% 98% 96% 72% 97% 
8 100% 96% 100% 97% 81% 99% 96% 60% 99% 
9 100% 97% 100% 96% 65% 98% 94% 50% 98% 

10 99% 92% 100% 97% 68% 99% 95% 56% 98% 
11 99% 97% 99% 95% 71% 97% 92% 53% 95% 
12 100% 93% 100% 99% 88% 100% 98% 76% 99% 
13 100% 91% 100% 98% 58% 99% 97% 52% 99% 
14 99% 93% 100% 98% 79% 99% 98% 80% 99% 
15 100% 93% 100% 98% 68% 99% 97% 60% 98% 

Totals 99% 94% 100% 96% 73% 98% 95% 60% 97% 
 
 

Table 14 - Perceptron Results by Class with Training Par titioning/Pruning 

 Training   Validation   Test   
 Combined Positive Negative Combined Positive Negative Combined Positive Negative 

1 99% 91% 100% 97% 70% 99%     97%   52% 99% 
2 94% 93% 94% 93% 90% 93%     92%   86% 93% 
3 99% 96% 99% 97% 84% 98%     97%   80% 99% 
4 98% 90% 99% 96% 78% 97%     93%   68%     95% 
5 97% 86% 98% 96% 78% 97%     95%   64% 97% 
6 91% 97% 90% 89% 92% 88%     92%   73% 94% 
7 98% 97% 98% 96% 88% 97%     95%   78% 96% 
8 99% 98% 99% 98% 94% 98%     97%        90%    98% 
9 93% 96% 93% 92% 81% 93%     92%   74% 94% 

10 98% 91% 98% 96% 80% 97%     95%   82% 96% 
11 91% 92% 91% 89% 88% 89%     88%   80% 89% 
12 99% 100% 99% 96% 80% 99%     98%  100% 98% 
13 99% 86% 100% 97% 97% 99%     97%    48% 99% 
14 99% 95% 99% 96% 92% 99%     98%      88% 98% 
15 99% 93% 99% 97% 70% 98%     96%    67% 97% 

Totals 97% 93% 97% 95% 84% 96%     95% 77% 96% 
 


