
Dynamic Path Counting and Reporting in
Linear Space?

Meng He1, J. Ian Munro2, and Gelin Zhou2

1 Faculty of Computer Science, Dalhousie University, Canada.
mhe@cs.dal.ca

2 David R. Cheriton School of Computer Science, University of Waterloo, Canada.
{imunro, g5zhou}@uwaterloo.ca

Abstract. In the path reporting problem, we preprocess a tree on n n-
odes each of which is assigned a weight, such that given an arbitrary path
and a weight range, we can report the nodes whose weights are within
the range. We consider this problem in dynamic settings, and propose
the first non-trivial linear-space solution that supports path reporting in
O((lgn/ lg lgn)2+occ lgn/ lg lgn) time, where occ is the output size, and
the insertion and deletion of a node of an arbitrary degree in O(lg2+ε n)
amortized time, for any constant ε ∈ (0, 1). Obvious solutions based on
directly dynamizing solutions to the static version of this problem all re-
quire Ω((lgn/ lg lgn)2) time for each node reported, and thus our query
time is much faster. For the counting version of this problem, we design
a structure that supports path counting in O((lgn/ lg lgn)2) time, and
insertion and deletion in O((lgn/ lg lgn)2) amortized time. This match-
es the current best result for 2D dynamic range counting, which can be
viewed as a special case of path counting.

1 Introduction

In computer science, trees are widely used in modeling and representing differ-
ent types of data. In many scenarios, objects are represented by nodes and their
properties are characterized by weights assigned to nodes. Researchers have s-
tudied the problems of maintaining a weighted tree, such that, given any pair
of nodes, certain functions over the path between these two nodes can be com-
puted efficiently [7, 1, 18, 17, 5, 14, 21, 15, 6]. The inquires of the values of these
functions are referred to as path queries.

Previously, most work on path queries focus on static weighted trees, i.e.,
the structure and the weights of nodes remain unchanged over time. This as-
sumption is not always realistic and it is highly inefficient to rebuild the whole
data structure when handling updates. In this paper, we consider the problem
of maintaining dynamic weighted trees and design data structures that support
path counting and path reporting queries in linear space and efficient time. More
precisely, given a query path and a query range, these types of queries return the

? This work was supported by NSERC and the Canada Research Chairs Program.

number/set of nodes on the path whose weights are in the given range. As men-
tioned in He et al.’s work [14, 15], these path queries generalize two-dimensional
range counting and reporting queries.

Without loss of generality, we represent the input tree as an ordinal one,
i.e., a rooted tree in which children of a node are ordered. Our data structures
allow to change the weight of an existing node, insert a new node, or delete an
existing node. These updates are referred to as modify weight, node insert,
and node delete, respectively. For node insert and node delete, we adopt the
same powerful updating protocol as Navarro and Sadakane [20], which allows us
to insert or delete a leaf, a root, or an internal node. A newly inserted internal
node will become the parent of consecutive children of an existing node, and a
deleted root must have only zero or one child. The deletion of a non-root node
is described in Section 2.2.

It is natural to identify nodes with their preorder ranks in static ordinal trees.
However, preorder ranks of nodes can change over time in dynamic trees. Thus,
in our dynamic data structures, nodes are identified by immutable identifiers of
sizes O(lg n) bits3. Unless otherwise specified, the underlying model of computa-
tion in this paper is the unit-cost word RAM model with word size w = Ω(lg n).

Previous Work. The problems of supporting static path counting and
path reporting queries have been heavily studied in recent years [14, 21, 15, 6].
Given an input tree on n nodes whose weights are drawn from [1..σ], He et
al. [15] designed succinct data structures to support path counting queries in
O(lg σ/ lg lg n+1) time, and path reporting queries inO((occ+1)(lg σ/ lg lg n+1))
time, where occ is the size of output. Later, Chan et al. [6] achieved more
time/space tradeoffs for path reporting queries. They developed an O(n)-word
structure with O(lgε n+ occ · lgε n) query time, where ε is an arbitrary constant
in (0, 1); an O(n lg lg n)-word structure with O(lg lg n+ occ · lg lg n) query time;
and an O(n lgε n)-word structure with O(lg lg n+ occ) query time.

There are other heavily studied path query problems such as path minimum
queries, and we refer to Chan et al. [6] for a recent survey on the static version of
this problem. The dynamic version of the path minimum problem has also been
studied extensively. Brodal et al. [5] designed a linear space data structure that
supports queries and changes to the weight of a node in O(lg n/ lg lg n) time, and
handles insertions or deletions of a node with zero or one child in O(lg n/ lg lg n)
amortized time. The query time is optimal under the cell probe model provided
that the update time is O(lgO(1) n) [2]. For the more restricted case in which
only insertions and deletions of leaves are allowed, queries can be answered in
O(1) time and updates can be supported in O(1) amortized time [1, 17, 5].

Our Contributions. We develop efficient dynamic data structures for path
counting and path reporting queries, all of which occupy O(n) words. Our data
structure supports path counting queries in O((lg n/ lg lg n)2) time, and handles
changes of weights, insertions and deletions in O((lg n/ lg lg n)2) amortized time.
This structure matches the best known result for dynamic range counting [12].

For path reporting queries, our data structure requires O(lg2+ε n) time for

3 We use lg to denote the base-2 logarithm.

updates, but answers queries in O((lg n/ lg lg n)2 + occ lg n/ lg lg n)) time, where
occ is the output size. By slightly sacrificing the update time, our structure
significantly improves the query time over the straightforward approaches that
dynamize known static data structures[14, 21, 15, 6]: One could dynamize the
static structure of He et al. [14] by replacing static labeled ordinal trees with
dynamic unlabeled trees and dynamic bit vectors, and managing weight ranges
using a red-black tree [8]. This leads to an O(n)-word data structure with O((1+
occ) lg2 n/ lg lg n) query time andO(lg2 n/ lg lg n) update time. Alternatively, one
could obtain another O(n)-word structure with O(lg2+ε n+ occ · (lg n/ lg lg n)2)
query time and O((lg n/ lg lg n)2) update time, by dynamizing the improved re-
sult of He et al. [15] in a similar manner. It is unclear how to dynamize the
structures designed by Patil et al. [21] and Chan et al. [6] within linear space.

All of our dynamic structures presented in this paper are able to handle inser-
tions and deletions of nodes with multiple children, which are not supported in
previous dynamic data structures for path queries [1, 17, 5]. Our approach is al-
most completely different from He et al.’s [15] approach for static path queries.
To develop our data structures, we employ a various of techniques including
topology trees, tree extraction, and balanced parentheses. In particular, for dy-
namic path reporting, one key strategy is to carefully design transformations
on trees that preserve certain properties, such that the idea of dynamic frac-
tional cascading can be adapted to work on multiple datasets in which each set
represents tree-structured data. This new approach may be of general interest.

Section 2 reviews the techniques used in our data structures. Section 3 de-
scribes our dynamic data structures for path reporting. Due to the page limita-
tion, the support for path counting is deferred to the full version of this paper.

2 Preliminary

2.1 Restricted Multilevel Partition and Topology Trees

Frederickson [9–11] proposed topology trees to maintain connectivity information
and minimum spanning trees of dynamic graphs, and to support operations over
dynamic trees. We make use of a variant of topology trees based on a restricted
partition of a binary tree B, where the nodes of B are clustered into disjoint
sets such that the elements in each set are nodes of a connected component of
B. Each of such components is called a cluster, and its external degree is the
number of edges with exactly one endpoint being a vertex in the cluster. A
restricted partition of order s of B is defined to be a partition that satisfies the
following conditions: each cluster has external degree at most 3; each cluster
with external degree 3 contains only one node; each cluster with external degree
less than 3 has at most s nodes, and no two adjacent clusters can be combined
without breaking the above conditions. Frederickson gave a linear-time algorithm
that creates a restricted partition of order s for a given binary tree on n nodes,
and proved that the number of clusters is Θ(dn/se).

The endpoints of the edges that connect different clusters are called boundary
nodes. We further follow the notation of He et al. [13] and define the preorder

segments of a cluster to be the maximal contiguous subsequences of nodes in the
preorder sequence that are in the same cluster. Thus Frederickson’s approach
guarantees that each cluster has up to two boundary nodes and up to three pre-
order segments. The clusters including the root may have 3 preorder segments.

Frederickson further defined a restricted multi-level partition of a binary tree
B consisting of a set of h partitions of the nodes which can be computed re-
cursively as follows: The clusters at level 0, which are called base clusters, are
obtained by computing a restricted partition of order s of B. Then, to compute
the level-l clusters for any level l > 0, we view each cluster at level l − 1 as a
node, and then compute a restricted partition of order 2 of the resulting tree.
This recursion stops when the partition contains only one cluster containing all
the nodes, which is the level-h cluster.

A topology tree H is defined for a restricted multi-level partition of a binary
tree B. H contains h + 1 levels. Each node of H at level l represents a level-l
cluster, and the up to two children of a node at level l each corresponds to one
of the two level-(l − 1) clusters that this level-l cluster consists of. Additional
links are maintained between each pair of adjacent nodes at the same level of H.
Frederickson proved that h = O(lg n). Topology trees were used in maintaining a
dynamic forest of binary trees, to support two operations: link which combines
two trees in the forest into one by adding an edge between the root of one binary
tree and an arbitrary given node of the other that has less than two children,
and cut which breaks one tree into two by removing an arbitrary given edge.
The following lemma summaries a special case of their results to be used in our
solutions, in which we say that a cluster is modified during updates if it is deleted
or created during this update, its nodes or edges have been changed or an edge
with an endpoint in the cluster has been inserted or deleted:

Lemma 1 ([10, 11]). The topology trees of the binary trees in a given forest
F on n nodes can be maintained in O(s + lg n) time for each link and cut,
where s is the maximum size of base clusters. Furthermore, each link or cut

modifies O(1) clusters at any level of the topology trees maintained for the two
binary trees updated by this operation, and once a cluster is modified, the clusters
represented by the ancestors of its corresponding node in the topology tree are
all modified. These topology trees have Θ(f +n/s) nodes in total, where f is the
current number of trees in F , and occupy O(S + (f + n/s) lg n) bits in total,
where S is the total space required to store the tree structures of base clusters.

2.2 Tree Extraction

Tree extraction has proved to be a powerful technique in supporting various
types of static path queries [14–16, 6]. This technique is based on the deletion
operation defined in the context of tree edit distance [4]. To delete a non-root
node u, which is a child of v, the children of u are inserted in place of u in the
list of children of v, preserving the original order. Let T be an ordinal weighted
tree and I be a weight range. For the sake of convenience, we add a dummy node
r to be the new root of T , which has a NULL weight and will be the parent of the

original root. We define TI to be the extracted tree obtained by deleting all the
non-root nodes whose weights are not in I from the argumentation of T . That
is, TI only consists of the dummy root and the nodes whose weights are in I.
The crucial observation is that tree extraction preserve the ancestor-descendant,
preorder, and postorder relationships among the remaining nodes.

3 Dynamic Path Reporting

Let T be a dynamic tree on n weighted nodes. W.l.o.g, we assume that node
weights are distinct. We construct a weight-balanced B-tree [3], W , with leaf
parameter 1 and branching factor d = ddlg neεe for any positive constant ε less
than 1/2. When the value of d changes due to updates, we reconstruct the entire
data structure and amortize the cost of rebuilding to updates. By the properties
of weight-balanced B-trees, each internal node of W has at least d/4 and at
most 4d children, and the only exception is the root which is allowed to have
fewer children. Each leaf of W represents a weight range [a, b), where a and b
are weights assigned to nodes of T , and there is no node of T whose weight is
between a and b. An internal node of W represents a (contiguous) range which is
the union of the ranges represented by its children, where the children are sorted
by the left endpoints of these weight ranges. The levels of W are numbered
0, 1, 2, . . . , t, starting from the leaf level, where t = O(lg n/ lg lg n) denotes the
number of the root level. The tree structure of W together with the weight range
represented by each node is maintained explicitly.

For each internal node v of W , we conceptually construct a tree T (v) as
follows: Let [a, b) denote the weight range represented by v. We construct a tree
T[a,b) consisting of nodes of T whose weights are in [a, b) using the tree extraction
approach described in Section 2.2. For each node x in T[a,b), we then assign an
integer label i ∈ [1..4d] if the weight of x is within the weight range of the ith
child of v. The resulting labeled tree is T (v).

We do not store each T (v) explicitly. Instead, we transform the tree structure
of each T (v) into a binary tree B(v) as in [6]: For each node x of T (v) with k > 2
children denoted as x1, x2, · · · , xk, we add k − 1 dummy nodes y1, y2, · · · , yk−1.
Then, x1 and y1 become the left and the right children of x, respectively. For
i = 1, 2, . . . , k−2, the left and the right children of yi are set to be xi+1 and yi+1,
respectively. Finally, xk becomes the left and only child of yk−1. In B(v), the
node corresponding to the dummy root of T (v) is also considered a dummy node,
and a node is called an original node if it is not a dummy node. We observe that
this transformation preserves the preorder and postorder relationships among
the original nodes in T (v). Furthermore, the set of original nodes along the path
between any two original nodes remains unchanged after transformation. Each
original node in B(v) is associated with its label in T (v), which is an integer in
[1..4d], while each dummy node is assigned with label 0.

Let Fi denote the forest containing all the binary trees created for the nodes
at the ith level ofW for i > 0, i.e., Fi = {B(v) : v is a node at the ith level of W}
for i ∈ [1..t]. Thus Ft contains only one binary tree which corresponds to the

root of W , and this tree contains all the nodes of the given tree T as original
nodes. This allows us to maintain a bidirectional pointer between each node in
T and its corresponding original node in Ft.

W and T are stored using standard, pointer-based representations of trees. In
the rest of this section, we first present, in Section 3.1, a data structure that can
be used to maintain a dynamic forest in which each node is assigned a label from
an alphabet of sub-logarithmic size, to support a set of operations including path
summary queries which is to be defined later. This structure is of independent
interest and will be used to encode each Fi. We next show, in Section 3.2, how
to maintain pointers between forests constructed for different levels of W , which
will be used to locate appropriate nodes of these forests when answering path
reporting queries. Finally we describe how to answer path reporting queries and
perform updates in weighted trees in Section 3.3.

3.1 Representing Dynamic Forests with Small Labels to Support
Path Summary Queries

We now describe a data structure which will be used to encode Fi in subsequent
subsections. As this structure may be of independent interest, we formally de-
scribe the problem its addresses as follows. Let F be a dynamic forest of binary
trees on n nodes in total, in which each node is associated with a label from the
alphabet [0..σ], where σ = O(lgε n) for an arbitrary constant ε ∈ (0, 1/2). Our
objective is to maintain F to support link, cut and the following operations:

– parentα(x): return the α-parent of node x, i.e., the lowest ancestor of x that
has label α, which can be x itself.

– LCA(x, y): return the lowest common ancestor of two given nodes x and y
residing in the same binary tree.

– pre succα(x): return the α-successor of x in preorder, i.e., the first α-node
in preorder that succeeds x (this could be x itself).

– post predα(x): return the α-predecessor of x in postorder, i.e., the last α-
node in postorder that precedes x (this could be x itself).

– summary(x, y): given two nodes x and y residing in the same binary tree,
return a bit vector of σ + 1 bits in which the αth bit is 1 iff there exists an
α-node along the path from x to y. This query is called path summary.

– modify(x, α): change the value of x’s label to α.

We first set s = d dlgnelgdlgnee in Lemma 1, and use the lemma to maintain the

topology trees of the binary trees in F . We call each base cluster a micro-tree.
We next define a subset of levels of the topology trees marked levels. For

i = 0, 1, . . ., the ith marked level of a topology tree is level ibε lg lg nc of this
topology tree. Since in a topology tree, the restricted partition at each level
except level 0 is of order 2, each internal node of the topology tree has at most
two children. Therefore, for i ≥ 1, each cluster at the ith marked level contains
at most 2bε lg lgnc ≤ 2ε lg lgn = lgε n clusters at the (i − 1)st marked level. We
then define the macro-tree for a node at the ith marked level of a topology tree,

for i ≥ 1, to be the tree obtained by viewing each cluster at the (i−1)st marked
level as a single node and adding an edge between two of these nodes if and only
if their corresponding clusters are adjacent. As shown in the discussion above,
each macro-tree is a binary tree with at most lgε n nodes. A macro-tree is called a
tier-i macro-tree if it is constructed for a node at the ith marked level. A node in
a tier-i macro-tree is called a boundary node if its corresponding cluster contains
the endpoint of an edge that has only one endpoint in this tier-i macro-tree. By
the properties of restricted multi-level partitions, each macro-tree has at most
two boundary nodes and at most one of them is a leaf in the macro tree.

We construct auxiliary data structures for each micro-tree and macro-tree.
Our main idea is to create structures that can fit in 1

2 lg n bits (in addition to
maintaining pointers such as those that can be used to map macro tree nodes to
macro trees at the lower marked level), so that we can construct o(n)-bit lookup
tables to perform operations in each micro-tree or macro tree. Operations over
F are then supported by operating on a constant number of micro-trees and a
constant number of macro-trees at each marked level. The proof of the following
lemma is omitted due to the page limitation.

Lemma 2. Let F be a dynamic forest of binary trees on n nodes in total, in
which each node is associated with a label from the alphabet [0..σ], where σ =
O(lgε n) for any constant ε ∈ (0, 1/2) . F can be represented in O(n lg lg n+f lg n)
bits to support parentα, LCA, summary, pre succα, post predα and modify in
O(lg n/ lg lg n) time, and link and cut in O(lg1+ε n) time, where f is the current
number of trees in F .

3.2 Navigation Between Different Levels of W

As discussed previously, we use Lemma 2 to encode each Fi for i > 0. For each
node at the ith level of W , we store a pointer to the root of its corresponding
topology tree in Fi. Each tree node in Fi can be uniquely identified by a pointer
to the micro-tree containing the node and its preorder rank in the micro-tree.
We call this pair of pointer and preorder rank the local id of this node in Fi.

Since each node, x, of T appears once in Fi as an original node for each
i ∈ [0..t], x has one local id at each level of W . In our algorithm for path
reporting, given the local id of x in Fi, we need find its local id in Fi−1 and
Fi+1. Explicitly storing the answers would require too much space. Thus, our
overall strategy is to precompute, for only a subset of nodes of T , their local
ids in Fi−1 and Fi+1. Then, we design an algorithm to compute local ids of
other nodes, by making use of the fact that both tree extraction and our way of
transforming each T (v) to B(v) preserve relative preorder among nodes of T .

We now describe our strategy in details. In Fi, we call the clusters at the first
marked level of the topology trees mini-trees. By our discussions in Section 3.1,
each mini-tree then contains at most lgε n micro-trees, and has O(lg1+ε n) tree n-
odes. There is a one-to-one correspondence between mini-trees and tier-1 macro-
trees, but they are conceptually different: each node in a mini-tree is a node of
Fi, while a node in a tier-1 macro-tree represents a micro-tree. Because of this

one-to-one correspondence, however, we do not distinguish the pointers to a tier-
1 macro-tree from a pointer to its corresponding mini-tree. We say a micro-tree
is the ith micro-tree of a mini-tree (or its corresponding tier-1 macro-tree), if
this micro-tree is represented by the ith node in preorder of the tier-1 macro-tree
corresponding to this mini-tree.

A node in Fi can also be uniquely identified by a pointer to the mini-tree
containing the node and its preorder rank in the mini-tree. Conversions between
this type of identification and the local id of the node can be done in constant
time (the details are omitted). Thus we consider each of these two different
identifiers as a valid local id of a node in Fi in the rest of the paper. Furthermore,
we consider the support of parentα within any given mini-tree, i.e., given a node
x, we are interested in finding its α-parent in the same mini-tree if it exists. We
also consider the following two operators over a mini-tree:

– pre rankα(x), which computes the number of α-nodes preceding x in pre-
order (including x itself if it is labeled α);

– pre selectα(i), which locates the ith α-node in preorder.

In the above definition, we allow α be set to 0̄, which matches any label that
is not 0. We have the following lemma. The proof is omitted here.

Lemma 3. With o(n) additional bits, parentα, pre rankα and pre selectα
can be supported in O(1) time over each mini-tree in Fi.

We next define a set of pointers between mini-trees at different levels of W
and we call these pointers inter-level pointers. These pointers are defined for
each mini-tree µ in any Fi. Let v be the node of W such that B(v) contains µ. If
i < t, then for each preorder segment of µ, we create an up pointer for the first
original node, x, of this segment in preorder. This pointer points from x to the
original node in Fi+1 that corresponds to the same node of T . Next, if i > 1,
for each preorder segment of µ and for each label α ∈ [1..4d], if node y is the
first node in this segment in preorder that is labeled α, we store a down pointer
from y to the original node in Fi−1 that corresponds to the same node of T that
y represents. No pointers are created for nodes labeled 0, as they are dummy
nodes. So far we have created at most 3(4d+1) = O(lgε n) inter-level pointers for
each mini-tree, as each mini-tree has at most three preorder segments. Finally,
we create a back pointer for each up or down pointer, doubling the total number
of inter-level pointers created over all the levels of W .

To store inter-level pointers physically, we maintain all the pointers that
leave from mini-tree µ (again, suppose that µ is in B(v) which is part of Fi) in
a structure called Pµ, including up and down pointers created for nodes in µ,
and back pointers for some of the up and down pointers created for mini-trees
at adjacent levels of W . We further categorize these pointers into at most 4d+ 1
types: A type-0 pointer arrives at a mini-tree in Fi+1, i.e., goes to the level above,
and a type-α pointer for α > 1 arrives at a mini-tree in B(u), where u is the
αth child of v. Note that it is possible that an up or down pointer of µ and a
back pointer from an adjacent level stored in Pµ have the same source (a node

in µ) and destination (a node in the forest for an adjacent level of W). In this
case, the back pointer is not stored separately in Pµ, and hence each inter-level
pointer in Pµ can be uniquely identified by its type and the preorder rank of its
source node in µ. We also maintain the preorder rank of the first node of each of
the (at most three) preorder segments in µ. We use the approach of Navarro and
Nekrich [19, Section A.3] with trivial modifications to encode Pµ in |Pµ| words,
so that given a node x in µ, we can retrieve in O(1) time the closest preceding
node (this can be x itself) in the preorder segment of µ containing x that has an
inter-level pointer of a given type α, as well as the local id of the destination of
this pointer. Insertion and deletion of inter-level pointers can also supported in
O(1) time. The details are deferred to the full version due to space limitation.
We can now prove the following lemma:

Lemma 4. Give the local id of a original node x in Fi, the local id of the original
node in Fi+1 (if i < t) or Fi−1 (if i > 1) that represents the same node of T can
be computed in O(1) time.

Proof. We first show how to locate the node, y, in Fi+1 that represents the same
node of T . We start to find the closest node, x′, that precedes x in preorder, has
a type-0 inter-level pointer, and resides in the same preorder segment, s0, of the
mini-tree containing x (x′ is allowed to be x itself). The destinate node, y′, of
this pointer is also retrieved during the same process, and it is a node in Fi+1.
Node x′ always exists because the first original node of each preorder segment
in a mini-tree has an up pointer.

If x′ happens to be x itself, then y′ is y which is the answer. If not, we observe
that y and y′ are in the same preorder segment of a mini-tree in Fi+1. Suppose
that u is the αth node of v. It then follows that the number of α-nodes of B(v)
that are between y′ and y in preorder is equal to the number, k, of original nodes
between x′ and x in B(u). As the number of original and dummy nodes between
x′ and x in B(u) is equal to the difference between the preorder ranks of x′ and x,
it suffices to compute the number of dummy nodes between them, which can be
computed as pre rank0(x)− pre rank0(x′) in B(u). By Lemma 3, this requires
constant time since they are in the same mini-tree. Then, the preorder of y can
be computed as pre selectα(pre rankα(y′) + k) in B(v), which again requires
constant time. This gives us the local id of y′, and the entire process uses O(1)
time. The node, z, in Fi−1 that represents the same node of T as x does can be
located using a similar process. ut

3.3 Supporting Path Reporting

Lemma 5. The structures in this section can answer a path reporting query in
O((lg n/ lg lg n)2 + occ lg n/ lg lg n) time, where occ is the output size.

Proof. Let x and y be the two nodes that define the query path, and let [p, q] be
the query weight range. We perform a top-down traversal in W to locate its up
to two leaves that represent ranges containing p and q. During this traversal, at
each level, i, of W , we visit at most two nodes of W , and each node to visit at

the next level can be located using a binary search in O(lg d) = O(lg lgn) time,
as each node has at most 4d children. As there are O(lg n/ lg lg n) levels in W ,
the total time required to determine the nodes of W to visit is O(lg n).

For each node, v, of W visited during the above top-down traversal, we also
determine the original nodes xv and yv in B(v) respectively corresponding to
the lowest ancestors of x and y in T that are represented by nodes in B(v) (each
node is considered to be its own ancestor). These nodes are located during the
top-down traversal as follows. Let u denote the parent of v in W , and suppose
that v is the αth child of u. Then to compute xv, if xu is labeled with α, then
we use Lemma 4 to locate xv in constant time. Otherwise, we first locate xu’s
lowest α-parent, x′, using Lemma 2 in O(lg n/ lg lg n) time, and then compute
xv as the node corresponding to x′ in B(v) in O(1) time using Lemma 4. yv can
be computed in a similar manner. The total time required to locate all these
nodes in our query algorithm is thus O((lg n/ lg lg n)2).

For each node, v, of W visited during the traversal, if the range of at least one
of v’s children is contained entirely in [p, q], then we compute zv = LCA(xv, yv) in
B(v). We also perform a path summary query using xv and yv as the endpoints of
the query path, and let V be the bit vector returned by the query. Suppose that
the children of v whose ranges are contained in [p, q] are numbered j, j+1, . . . , k.
Since V has O(lgε n) bits, then we can use an o(n)-bit table to retrieve the
position of each 1 bit in V [j..k] in constant time. Then for each l ∈ [j..k] such
that V [l] = 1, we claim that there are nodes along the path between xv and yv in
B(v) that are labeled l, and these nodes correspond to nodes of T to be reported.
Each node from xv to zv (including xv and zv) labeled l can be located using
parentl over B(v) (when we reach a node whose preorder in B(v) is less than or
equal to that of zv, we have located all these nodes), and for each node found,
we keep finding its local id in the level above, until we find its local id at the root
level of W which immediately gives us a node in T , and we report this node of T .
The nodes from yv to zv (including xv but excluding zv) labeled l can be located
and have their corresponding nodes in T reported using the same approach.
We observe that a constant number of LCA and summary are performed at each
level of W , which require O((lg n/ lg lg n)2) time in total. Then, for each node
reported, only O(lg n/ lg lg n) time is spent: if we always charge each parentα
operation to the last node reported before this operation is performed, then each
node is charged a constant number of times, and the process described above
which finds the node of T given its local id in B(v) requires O(lg n/ lg lg n) time.
This completes the proof. ut

Lemma 6. The structures in this section support node insert, node delete

and modify weight in O(lg2+ε n) amortized time.

Proof. We only show how to support node insert; the other update operations
can be handled similarly. Note that update operations may eventually change
the value of dlg ne, but this can be handled by standard techniques of dynamic
data structures.

Suppose that we insert a new node h with weight wh. The new node h is
inserted as a child of x, and a set of consecutive children of x between and in-

cluding child nodes y and z become the children of h after the insertion. Here we
consider the general case in which y and z exist and are different nodes; degener-
ate cases can be handled similarly. In the first step of our insertion algorithm, we
insert the weight wh into W by creating a new leaf for it. This may potentially
cause the parent of this new leaf to split, but for now, we consider the case in
which a split will not happen. The support for node splits in W is omitted due
to the page limitation.

We next perform a top-down traversal of W to fix the structures created for
the forest Fi at each level i of W . In our description, when we say node h (or
x, etc.) in Fi, we are referring to the original node, either to be inserted to Fi
or already exist in Fi, that corresponds to this node in T . At the top level, i.e.,
the tth level, of W , the forest Ft contains one single binary tree. As we maintain
bidirectional pointers between nodes in T and nodes in Ft, we can immediately
locate the nodes x, y and z in Ft. Let x1, x2, . . . be the dummy nodes created
for x in Ft, among which xj and xk are the dummy nodes that are parents of
y and z, respectively. We then perform a constant number of updates to Ft as
follows. First we perform the cut operation twice to remove the edge between
xj−1 and xj , and the edge between xk and xk + 1. This divides Ft into three
trees. We then create a tree on a new node x′j which is a dummy node, and
temporarily include this tree into Ft. Note that creating the topology tree and
associated auxiliary data structures for a tree on a single node can be trivially
done in constant time. We then replace the dummy node xj by the node h to be
inserted. This can be done by first performing binary searches in the ranges of
the children of the root, r, of W , so that we know the correct label, α, to assign
to h. We then simply call modify to change the label, 0, assigned to x′j , to α
using modify. We then perform link to add three edges so that x′j becomes the
right child of xj−1, h becomes the left child of x′j , and xk+1 becomes the right

child of x′j . It is clear that all these operations require O(lg1+ε n) time in total.
To update Ft−1, let v be the αth child of r. We observe that it suffices to up-

date B(v) without making changes to any other tree in Ft−1. Then we claim that
if x is also labeled α in B(r), then in B(v), we will also insert h as a child of the
original node corresponding to x; otherwise, we insert h as a child of the original
node of B(v) that corresponds to the node, x′, in B(r) that is parentα(x). If x′

does not exist, then h is inserted as a child of the dummy root of B(v). We then
observe that h will be inserted to B(v) as the new parent of the set of children
of x, x′ or the dummy root (depending on which of the above three cases ap-
plies) that are between and including the original nodes in B(v) that correspond
to the nodes pre succα(y) and post predα(z) in B(r). Thus, in O(lg n/ lg lg n)
time, we have found where to insert h in Ft−1, and by the approach shown in
the previous paragraph, we can use link, cut and modify to update Fi−1 in
O(lg1+ε n) time. This process can then be repeated at each successive level of
W . Hence it requires O(lg2+ε n/ lg lg n) time to update all the Fi’s.

When updating the Fi’s, we also update inter-level pointers. The details for
that are deferred to the full version. ut

The space analysis is also omitted. We thus have the final result:

Theorem 1. Under the word RAM model with word size w = Ω(lg n), an or-
dinal tree on n weighted nodes can be stored in O(n) words of space, such that
path reporting queries can be answered in O((lg n/ lg lg n)2+occ lg n/ lg lg n) time,
where occ is the output size, and modify weight, node insert and node delete

can be supported in O(lg2+ε n) amortized time for any constant ε ∈ (0, 1).

References

1. Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic
trees. In: ICALP. pp. 73–84 (2000)

2. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: FOCS. pp.
534–544 (1998)

3. Arge, L., Vitter, J.S.: Optimal external memory interval management. SIAM Jour-
nal on Computing 32(6), 1488–1508 (2003)

4. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci.
337(1-3), 217–239 (2005)

5. Brodal, G.S., Davoodi, P., Rao, S.S.: Path minima queries in dynamic weighted
trees. In: WADS. pp. 290–301 (2011)

6. Chan, T.M., He, M., Munro, J.I., Zhou, G.: Succinct indices for path minimum,
with applications to path reporting. In: ESA. pp. 247–259 (2014)

7. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algo-
rithmica 2, 337–361 (1987)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms
(3. ed.). MIT Press (2009)

9. Frederickson, G.N.: Data structures for on-line updating of minimum spanning
trees, with applications. SIAM J. Comput. 14(4), 781–798 (1985)

10. Frederickson, G.N.: Ambivalent data structures for dynamic 2-edge-connectivity
and k smallest spanning trees. SIAM J. Comput. 26(2), 484–538 (1997)

11. Frederickson, G.N.: A data structure for dynamically maintaining rooted trees. J.
Algorithms 24(1), 37–65 (1997)

12. He, M., Munro, J.I.: Space efficient data structures for dynamic orthogonal range
counting. Comput. Geom. 47(2), 268–281 (2014)

13. He, M., Munro, J.I., Satti, S.R.: Succinct ordinal trees based on tree covering.
ACM Transactions on Algorithms 8(4), 42 (2012)

14. He, M., Munro, J.I., Zhou, G.: Path queries in weighted trees. In: ISAAC. pp.
140–149 (2011)

15. He, M., Munro, J.I., Zhou, G.: Succinct data structures for path queries. In: ESA.
pp. 575–586 (2012)

16. He, M., Munro, J.I., Zhou, G.: A framework for succinct labeled ordinal trees over
large alphabets. Algorithmica (2014), to appear

17. Kaplan, H., Shafrir, N.: Path minima in incremental unrooted trees. In: ESA. pp.
565–576 (2008)

18. Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on
lists and trees. Nord. J. Comput. 12(1), 1–17 (2005)

19. Navarro, G., Nekrich, Y.: Optimal dynamic sequence representations. In: SODA.
pp. 865–876 (2013)

20. Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees.
ACM Transactions on Algorithms 10(3), 16 (2014)

21. Patil, M., Shah, R., Thankachan, S.V.: Succinct representations of weighted trees
supporting path queries. J. Discrete Algorithms 17, 103–108 (2012)

