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Abstract. We consider the problem of edge orientation, whose goal is to
orient the edges of an undirected dynamic graph with n vertices such that
vertex out-degrees are bounded, typically by a function of the graph’s
arboricity. Our main result is to show that an O(βα)-orientation can be

maintained in O( lg(n/(βα))
β

) amortized edge insertion time and O(βα)
worst-case edge deletion time, for any β ≥ 1, where α is the maximum
arboricity of the graph during update. This is achieved by performing a
new analysis of the algorithm of Brodal and Fagerberg [2]. Not only can
it be shown that these bounds are comparable to the analysis in Brodal
and Fagerberg [2] and that in Kowalik [7] by setting appropriate values
of β, it also presents tradeoffs that can not be proved in previous work.
Its main application is an approach that maintains a maximal matching
of a graph in O(α+

√
α lg n) amortized update time, which is currently

the best result for graphs with low arboricity regarding this fundamental
problem in graph algorithms. When α is a constant which is the case
with planar graphs, for instance, our work shows that a maximal match-
ing can be maintained in O(

√
lg n) amortized time, while previously the

best approach required O(lg n/ lg lg n) amortized time [13]. We further
design an alternative solution with worst-case time bounds for edge ori-
entation, and applied it to achieve new results on maximal matchings
and adjacency queries.

1 Introduction

The problem of orienting the edges of a dynamic undirected graph to guarantee a
low upper bound on the maximum out-degree of its vertices has attracted much
attention in recent years [2, 7, 13, 6]. In this problem, an orientation of a graph

G = (V,E) is a directed graph
−→
G = (V,

−→
E ) defined by assigning each edge of

G a direction, and
−→
G is further called a ∆-orientation if the out-degree of each

vertex in
−→
G is upper bounded by ∆. The goal is to maintain a ∆-orientation

of G with efficient support of edge insertion and deletion, such that the value
of ∆ is as small as possible. For dense graphs, ∆ has to be large, and thus this
problem is more interesting when the graph is sparse.

As the arboricity of a graph is often used as a measurement of the spar-
sity of the graph, it is typically used as a parameter when bounding ∆. The
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arboricity, α, of a graph G can be formally defined by α = max
J

|E(J)|
|V (J)−1| , where

J = (V (J), E(J)) is any subgraph of G induced by at least two vertices. Many
classes of graphs in practice have constant arboricity, including planar graphs,
graphs with bounded genus and graphs with bounded tree width. Nash-Williams
[11, 12] proved that G has arboricity α if and only if α is the smallest number
of subsets that E can be partitioned into, such that each subset of edges with
their endpoints is a forest. Such a decomposition can be computed in polynomial
time [3]. In this partition, if we orient each edge in a forest towards the root of
the tree containing this edge, then each vertex has out-degree at most one in
each forest, which immediately gives an α-orientation of the given static graph.

The most fundamental application of edge orientation is perhaps the repre-
sentation of dynamic graphs supporting adjacency queries. This is based on the
following observation [5]: With a ∆-orientation of G, if we store the at most ∆
out-neighbors of each vertex in a list, then an adjacency query can be answered
in O(∆) time by scanning the list of each of the two vertices given in the query,
to see if one is an out-neighbour of the other. Thus if we can maintain a ∆-
orientation of a sparse graph efficiently, then we immediately have a linear-space
dynamic graph representation that answers adjacency queries in O(∆) time [2].

Recently, Neiman and Solomon [13] found that edge orientation also has ap-
plications in maintaining a maximal matching of a dynamic graph. A matching,
M , of a graph G is a set of non-adjacent edges of G. If a matching M has the
maximum number of edges, then it is called a maximum cardinality matching.
A maximal matching is defined to be a matching, M , that satisfies the follow-
ing condition: there does not exist an edge, g, of G, such that M ∪ {g} is still a
matching of G. It is well-known that any maximal matching is a 2-approximation
for maximum cardinality matching. Graph matching is a fundamental problem
in graph theory, and it has many applications in combinatorial optimization [10].
In the dynamic setting, the problem is to maintain a maximal matching or an
approximate maximum cardinality matching under edge insertion and deletion.
Recent progress on this [13, 4, 6] generated more interests in edge orientation.

Edge orientation has also been applied to other problems such as shortest
path in dynamic planar graphs [9, 6] and graph colouring [8]. Motivated by all
these important applications, we study the problem of orienting dynamic graphs.

1.1 Previous Work

Brodal and Fagerberg [2] first studied the problem of maintaining an edge ori-
entation of a dynamic graph with n vertices under an arboricity α preserving
sequence of edge insertions and deletions. Here an update operation is consid-
ered arboricity α preserving if, when applied to an graph of arboricity at most α,
the arboricity of the graph after the update remains to be bounded by α. They
proposed an approach that can maintain an O(α)-orientation using O(m + n)
space, where m is the current number of edges, in O(1) amortized insertion
time and O(α + lg n) amortized deletion time1. In their algorithm for update

1 In this paper, lg n denotes log2 n.



operations, some edges may change their orientation after each update, i.e., be
reoriented. They proved that in terms of the amortized number of edge reorien-
tations per update, their algorithm is O(1)-competitive compared against any
algorithm. Kowalik [7] further showed that Brodal and Fagerberg’s approach
can maintain an O(α lg n)-orientation with constant amortized insertion time
and constant worst-case deletion time. More recently, Kopelowitz et al. [6] con-
sidered the problem of designing solutions to maintain edge orientation with
worst-case time bounds. They showed how to maintain an O(∆)-orientation in
O(m + n) space with O(βα∆) worst-case insertion time and O(∆) worst-case
deletion time, where ∆ ≤ infβ>1{βα+ ⌈logβ n⌉}.

For maintaining matchings in arbitrary graphs, we refer to the recent work
of Neiman and Solomon [13] which can maintain a maximal matching (which is
also a 3/2-approximate maximum cardinality matching) in O(

√
m) worst-case

update time, and the work of Gupta and Peng [4] which maintains a (1 + ǫ)-
approximation maximum cardinality matching with O(

√
mǫ−2) update time for

any ǫ > 0. To support more efficient updates for graphs with low arboric-
ity, Neiman and Solomon [13] showed how to use edge orientation to main-
tain a maximal matching. Their approach can maintain a maximal matching in
O(m + n) space, such that each update can be performed in O(∆ + log∆/α n)
amortized time for any ∆ > 2α. When α = o(lg n), the update time becomes
O( lgn

lg((lgn)/α)+α). Following the same idea, Kopelowitz et al. [6] made use of their

solution for edge orientation to maintain a maximal matching, and the worst-
case update time is asymptotically the same as their update time for maintaining
edge orientation summarized in the previous paragraph.

As discussed previously, solutions to maintaining edge orientation can be
directly used to represent dynamic graphs to support adjacency queries. Kowa-
lik [7] showed that by maintaining the list of the out-neighbours of each vertex
using the dynamic dictionary of Andersson and Thorup [1], a graph can be rep-
resented in O(m + n) space to support adjacency query and edge deletion in
O(lg lg lg n) worst-case time, and edge insertion in O(lg lg lg n) amortized time,
provided that α = O(polylog(n)). Using the same strategy, Kopelowitz et al. [6]
presented a linear-space representation of graphs with α = polylog(n) arboricity
that can support adjacency queries in O(lg lg∆) worst-case time, edge insertion
in O(βα∆ lg lg∆) worst-case time, and edge deletion O(∆ lg lg∆) worst-case
time, where ∆ ≤ infβ>1{βα+ ⌈logβ n⌉}.

1.2 Our Results

We first analyzed the algorithm of Brodal and Fagerberg [2], by constructing a
new offline algorithm for their main reduction (summarized in Lemma 1). Our
new analysis shows that an O(βα)-orientations can be maintained in linear space

with O( lg(n/(βα))β ) amortized insertion time and O(βα) worst-case deletion time,
for any β ≥ 1. Furthermore, no edge orientation is required when performing
edge deletion. This presents a tradeoff between the maximum out-degree of ver-
tices and insertion time in the analysis of the algorithm by Brodal and Fagerberg,



which was never proved before. If we set β = 1, then our analysis shows that this
algorithm maintains an O(α)-orientation while supporting insertion in O(lg n)
amortized time and deletion in O(α) worst-case time. This is comparable to Bro-
dal and Fagerberg’s own analysis. By setting β = lg n, the algorithm maintains
an O(α lg n)-orientation with a constant number of edge reorientations per edge
insertion in the amortized sense and zero reorientation for each deletion, which
matches Kowalik [7]’s analysis.2 When β =

√
lg n, this algorithm maintains an

O(α
√
lg n)-orientation with O(

√
lg n) amortized insertion time and O(α

√
lg n)

worst-case deletion time. This tradeoff can not be shown using previous analysis.

We then apply our result on edge orientation to improve previous results
on maintaining maximal matchings under arboricity α preserving update se-
quences. More specifically, we can maintain a maximal matching using O(m+n)
space in O(α +

√
α lg n) amortized update time, which is currently the best

result on maintaining a maximal matching for low arboricity graphs. Our re-
sult matches the result of Neiman and Solomon [13] when α = Ω(lg n), while
strictly improves their results when α = o(lg n). To see the improvement when
α = o(lg n), suppose α = lgn

f(n) , where f(n) is an arbitrary function in ω(1). Then

Neiman and Solomon’s result supports updates in O( lgn
lg f(n) ) amortized time,

while ours requires O( lgn√
f(n)

). The improvement is even obvious for graphs with

constant arboricity such as planar graphs: a maximal matching can be main-
tained in O(

√
lg n) amortized time with our work, while previously it required

O(lg n/ lg lg n) amortized time, and this improvement is surprising.

We further design solutions to these problems that guarantee worst-case time
bounds. We show how to maintain a ∆-orientation in O(∆) worst-case insertion
and deletion time, where ∆ ≤ 2α lg(n/α) + 2α. This is a new tradeoff when
compared with the result of Kopelowitz et al. [6]: When α = ω(lg n), our inser-
tion time is O(α lg n), which is better than their O(α2) insertion time, though
our maximum out-degree and deletion time are worse. It is noteworthy that our
approach is simpler and does not require edge reorientation during insertion.
The same bounds can be proved when applying our result to maintain a max-
imal matching, which again compares similarly to the result of Kopelowitz et
al. We can also use this to represent a graph with O(polylog(n)) arboricity to
support adjacency queries in O(lg lg∆) worst-case time, edge insertion in O(∆)
worst-case time, and edge deletion in O(∆ lg lg∆) worst-case time. For graphs
with constant arboricity such as planar graphs, our representation supports ad-
jacency query, insertion and deletion in O(lg lg lg n), O(lg n) and O(lg n lg lg lg n)
time, respectively, improving Kopelowitz et al.’s result which provides the same

2 Kowalik [7]’s analysis in deletion time does not include the time required to find the
location of the given edge within the list of out-neighbours of one of its endpoints
and thus his model implicitly requires such a location to be given when performing
deletion. In our work, unless otherwise specified, we follow the original model of Bro-
dal and Fagerberg [2], which maintains out-neighbours in linked lists, and the time
required to search each list for the edge to be deleted is part of deletion time. Thus
when comparing with Kowalik’s analysis, we consider the number of reorientations.



support for query and deletion, but requires O(lg n lg lg lg n) time for insertion.
The fact that our insertion algorithm for edge orientation does not require re-
orientation makes such an improvement possible. For non-constant α, our result
is a new tradeoff: our insertion is faster than [6] but query and deletion may be
slower. All our solutions use O(n+m) space.

2 Preliminaries

2.1 Reduction from Online Orientations to Offline Orientations

Brodal and Fagerberg [2] analyzed their algorithm by reducing the problem of
maintaining an edge orientation under online updates to the problem of finding
a sequence of orientations for an update sequence given offline. A variant of their
reduction to be used in our solution can be summarized as:

Lemma 1 ([2]). Given an arbitrary arboricity α preserving sequence of edge

insertions and deletions over an initially empty graph, let G0 denote the ini-

tial empty graph, Gi denote the graph after the ith operation, and k denote the

number of edge insertions.

If there exists a sequence
−→
G0,

−→
G1, . . . ,

−→
Gp+q of δ-orientations that incurs

at most kr edge reorientations in total for a certain r, then starting with the

empty graph on n vertices under arbitrary arboricity α preserving updates, a

∆-orientation can be maintained using O(m+ n) space, where m is the current

number of edges, such that each edge insertion can be performed in O( r(∆+1)
∆+1−2δ )

amortized time, and an edge deletion in O(∆) worst-case time, provided ∆ ≥
2δ > 2α. Furthermore, the amortized number of edge reorientations incurred

during each insertion is O( r(∆+1)
∆+1−2δ ), and deletion requires no reorientation.

2.2 Data Structures for Dynamic Sets with Center Elements

Kopelowitz et al. [6] defined the following data structure problem to help them
maintain the invariants in their work, and we will also make use of this data
structure in our solution with worst-case time bounds: Let X be a dynamic
set, in which each element xi ∈ X is associated with a nonnegative integer key
ki. The element x0 is designated as the center element of X which can not be
inserted or deleted, but the value of its key can be updated. The goal is to
support the following operations:

– ReportMax(X): return a pointer to an element in X with the maximum key;
– Increment(X,x): Given a pointer to x ∈ X \ {x0}, increment x’s key;
– Decrement(X,x): Given a pointer to x ∈ X \ {x0}, decrement x’s key;
– Insert(X,x, k): Insert a new element x with key k into X, provided k ≤

k0 + 1;
– Delete(X,x): Given a pointer to x ∈ X \ {x0}, remove x from X;
– IncrementCenter(X): Increment k0;
– DecrementCenter(X): Decrement k0.



The following lemma summarizes a solution to this problem:

Lemma 2 ([6]). Let X be a dynamic set in which each element xi is associated

with a key ki and a fixed element x0 is designated to be X’s center. Then X can be

maintained in O(|X|+k0) space to support ReportMax, Increment, Decrement,

Insert and Delete in O(1) time, and IncrementCenter and DecrementCenter

in O(k0) time.

3 Solutions with Amortized Time Bounds

In this section we first present a new offline algorithm to orient fully dynamic
graphs. Then we make use of Lemma 1 to prove our result on maintaining edge
orientation under online update operations.

In our offline strategy, let U be an arbitrary arboricity α preserving update
sequence on an initially empty graph G with n vertices. Denote by Gi the graph
after the ith update as in Lemma 1 (G0 denotes the initial empty graph). We

now show how to determine a sequence of δ-orientations
−→
G0,

−→
G1, . . . ,

−→
GU with a

provable upper bound on the total number of edge reorientations, for a parameter
δ to be determined later. Note that it is trivial to orient the empty graph G0.

We first divide U into phases each containing βαn consecutive update oper-
ations, except the last phase which may contain fewer operations, where β ≥ 1.
For simplicity, we assume that βαn is an integer. For the graph at the end of
each phase that contains βαn operations, we compute an α-orientation using the
approach described in the second paragraph of Section 1, which makes use of the
algorithm in [3]. This determines the orientation of the graph at the end of each

phase with the possible exception of the last phase, i.e.,
−→
Gβαn,

−→
G2βαn,

−→
G3βαn,

. . . ,
−→
G⌊|U |/(βαn)⌋(βαn). To further orient Gi where i is not divisible by βαn, we

have the following definition:

Definition 1. Consider a phase, P , of βαn consecutive updates on a graph G
with n vertices, in which an update operation that inserts or deletes an edge

between vertices x and y is said to update x and y. A vertex of G is hot in P if

it is updated by at least 4βα operations of P , and cold otherwise. The hot region,
H(G), of G in P is the subgraph of G induced by all the hot vertices of G in P ,

while the cold region, C(G), of G in P is defined to be G \H(G).

The δ-orientation sequence is determined recursively. We use the following
strategy for each phase, P , of U . Without loss of generality, we assume that |P | =
βαn. LetGi+j denote the graph after the jth operation in P . ThusGi denotes the
graph immediately before any operation in P is performed, and by our previous

discussion,
−→
G i is a α-orientation of G. We determine the orientations of some of

the edges in Gi+j for j ∈ [1..βαn−1] in increasing order of j: For an edge that is
present in both Gi+j and Gi+j−1, if its orientation in Gi+j−1 has already been
determined, then in Gi+j , we maintain the same orientation. There are no new
edges to be oriented in Gi+j if the jth operation in P deletes an edge. If this



operation inserts an edge instead, then there are three cases. In the first case,
this edge is between a hot vertex and a cold vertex, and we orient it from the
cold vertex to the hot vertex. In the second case, the edge is between two cold
vertices, and we orient it arbitrarily. In the remaining case, the edge is between
two hot vertices, and we do not orient this edge in this level of recursion.

So far we have finished describing our top-level partition, which determines−→
G i for i divisible by βαn, and for all other Gi’s, it determines the orientations
of the edges that are not inserted as an edge between two hot vertices during the
phase containing this insertion. Then, for each phase, P , of U , let n′ denote the
number of vertices of G that are hot vertices in this phase. As each hot vertex
is updated by at least 4βα operations in P and each operation may update up
to two hot vertices, the number of operations in P that update hot vertices is
at least 2βαn′. As this can not be larger than the total number of operations in
P , we have 2βαn′ ≤ βαn, which implies n′ ≤ n/2. If n′ < 4βα, we arbitrarily
orient the edges inserted between these hot vertices by operations in phase P
excluding the last operation (recall that after the last operation, the graph is
oriented by computing an α-orientation, so we exclude the last operation here).
Otherwise, we set n to be n′, set U to be the sequence of operations in P
that update hot vertices only, and apply the same recursive strategy to H(G).
Upon returning from the recursion on H(G), the direction of each edge inserted
between hot vertices have been decided as it is part of the graph H(G). Thus
we have oriented all the Gi’s. We now bound vertex out-degrees:

Lemma 3. The offline algorithm in this section computes a sequence of (4βα+

α)-orientations
−→
G0,

−→
G1, . . . ,

−→
Gp+q.

Proof. We prove by induction that at each level of recursion, we construct
(4βα + α)-orientations throughout each phase. In the base case where we stop
the recursion, we consider a graph with at most 4βα vertices. In this case, even
though we orient edges arbitrarily upon insertion, the maximum out-degree of
any vertex is at most 4βα− 1 as the total number of vertices is at most 4βα.

In the inductive case, for an arbitrary phase P , let Gi+j denote the graph
after the jth operation in P . Assume inductively that the out-degree of any
vertex in H(G) is at most 4βα + α during the execution of the operations in
P , and we now prove the same claim for G. We first consider an arbitrary cold
vertex x in this phase. Before any operation in P is performed, in Gi, the out-

degree of x is at most α as
−→
Gi is computed as an α-orientation. By Definition 1,

less than 4βα edges inserted in P have x as an endpoint. Thus the maximum
out-degree of x in phase P is less than α+4βα. We then argue about an arbitrary
hot vertex y. As any edge between y and a cold vertex is oriented towards y, the
out-degree of y is always equal to its out-degree in H(G), which is bounded by
4βα+ α by inductive hypothesis. ⊓⊔

To bound the total number of edge reorientations, we have:

Lemma 4. The total number of edge reorientations among
−→
G0,

−→
G1, . . . ,

−→
GU is

O( |U | lg(n/(βα))
β ).



Proof. We number each level of recursion by its recursion depth starting from
0. Thus at level 0, we consider the original graph G with n vertices. At level 1,
each of the subgraphs being considered corresponds to a phase at level 0 and
contains the hot region of G in this phase which has at most n/2 vertices, and so
on. The number of vertices in each subgraph considered at level i is thus at most
n/2i, and the number of vertices of each graph considered at the last level is at
most 4βα. Therefore, the number of levels is O(lg(n/(βα))) and the number of
edges in each subgraph considered at level i is at most α(n/2i − 1).

Note that at any given level, reorientation only happens at the end of each
phase defined for a subgraph at that level, when we recompute an a-orientation
and use it to orient the subgraph. We also observe that each operation in U may
be considered at most once at each level of partition. As the number of levels is
O(lg(n/(βα))), it suffices to prove that, when amortizing the number of reorien-
tations at the end of each phase at any level over the operations in that phase,
the number of reorientations charged to each operation in this phase is at most
1/β. To see this, let t denote the number of vertices in a subgraph considered
at an arbitrary level. By our algorithm, the update sequence considered for this
subgraph is divided into phases each containing βαt operations, except the last
phase which may contain fewer. Edge reorientations take place at the end of
each phase that contains exactly βαt operations. As the total number of edges
in the subgraph is at most α(t − 1), the number of edge reorientations at the
end of each such phase is thus at most α(t − 1). When amortizing these edge
reorientations over the βαt operations in the phase, each update is charged at
most α(t− 1)/(βαt) < 1/β edge reorientations. ⊓⊔

Combining Lemmas 3 and 4, we have:

Lemma 5. Given an arboricity α preserving sequence of edge insertions and

deletions on an initially empty graph and an arbitrary parameter β ≥ 1, there
is a sequence of (4βα+ α)-orientations such that the amortized number of edge

reorientation for each edge insertion or deletion is O( lg(n/(βα))β ).

We now present our first main result:

Theorem 1. Starting with the empty graph on n vertices under arboricity α
preserving updates, a ∆-orientation can be maintained in O(n+m) space, where
∆ ≥ 2δ, δ = (4β + 1)α, β is an arbitrary parameter greater or equal to 1 and m
is the current number of edges, such that an edge insertion can be performed in

O( lg(n/(βα))β · ∆+1
∆+1−2δ ) amortized time, and an edge deletion in O(∆) worst-case

time. Furthermore, edge deletion does not incur edge reorientation.

Proof. As the graph is initially empty, the number, k, of insertions is greater
than or equal to the number, k′, of deletions in U . Thus Lemma 5 shows that the

total number of edge reorientations is O( (k+k′) lg(n/(βα))
β ) ≤ O( 2k lg(n/(βα))

β ) =

O(k · ( lg(n/(βα))β )). The theorem thus follows from Lemma 1. ⊓⊔
The tradeoff summarized in Section 1.2 is obtained by setting ∆ = 3δ. By

applying this to maximal matchings, we have the following theorem:



Theorem 2. Starting with the empty graph on n vertices under arboricity α
preserving updates, a maximal matching can be maintained in O(α +

√
α lg n)

amortized time using O(n+m) space, where m is the current number of edges.

Proof. Neiman and Solomon [13] made use of the algorithm of Brodal and Fager-
berg [2] to maintain maximal matchings in dynamic settings. Their reduction
shows that if a ∆-orientation for a graph G on n vertices under arboricity α
preserving updates can be maintained in O(m+n) space with amortized update
time T , where m denotes the current number of edges, then a maximal matching
can also be maintained in O(m+n) space with O(∆+T ) amortized update time.

We first observe that, according to Neiman and Solomon’s reduction, a max-

imal matching can be maintained in O(βα + lg(n/(βα))
β ) amortized update time

using O(n + m) space, following from Theorem 1 by setting ∆ = 3δ. When

α ≥ lg n, we set β = 1 and the update time is O(α). Otherwise, we set β =
√

lgn
α ,

and the update time becomes O(
√
α lg n). The theorem thus follows. ⊓⊔

4 Solutions with Worst-Case Time Bounds

Let do(v) denote the out-degree of a vertex v. Our solution with worst-case time
bounds maintains the following invariant over the entire graph G during updates:

Invariant 1 For each vertex u, there exists an ordering of its out-neighbours,

v0, v1, v2, . . . , vdo(u)−1, such that do(vi) ≥ i for i = 0, 1, . . . , do(u)− 1.

There are connections between this invariant and the invariants considered
by Kopelowitz et al. [6], but they are different. The following two lemmas show
why Invariant 1 can be used to bound the maximum vertex out-degree.

Lemma 6. If the maximum out-degree, ∆, of a vertex in a directed graph G of

arboricity α satisfying Invariant 1 is greater than 4α, then there are 2kα vertices

whose out-degrees are at least ∆− 2kα ≥ 2α, for k = 1, 2, . . . , ⌊∆/(2α)⌋ − 1.

Proof. The maximum value of k guarantees that ∆−2kα ≥ 2α. To prove the rest
of the lemma besides this inequality, let u be a vertex with out-degree∆ in G. We
prove our claim by induction on k. In the base case, k = 1. Let v0, v1, v2, . . . , v∆−1

be u’s out-neighbours listed in the order specified in Invariant 1. Then do(vd−1) ≥
d− 1, do(vd−2) ≥ d− 2, . . . , do(v∆−2a) ≥ ∆− 2α by Invariant 1, which means u
has at least 2α out-neighbours with out-degrees greater than or equal to ∆−2α.

Assume the claim holds for k − 1, and we prove it for k. By the inductive
hypothesis, there is a set, V1, of 2

k−1α vertices with out-degree at least ∆−2(k−
1)α. By Invariant 1, each vertex in V1 has 2α out-neighbours whose out-degrees
are at least ∆− 2(k − 1)α− 2α = ∆− 2kα. We add such 2α out-neighbours of
each vertex in V1 into another set V2. Note that some vertices in V1 may share
out-neighbors. Any vertex in V1 ∪ V2 has out-degree at least ∆− 2kα, and what
remains is to give a lower bound on |V1∪V2|. Consider the subgraph G∗ induced
by V1 ∪V2. For each vertex in V1, there are 2α distinct edges between it and the



vertices in V2, and thus the number of edges in G∗ is at least 2α|V1| = 2kα2.

By the definition of arboricity, we have α ≥ |E(G∗)|
|V (G∗)|−1 ≥ 2kα2

|V1∪V2|−1 . Therefore,

|V1 ∪ V2| ≥ 2kα. As the out-degree of each vertex in V1 ∪ V2 is at least ∆− 2kα
from our previous discussion, our induction goes through. ⊓⊔

Lemma 7. If a directed graph G satisfies Invariant 1, then the out-degree of

any vertex in G is at most 2α lg(n/α) + 2α.

Proof. Let ∆ denote the maximum out-degrees of the nodes in G. If ∆ ≤ 4α, the
lemma holds because, in an undirected graph, we always have α ≤ n/2 and thus
2α lg(n/α) + 2α ≥ 4α. Otherwise, by Lemma 6, the number of vertices whose
out-degrees are at least 2α is 2⌊∆/(2α)⌋−1α. Therefore, the total number of edges
of G is at least 2⌊∆/(2α)⌋−1α ·2α = 2⌊∆/(2α)⌋α2. Since the arboricity of G is α, we
have (2⌊∆/(2α)⌋α2)/(n− 1) ≤ α, and thus (2∆/(2α)−1α2)/(n− 1) < α. Therefore,
∆ < 2α lg n−1

α + 2α. This completes the proof. ⊓⊔

To maintain Invariant 1, we borrow ideas from [6] though our algorithms for
edge insertion and deletion turn out to be simpler. As in [6], for each vertex u,
we construct a data structure Bu to maintain information for its in-neighbours,
which is further used to decide which edges should be reoriented. More precisely,
for vertex u, we construct a dynamic set Bu whose center element is u itself,
with do(u) as its key. X \ {u} then contains as elements all the in-neighbours of
u, and the key for each such element is the out-degree of this in-neighbour. We
then represent Bu using Lemma 2. Clearly all these auxiliary data structures
use O(m+ n) space in total, where m is the current number of edges in G.

We also construct the adjacency lists for G with edge orientations, by main-
taining the out-going edges of each vertex in a doubly linked list. This also
requires O(m+ n) space. For each directed edge (u, v) in u’s list, we maintain a
bidirectional pointer between this edge and u’s representation in Bv. With this,
when our algorithm for edge deletion uses ReportMax to find an edge for reori-
entation, we can update adjacency lists in constant time. Such a construction
is also required to make the approach in [6] work, though it was not mentioned
explicitly. As it is trivial to maintain the adjacency lists with these pointers and
the maintenance cost is subsumed by our final time bounds, we do not explicitly
discuss how to update these lists in the rest of this section.

To insert an edge uv, assume without loss of generality that do(u) ≤ do(v).
Then we orient the edge from u to v. It can be easily shown that with this
strategy, Invariant 1 is maintained and no reorientation is required. We further
update Bu using IncrementCenter and Bu′ for each out-neighbour, u′, of u,
using Increment. Algorithm 1 presents the pseudo code for edge insertion.

Algorithm 2 presents the pseudocode for edge deletion. It first removes the
edge to be deleted in lines 2-3. After this, the out-degree of u is decreased by 1,
and the only vertices for which Invariant 1 may not hold have to be in-neighbours
of u. To find out whether the invariant is still maintained for all the in-neighbours
of u, we locate the in-neighbour, v′, with the largest out-degree in line 4. If the
test in the while statement at line 5 is false, then the invariant still holds for



Algorithm 1 Insert(G, u, v)

1: {Assume without loss of generality that do(u) ≤ do(v)}
2: Orient edge (u, v) from u to v
3: IncrementCenter(Bu)
4: Insert(Bv, u, do(u))
5: for each out-neighbour, u′, of u such that u′ 6= v do

6: Increment(Bu′ , u)

Algorithm 2 Deletion: Delete(G, u, v)

1: {Assume without loss of generality that the edge uv is oriented towards v}
2: Remove edge (u, v)
3: Delete(Bv, u)
4: v′ ← ReportMax(Bu)
5: while do(u) < do(v

′)− 1 do

6: Flip the orientation of edge (v′, u) so that it is oriented from u to v′

7: Delete(Bu, v
′)

8: Insert(Bv′ , u, do(u))
9: u← v′

10: v′ ← ReportMax(Bu)
11: DecrementCenter(Bu)
12: for each out-neighbour, v′, of u do

13: Decrement(Bv′ , u)

any in-neighbour of u. Otherwise, it is possible (though not necessary) that the
invariant is not maintained for v′ and some other in-neighbours of u. To maintain
the invariants for these vertices, we reverse the direction of the edge (v′, u) in
line 6, and update auxiliary data structures accordingly in lines 7-8. After this
the out-degree of u becomes the same as its original out-degree before this edge
deletion is performed, and thus the invariant can not be violated for any of its
in-neighbours whose out-degree did not change. The only in-neighbour whose
out-degree has been changed is v′, and it is easy to see that the invariant is
also maintained for v′ as a result of the above steps: v′ lost one out-neighbour
but its out-degree was also decreased by 1. Now the the only vertices for which
Invariant 1 may not hold have to be in-neighbours of v′. For v′, we then repeat
the same process that we applied to u. This process terminates in at most ∆+1
iterations, because each time we iterate on a node whose out-degree is strictly
greater than the node in the previous iteration and the maximum vertex out-
degree is ∆. From the description of this process, we can also claim that, after
the while loop in lines 5-10 terminates, the invariant is maintained, and lines
11-13 make sure that all the auxiliary structures are up-to-date.

As our algorithms for edge insertion and deletion maintain Invariant 1, by
Lemma 7, they can maintain a ∆-orientation of G for ∆ = 2α lg(n/α) + 2α. To
analyze the running time of these two operations, we first observe that each loop
in the pseudocode of these two algorithms is iterated at most ∆ times. Then,
applying Lemma 2, we claim that both operations require O(∆) time. Thus:



Theorem 3. A ∆-orientation of a graph on n vertices can be maintained in

O(n + m) space, where ∆ ≤ 2α lg(n/α) + 2α, α is the current arboricity and

m is the current number of edges, such that an edge insertion or deletion can

be performed in O(∆) worst-case time. Furthermore, an edge insertion does not

incur edge reorientation, while a deletion incurs at most ∆+ 1 reorientations.

If we allow one reorientation in edge insertion, then we can bound ∆ by
min(2α lg(n/α) + 2α,

√
m) without affecting update times. We omit the details

due to page limit. These results can then be easily applied to achieve new results
on maximal matchings and adjacency queries in dynamic graphs:

Theorem 4. A maximal matching of a graph on n vertices can be maintained

in O(min(α lg(n/α),
√
m)) worst-case update time using O(n+m) space, where

α is the current arboricity and m is the current number of edges.

Theorem 5. A graph with n vertices and m edges can be represented in O(m+
n) space to support adjacency queries in O(lg lg∆) worst-case time, edge inser-

tion in O(∆) worst-case time, and edge deletion in O(∆ lg lg∆) worst-case time,

where ∆ = O(α lg(n/α)) and α is the current arboricity of the graph, provided

α = O(polylog(n)).
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