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Abstract. We present a linear-space data structure that maintains a
dynamic set of n points with coordinates of real numbers on the plane to
support orthogonal range counting, as well as insertions and deletions, in
O(( lgn

lg lgn
)2) time. This provides faster support for updates than previous

results with the same bounds on space cost and query time. We also
obtain two other new results by considering the same problem for points
on a U × U grid, and by designing the first succinct data structures for
a dynamic integer sequence to support range counting.

1 Introduction

The two-dimensional orthogonal range counting problem is a fundamental
problem in computational geometry. In this problem, we store a set, P , of n
points in a data structure so that given a query rectangle R, the number of points
in P∩R can be computed efficiently. This problem has applications in many areas
of computer science, including databases and computer graphics, and thus has
been studied extensively [4, 11, 13, 12, 3]. Among previous previous, Chazelle [4]
designed a linear-space data structure for points with real coordinates to support
orthogonal range counting in O(lg n) time1, while the linear-space data structure
of JáJá et al. [11] provides O( lgn

lg lgn )-time support for integer coordinates.
Researchers have also considered the orthogonal range counting problem in

dynamic settings. The goal is to maintain a dynamic set, P , of n points to
support orthogonal range counting, while allowing points to be inserted into and
deleted from P . Chazelle [4] designed a linear-space data structure that supports
orthogonal range counting, insertions and deletions in O(lg2 n) time. Nekrich [12]
designed another data structure of linear space with improved query time. With
his data structure, a range counting query can be answered in O(( lgn

lg lgn )
2) time,

matching the lower bound proved by Pǎtraşcu [13] under the group model, but
it takes O(lg4+ǫ n) amortized time to insert or delete a point. Thus in this paper,
we consider the problem of designing a linear-space data structure that matches
Nekrich’s query time while providing faster support for updates.

In addition to considering points on the plane, we also define range counting
over a dynamic sequence S[1..n] of integers from [1..σ]: given a range, [i1..i2],

⋆ This work was supported by NSERC and the Canada Research Chairs program.
1 lg n denotes log2 n.



of indices and a range, [v1..v2], of values, a range counting query returns the
number of entries of S[i1..i2] that store integers from [v1..v2].

2 We are inter-
ested in designing succinct data structures to represent S. Succinct data
structures were first proposed by Jacobson [10] to encode bit vectors, trees and
planar graphs using space close to the information-theoretic lower bound, while
supporting efficient navigation operations in them. As succinct data structures
provide solutions to modern applications that process large data sets, they have
been studied extensively [14, 6, 5, 7, 3, 8].

1.1 Our Results

Under the word RAMmodel with word size w = Ω(lg n), we present the following
results:

1. A linear-space data structure that maintains a dynamic set, P , of n points
on the plane to answers an orthogonal range counting query in O(( lgn

lg lgn )
2)

worst-case time. A point can be inserted into or deleted from P inO(( lgn
lg lgn )

2)

amortized time. This improves the result of Nekrich [12]. The point coordi-
nates are real numbers, and we only require that any two coordinates can
be compared in constant time.

2. A linear-space data structure that maintains a dynamic set, P , of n points on
a U × U grid to provide O( lgn lgU

(lg lgn)2 ) worst-case time support for orthogonal

range counting, insertions and deletions. Note that for large data sets in
which lg n = Θ(lgU), the query and update times are both O(( lgn

lg lgn )
2) in

the worst case.
3. A succinct representation of a dynamic sequence S[1..n] of integers from

[1..σ] in nH0+O(n lg σ lg lgn√
lgn

)+O(w) bits3 to support range counting, insertion

and deletion in O( lgn
lg lgn (

lg σ
lg lgn +1)) time. When σ = O(polylog(n)), all the

operations can be supported in O( lgn
lg lgn ) time. This is the first dynamic

succinct data structure that supports range counting.

2 Data Structures for Range Sum

In this section, we present two data structures that are used in our solutions
to dynamic orthogonal range counting. Both data structures represent a two-
dimensional array A[1..r, 1..c] of numbers to support range sum queries that
return the sum of the elements in a rectangular subarray of A. More precisely, a
range sum query, range sum(A, i1, j1, i2, j2), evaluates

∑i2
u=i1

∑j2
v=j1

A[u, v], i.e.
the sum of the numbers stored in the subarray A[i1..i2, j1..j2], where 1 ≤ i1 ≤
i2 ≤ r and 1 ≤ j1 ≤ j2 ≤ c.

We define a special form of range sum queries as dominance sum queries.
These return the sum of the elements stored in subarrays of the form A[1..i, 1..j],

2 [i..j] denotes a range of integers, while [i, j], [i, j), etc. denote ranges of real values.
3 H0 denotes the zeroth empirical entropy of S, which is lg σ in the worst case.



where 1 ≤ i ≤ r and 1 ≤ j ≤ c. In other words, we define the operator
dominance sum(A, i, j) to be range sum(A, 1, i, 1, j). It is clear that any range
sum query can be answered using at most four dominance sum queries.

Our data structures also support update operations to the array A, namely
the following three operations:

– modify(A, i, j, δ), which sets A[i, j] to A[i, j]+δ (restrictions on δ will apply);
– insert(A, j), which inserts a 0 between A[i, j−1] and A[i, j] for all 1 ≤ i ≤ r,

thus increasing the number of columns of A by one;
– delete(A, j), which deletes A[i, j] for all 1 ≤ i ≤ r, decreasing the number

of columns of A by one, and to perform this operation, A[i, j] = 0 must hold
for all 1 ≤ i ≤ r.

The two data structures presented in this section solve the dynamic range
sum problem under different restrictions on the input data and updates, in order
to achieve desired time and space bounds of our range counting structures.

2.1 Range Sum in a small Two-Dimensional Array

We now design a data structure for a small two-dimensional array A[1..r, 1..c] to
support range sum. Let n be a positive integer such that w = Ω(lg n), where w is
the word size of the RAM model. We require that rc = O(lgλ n) for any constant
λ ∈ (0, 1), and that each entry of A stores an nonnegative, b-bit integer where
b = O(lg n). This data structure supports modify(A, i, j, δ), where |δ| ≤ lg n,
but it does not support insert or delete.

Our data structure is a generalization of data structure of Raman et al. [14] on
supporting prefix-sum queries on a small one-dimensional array: the dominance
sum query is a two-dimensional version of prefix sum. It is not hard to adapt the
approach of Raman et al. to 2D and represent A in O(lg1+λ n) bits to support
range sum in O(1) worst-case time and modify in O(1) amortized time with
the help of a universal table, but deamortization is interesting and nontrivial.
We first present the following data structure that provides O(1) amortized time
support for queries and updates:

Lemma 1. The array A described above can be represented using O(lg1+λ n)
bits to support range sum in O(1) worst-case time and modify(A, i, j, δ), where
|δ| ≤ lg n, in O(1) amortized time. This data structure requires a precomputed

universal table of size O(nλ′

) bits for any fixed constant λ′ ∈ (0, 1).

Proof. In addition to storing A, we construct and maintain a two-dimensional
array B[1..r, 1..c], in which B[i, j] stores

∑i
u=1

∑j
v=1 A[u, v], i.e. the result of

dominance sum(A, i, j). We however cannot always keep B up-to-date under up-
dates, so we allow B to get slightly “out of date”. More precisely, B is not
changed each time modify is performed; instead, after every rc modify opera-
tions, we reconstruct B from A to make B up-to-date. Since it takes O(rc) time
to reconstruct B, the amortized cost is O(1) per modify operation.



As mentioned before, to support the range sum operation, it suffices to pro-
vide support for dominance sum. In order to answer dominance sum queries cor-
rectly using B, we maintain another two-dimensional array C[1..r, 1..c], whose
content is set to all zeros each time we construct B. Otherwise, after an operation
modify(A, i, j, δ) is performed, we set C[i, j]← C[i, j] + δ. Thus we have:

dominance sum(A, i, j) = B[i, j] +

i∑

u=1

j∑

v=1

C[u, v] (1)

To use the above identity to compute dominance sum(A, i, j) in constant

time, it suffices to compute
∑i

u=1

∑j
v=1 C[u, v] in constant time. Since we set

C[i, j] to 0 after every rc modify operations and we require |δ| ≤ lg n, we
have |C[i, j]| ≤ rc lg n = O(lg1+λ n). Hence each entry of C can be encoded
in O(lg lg n) bits. Thus array C can be encoded in O(lgλ n lg lg n) = o(lg n) bits,
which allows us to build a O(nλ′

)-bit precomputed table to perform the above
computation in constant time. It is clear that modify can be supported in O(1)
amortized time, and the arrays A, B and C can be encoded in O(lg1+λ n) bits
in total. ⊓⊔

To eliminate amortization, we design the following approach:

1. We construct a new table C ′ after rc modify operations have been performed
since the table C was created, i.e. after the values of C have been changed
rc times. Initially, all entries of C ′ are zeroes.

2. After we create C ′, for the next rc modify operations, if the operation is
modify(A, i, j, δ), we set C ′[i, j]← C ′[i, j] + δ without changing the content
of C. We use the following identity instead of Identity 1 to answer queries:

dominance sum(A, i, j) = B[i, j] +

i∑

u=1

j∑

v=1

C[u, v] +

i∑

u=1

j∑

v=1

C ′[u, v] (2)

3. We also maintain a pointer called refresh pointer that moves from B[1, 1]
toB[r, c] in row-major order. When we create the table C ′, the refresh pointer
points to B[1, 1]. After each modify, we move the pointer by one position.
Right before we move the pointer that points to B[i, j], we perform the
following process of refreshing B[i, j]:

(a) Set B[i, j]← B[i, j] + C[i, j];
(b) If i < r, set C[i+ 1, j]← C[i+ 1, j] + C[i, j];
(c) If j < c, set C[i, j + 1]← C[i, j + 1] + C[i, j];
(d) If i < r and j < c, set C[i+ 1, j + 1]← C[i+ 1, j + 1]− C[i, j];
(e) Set C[i, j]← 0.

4. After we refresh B[r, c], rc modify operations have been performed since we
created C ′. At this time, all the entries of C are zeroes. We then deallocate C,
rename C ′ by C. Note that at this time, rc modify operations have already
been performed on the new array C (when it was named C ′), so it is time
to go back to step 1, create a new table C ′, and repeat this process.



In the above approach, modify clearly takes O(1) worst-case time, and A, B,
C and C ′ can be encoded in O(lg1+λ n) bits. To show the correctness of the above
process, it is not hard to see that Identity 2 always holds. Finally, we need argue
that the right-hand side of Identity 2 can be evaluated in constant time. The term∑i

u=1

∑j
v=1 C

′[u, v] can be evaluated in constant time using the precomputed

universal table. However, it is not clear whether
∑i

u=1

∑j
v=1 C[u, v] can still be

evaluated in constant time using this table: Because of the refresh process, it is
not trivial to show that each entry of C can still be encoded in O(lg lg n) bits.
For this we first present these two easy-to-prove lemmas (we omit their proofs):

Lemma 2. For any integers i ∈ [1,m] and j ∈ [1, d], a refresh process does not

change the value of
∑i

u=1

∑j
v=1 C[u, v] unless this process refreshes B[i, j].

Lemma 3. Let C∗[u, v] be the value of C[u, v] when the table C ′ is created. Then

immediately before we refresh B[i, j], the value of C[i, j] is
∑i

u=1

∑j
v=1 C

∗[u, v].

We can now show that each entry of C can be encoded in O(lg lg n) bits:

Lemma 4. The absolute value of any entry, C[i, j], of C never exceeds 4rc lg n.

Proof. We prove this lemma for i > 1 and j > 1; the other cases can be handled
similarly. When we create the table C ′ and start to refresh the entries of B, rc
modify operations have been performed since C was created (recall that initially
C was named C ′). Hence when we start to refresh the entries of B, the absolute
value of C[i, j] is at most rc lg n. When we refresh B[i, j], we set C[i, j] to 0 and
never changes its value till we deallocate C. Before B[i, j] is refreshed, the value
of C[i, j] changes at most three times: (i) when we refresh B[i − 1, j − 1]; (ii)
when we refresh B[i − 1, j]; and (iii) when we refresh B[i, j − 1]. In (i), we set
C[i, j]← C[i, j]−C[i−1, j−1] before we set C[i−1, j−1] to 0. By Lemma 3, the
absolute value of C[i− 1, j− 1] before we set it to 0 is at most rc lg n. Hence the
absolute value of C[i, j] does not exceed 2rc lg n after (i). By similar reasoning,
we can show that the absolute values of C[i, j] do not exceed 3rc lg n and 4rc lg n
after (ii) and (iii), respectively. 4 ⊓⊔

Our result in this section immediately follows from Lemma 4:

Lemma 5. Let n be a positive integer such that w = Ω(lg n), where w is

the word size of the RAM model. A two-dimensional array A[1..r, 1..c] of non-
negative, b-bit integers, where b = O(lg n) and rc = lgλ n for any constant

λ ∈ (0, 1), can be represented using O(lg1+λ n) bits to support range sum and

modify(A, i, j, δ), where |δ| ≤ lg n, in O(1) worst-case time. This data structure

can be constructed in O(rc) time, and it requires a precomputed universal table

of size O(nλ′

) bits for any fixed constant λ′ ∈ (0, 1).

4 With greater care, we can show that the absolute value of any element of C never
exceeds rc lg n using the identity in Lemma 3, although this would not affect the
time/space bounds in Lemma 5.



2.2 Range Sum in a Narrow Two-Dimensional Array

Our second data structure for dynamic range sum requires the array A[1..r, 1..c]
to be “narrow”, i.e. r = O(lgγ c) for a fixed constant γ ∈ (0, 1). Dominance
sum queries on this data structure can be viewed as a 2-dimensional versions
of prefix sum queries in the Collections of Searchable Partial Sums (CSPSI)
problem defined by González and Navarro [7]. Our data structure in based on
the solution to the CSPSI problem given by He and Munro [8, 9], and the main
change is to use Lemma 5 to encode information encoded as small 2D arrays.
We have the following result:

Lemma 6. Let A[1..r][1..c] be a two-dimensional array of nonnegative integers,

where r = O(lgγ c) for any constant γ ∈ (0, 1), and each integer of A is encoded

in b = O(w) bits, where w = Ω(lg c) is the word size of the RAM model. A can be

represented using O(rcb+w) bits to support range sum, search, modify(C, i, j, δ)
where |δ| ≤ lg c, insert and delete in O( lg c

lg lg c ) time with a O(c lg c) bit buffer.

3 Range Counting in Integer Sequences

A basic building block for many succinct data structures [6, 5, 7, 3, 8] is a highly
space-efficient representation of a sequence S[1..n] of integers from [1..σ] to sup-
port the fast evaluation of rank and select5. Under dynamic settings, the fol-
lowing operations are considered:

– access(S, i), which returns S[i];
– rankα(S, i), which returns the number of occurrences of integer α in S[1..i];
– selectα(S, i), which returns the position of the ith occurrence of integer α

in the string S;
– insertα(S, i), which inserts integer α between S[i− 1] and S[i];
– delete(S, i), which deletes S[i] from S.

He and Munro [8] designed a succinct representation of S to support the
above operations in O( lgn

lg lgn (
lg σ

lg lgn + 1)) time. In this section, we extend their
results to support range counting on integer sequences. We are interested in the
operation range count(S, p1, p2, v1, v2), which returns the number of entries in
S[p1..p2] whose values are in the range [v1..v2].

3.1 Sequences of Small Integers

We first consider the case in which σ = O(lgρ n) for any constant ρ ∈ (0, 1).
In our approach, we encode S using a B-tree as in [8]. Each leaf of this B-tree

contains a superblock that has at most 2L bits, where L = ⌈ ⌈lgn⌉2
lg⌈lgn⌉⌉. Entries of

S are stored in superblocks. A two-dimensional array F [1..σ, 1..t] is constructed,

5 Many papers define S as a string of characters over alphabet [1..σ], which is equiv-
alent to our definition. We choose to define S as a sequence of integers as it seems
more natural to introduce range counting on integers.



where t denotes the number of superblocks. An entry F [α, i] stores the number of
occurrences of integer α in superblock i. The array F is encoded using Lemma 6.
We defer the details of our algorithms and data structures to the full version
of our paper, and only present our results here. We first present our result on
representing dynamic sequences of small integers to support range counting:

Lemma 7. Under the word RAM model with word size w = Ω(lg n), a sequence

S[1..n] of integers from universe [1..σ], where σ = O(lgρ n) for any constant

ρ ∈ (0, 1), can be represented using nH0 +O(n lg σ lg lgn√
lgn

) +O(w) bits to support

access, rank, select, range count, insert and delete in O( lgn
lg lgn ) time.

We also have the following lemma to show that a batch of update operations
performed on a contiguous subsequence S can be supported efficiently:

Lemma 8. Let S be a sequence represented by Lemma 7. Consider a batch of

m update operations performed on subsequence S[a..a+m− 1], in which the ith

operation changes the value of S[a+ i−1]. If m > 5L/ lg σ, then the above batch

of operations can be performed in O(m) time.

3.2 General Integer Sequences

To generalized our result on sequences of small integers to general integer se-
quences, we combine the techniques of Lemma 7 with generalized wavelet trees
proposed by Ferragina et al. [6]. Similar ideas were used by He and Munro [8]
to support rank and select operations on dynamic sequences, and by Bose et

al. [3] for static orthogonal range search structures on a grid. Here we apply
these techniques on range counting in dynamic settings:

Theorem 1. Under the word RAM model with word size w = Ω(lg n), a se-

quence S[1..n] of integers from [1..σ] can be represented using nH0+O(n lg σ lg lgn√
lgn

)

+O(w) bits to support access, rank, select, range count, insert and delete

operations in O( lgn
lg lgn (

lg σ
lg lgn +1)) time. When σ = O(polylog(n)), all these op-

erations can be supported in O( lgn
lg lgn ) time.

4 Range Counting in Planar Point Sets

We now consider orthogonal range counting over a dynamic set of n points on
the plane. In Section 4.1, we consider a special case in which each point is on a
fixed U × U grid, i.e. each x or y-coordinate is an integer from universe [1..U ],
while in Section 4.2, points on the plane have arbitrary (real) coordinates as long
as any two coordinates can be compared in constant time.

4.1 Range Counting on a U × U Grid

Our orthogonal range counting structure for a dynamic set of n points on a
U × U grid is based on our data structure supporting range counting over an
integer sequence. The key idea is to convert coordinates in one dimension, say,
the x-coordinates, to rank space.



Theorem 2. Under the word RAM model with word size w = Ω(lg n), there is

an O(n) word data structure that can maintain a dynamic set, P , of n points on

a U × U grid to answer orthogonal range counting queries in O( lgn lgU
(lg lgn)2 ) time.

A point can be inserted to or deleted from P in O( lgn lgU
(lg lgn)2 ) time.

Proof. Let Px be the set of x-coordinates. Without loss of generality, we assume
that x-coordinates are distinct. We construct an augmented red-black tree Tx

to represent Px: For each node v in Tx, we store additional information that
encodes the number of nodes in the subtree rooted at v. With such information,
given a value x, we can easily find out, in O(lg n) time, the number of elements
in Px that are less than or equal to x. Maintaining such information does not
slow down the O(lg n)-time support for insertions and deletions of values in Px.
This is because each insertion or deletion requires at most 3 tree rotations, so
we need only update the information of subtree size for the constant number of
nodes directly involved in the rotations and their O(lg n) ancestors.

We construct a sequence S[1..n] of integers from [1..U ], in which S[i] = u if
and only if the point in P with the ith smallest x-coordinate has y-coordinate u.
We represent S using Theorem 1. Since Tx maps x-coordinates to rank space, it
is easy to use Tx and S to support query and update. ⊓⊔

4.2 Range Counting for General Point Sets

For general point sets, we can still use the augmented red-black tree designed
in the proof of Theorem 2 to map the set of x-coordinates to the rank space,
since this tree structure does not require any assumptions on the values stored.
Handling the other dimension, however, is challenging: We cannot simply use a
generalized wavelet tree, which is the main building block of the representation
of the sequence S used in the proof of Theorem 2. This is because a (generalized)
wavelet tree has, up to now, only been used to handle data of a two-dimensional
nature for which the range of values in at least one dimension is fixed [6, 5, 3, 7,
8], such as sequences of integers from a fixed range in Theorem 1. To overcome
this difficulty, our main strategy is to combine the notion of range trees [2] with
generalized wavelet trees. Our work is the first that combines these two powerful
data structures.

Let Px and Py denote the set of x and y-coordinates of the points in P ,
respectively. Without loss of generality, we assume that the values in Px are
distinct, and so are the values in Py. We construct the following data structures:

1. An augmented red-black tree, Tx, that represents the set Px, as described in
the proof of Theorem 1. Recall that this structure supports the computation
of the number of values in Px that are less than or equal to a given value.

2. As amortizing a rebuilding cost to insertions or deletions will be crucial,
we use a weight-balanced B-tree [1], Ty. This is constructed over Py, with
branching factor d = Θ(lgǫ n) for a fixed constant ǫ ∈ (0, 1) and leaf param-
eter 1. Hence each internal node has at least d/4 and at most 4d children,
except the root for which the lower bound on degree does not apply. Each



leaf represents a range [y, y′), where y and y′ are in Py, and y′ is the imme-
diate successor of y. The (contiguous) range represented by an internal node
is the union of the ranges represented by its children. The levels of Ty are
numbered 0, 1, 2, · · · , starting from the root level. We store the tree structure
of Ty together with the start and end values of the range represented by each
node.

3. Next we use ideas analogous to those of generalized wavelet trees [6]. A
sequence Lℓ[1..n] of integers from [1..4d] is constructed for each level ℓ except
the leaf level, which is encoded using Lemma 7: For each internal node v at
level ℓ of Ty, we construct a sequence, Sv of integers from [1..4d]. Each
entry of Sv corresponds to a point in P whose y-coordinate is in the range
represented by v, and Sv[i] corresponds to, among all the points with y-
coordinates within the range represented by v, the one with the ith smallest
x-coordinate. Sv[i] does not store this point directly. Instead, Sv[i] stores
j if the y-coordinate of the corresponding point in P is within the range
represented by the jth child of v. We further concatenate all the sequences
constructed for the nodes, from left to right, at level ℓ to get the sequence
Lℓ. It is important to understand that, for the top level of Ty, the entries
of L0 correspond to points in P ordered by x-coordinates, but as we move
down the tree Ty, the ordering gradually changes: The entries of L1, L2, · · ·
do not correspond to points ordered by x-coordinates, and at the bottom
level, the leaves correspond to points ordered by y-coordinates.

To analyze the space cost of our data structures, it is clear that Tx and Ty use

linear space. Our third set of data structures consist of O( lgn
lg lgn ) subsequences,

each storing n integers from [1..4d]. By Lemma 7, they occupy O(n lg d + w) ×
O( lgn

lg lgn ) = O(n lg n+w× lgn
lg lgn ) bits in total, where w is the size of a word. This

space cost is O(n) words. We now use these data structures to support queries:

Lemma 9. Under the word RAM model with word size w = Ω(lg n), the above

data structures support orthogonal range counting in O(( lgn
lg lgn )

2) time.

Proof. We first give an overview of our algorithm for orthogonal range count-
ing. Let R = [x1, x2] × [y1, y2] be the query rectangle. We use Tx to find two
x-coordinates x′

1 and x′
2 in Px that are the immediate successor of x1 and the

immediate predecessor of x2, respectively (if a value is present in Px, we define
its immediate predecessor/successor to be itself). We then perform a top-down
traversal in Ty to locate the (up to two) leaves that represent ranges contain-
ing y1 and y2. During this traversal, at each level ℓ of Ty, at most two nodes
are visited. For a node v visited at level ℓ, we answer a range counting query
range count(Sv, iv, jv, cv, dv), where Sv[iv..jv] is the longest contiguous subse-
quence of Sv whose corresponding points in P have x-coordinates in the range
[x′

1, x
′
2], and the children of v representing ranges that are entirely within [y1..y2]

are children cv, cv + 1, · · · , dv (child i refers to the ith child). The sum of the
results of the above range queries at all levels is the number of points in N ∩R.

To show how to perform the above process, we first observe that for the root
r of Ty, ir and jr are the numbers of values in Px that are less than or equal



to x′
1 and x′

2, respectively, which can be computed using Tx in O(lg n) time.
To compute cr and dr, we can perform binary searches on the up to 4d ranges
represented by the children of r, which takes O(lg lg n) time. The binary searches
also tell us which child/children of r represent ranges that contain y1 and y2,
and we continue the top-down traversal by descending into these nodes.

It now suffices to show, for each node v visited at each level ℓ, how to locate
the start and end positions of Sv in Lℓ, how to compute iv, jv, cv and dv,
and which child/children of v we shall visit at level ℓ + 1. Let u be the parent
of v, and we assume that v is the cth child of u. Let s be the start position
of Su in Lℓ−1, which was computed when we visited u. We observe that, to
compute the start and end positions of Sv, it suffices to compute the numbers
of entries of Su that are in the range [1..c − 1] and [1..c], respectively. Thus
the start and end positions of Sv in Lℓ are s + range count(Su, 1, |Su|, 1, c −
1) + 1 and s + range count(Su, 1, |Su|, 1, c), respectively. Positions iv and jv
can also be computed by performing operations on Su using the identities iv =
rankc(Su, iu − 1) + 1 and jv = rankc(Su, ju). Finally, to compute cv and dv,
and to determine the child/children of v that we visit at level ℓ+ 1, we perform
binary searches on the ranges represented by the at most 4d children of v using
O(lg d) = O(lg lg n) time. Since we perform a constant number of rank, select
and range count operations on a sequence of small integers at each level of Ty,

and there are O( lgn
lg lgn ) levels, we can answer an orthogonal range counting query

over P in O(( lgn
lg lgn )

2) time. ⊓⊔

Finally, we support update operations to achieve our main result:

Theorem 3. Under the word RAM model with word size w = Ω(lg n), there

is a data structure using O(n) words of structural information plus space for

the coordinates that can maintain a dynamic set, P , of n points on the plane

to answer orthogonal range counting queries in O(( lgn
lg lgn )

2) worst-case time. A

point can be inserted to or deleted from P in O(( lgn
lg lgn )

2) amortized time.

Proof. To support update operations, we only show how to insert a point into P ;
deletions can be handled similarly. To insert a point with coordinates < x, y >
into P , we first insert x into Tx in O(lg n) time. Inserting y into Ty will either
cause a leaf of Ty to split into two, or create a new leaf that is either the leftmost
leaf or the rightmost. Without loss of generality, we assume that a leaf is split.
Then this leaf can be located by performing a top-down traversal, similar to the
process required to support range counting. Let q be the parent of this leaf, and
let ℓ′ be the level number of the level right above the leaf level. Then the start
and end positions of Sq in Lℓ′ can also be located in the above process, using

O(( lgn
lg lgn )

2) time in total. We first consider the case that the split of this leaf will
not cause q to split. In this case, since q has one more child, we insert one more
entry into Sq for the new child, and increase the values of at most |Sq| entries in
Sq by 1. This can be done by performing at most |Sq| insertions and deletions over

Sq, which costs O(d × lgn
lg lgn ) = O( lg

1+ǫ n
lg lgn ) time. Since this insertion also causes

the length of the sequence Sv for the ancestor, v, of q at each level to increase



by 1, one integer is inserted into each string Lℓ for ℓ = 0, 1, · · · , ℓ′ − 1. The
exact position where we should perform the insertion can be determined using
tree Tx for L0, and by performing one rank operation on L0, L1, · · · , Lℓ′−2 for
L1, L2, · · · , Lℓ′−1, respectively, during the top-down traversal. The exact value
to be inserted to each Lℓ is an appropriate child number. So far we have spent
O(( lgn

lg lgn )
2) time in total.

Each insertion may however cause a number of internal nodes to split. Let v
be an internal node that is to split, and let v1 and v2 be the two nodes that v is to
be split into, where v1 is a left sibling of v2. Let f be the number of the level that
contains v. Then the splitting of v requires us to replace the substring, Sv, of Lf

by two substrings Sv1
and Sv2

. Since points corresponding to these substrings are
sorted by their x-coordinates, this is essentially a process that splits one sorted
list into two sorted lists. Thus, we can perform a linear scan on Sv, and perform
one insertion and one deletion for each entry of Sv. This costs O(|Sv| ×

lgn
lg lgn )

time. This would have been messy, but fortunately the following two invariants
of weight-balanced B-trees allow us to bound the above time in the amortized
sense: First, if v is k levels above the leaf level, then |Sv| < 2dk. Second, after the
split of node v, at least dk/2 insertions have to be performed below v before it
splits again. Hence we can amortize the above O(|Sv| ×

lgn
lg lgn ) = O(2dk × lgn

lg lgn )

cost over dk/2 insertions, which is O( lgn
lg lgn ) per insertion.

Let u be the parent of v. The above split may also increase the values of up to
|Su| entires of Su by 1, which cost O(|Su|×

lgn
lg lgn ) time. By the same argument as

above, we have |Su| < 2dk+1, and we can amortize the above O(|Su| ×
lgn

lg lgn ) =

O(2dk+1× lgn
lg lgn ) cost over d

k/2 insertions, which is O( d lgn
lg lgn ) per insertion. Since

the insertion into a leaf may cause its O( lgn
lg lgn ) ancestors to split, and each

split charges O( d lgn
lg lgn ) amortized cost for this insertion, splitting these O( lgn

lg lgn )

internal nodes after an insertion requires O( lg2+ǫ n
(lg lgn)2 ) = O(lg2+ǫ n) amortized

time.

To further speed up the process in the previous paragraph, we observe that
the bottleneck is the O(|Su| ×

lgn
lg lgn ) time required to change the values of up

to |Su| entires of Su after v is split. Since these entries are all in Su, which is
a contiguous subsequence of Lf−1, we apply Lemma 8. There is one more tech-

nical detail: this lemma requires that |Su| > 5L/ lg(4d) where L = ⌈ ⌈lgn⌉2
lg⌈lgn⌉⌉.

By an invariant maintained by a weight-balanced B-tree, |Su| > dk+1/2, since
u is k + 1 levels above the leaf level. Hence |Su| > 5L/ lg(4d) is true for all
k > logd/2(5L/ lg(4d)), and the floor of the right-hand side is a constant num-
ber. Let k0 denote this constant. Hence if v is up to k0 levels above the leaf
level, we use the approach in the previous paragraph to update Su. Since each
insertions can only cause a constant number of internal nodes that are up to
k0 levels above the leaf level to split, this incurs O(k0d lgn

lg lgn ) = O(lg1+ǫ n) amor-
tized cost per insertion. If v is more than k0 levels above the leaf level, then
we use Lemma 8 to update Lf−1 in O(|Su|) time. By the analysis in the pre-
vious paragraph, the cost of splitting v can be amortized over dk/2 insertions,



which is O(d) per insertion. Since each insertions can potentially cause O( lgn
lg lgn )

nodes that are more than k0 levels above the leaf level to split, this also incurs
O( d lgn

lg lgn ) = O(lg1+ǫ n) amortized cost per insertion. Therefore, each insertion

can be supported in O(( lgn
lg lgn )

2) +O(lg1+ǫ n) = O(( lgn
lg lgn )

2) amortized time.
We finish our proof by pointing out that the succinct global rebuilding ap-

proach of He and Munro [8] can be applied here to handle the change of the
value of ⌈lg n⌉, which affects the choices of the value for d. ⊓⊔

5 Concluding Remarks

We have presented three new dynamic range counting structures, and to obtain
these results, we designed two data structures for range sum queries, which are
of independent interest. We have also developed new techniques. Our approach
of deamortization on a two-dimensional array in Section 2.1 is interesting. Our
attempt on combining wavelet trees and range trees in Section 4.2 is the first
that combines these two very powerful data structures, and we expect to use the
same strategy to solve other problems.
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