
A Space-Efficient Framework for
Dynamic Point Location

Meng He1, Patrick K. Nicholson2, and Norbert Zeh1

1 Faculty of Computer Science, Dalhousie University, Canada
{mhe,nzeh}@cs.dal.ca

2 Cheriton School of Computer Science, University of Waterloo, Canada
p3nichol@uwaterloo.ca

Abstract. Let G be a planar subdivision with n vertices. A succinct
geometric index for G is a data structure that occupies o(n) bits beyond
the space required to store the coordinates of the vertices of G, while
supporting efficient queries. We describe a general framework for con-
verting dynamic data structures for planar point location into succinct
geometric indexes, provided that the subdivision G to be maintained
has bounded face size. Using this framework, we obtain several succinct
geometric indexes for dynamic planar point location on G with query
times matching the currently best (non-succinct) data structures and
polylogarithmic update times.

1 Introduction

Many fundamental problems in computational geometry involve constructing
data structures over large geometric data sets to support efficient queries on
the data. Such queries include point location, ray shooting, nearest neighbour
searching, as well as a plethora of range searching variants (see [5, 1]). Data struc-
tures supporting these types of queries provide the building blocks of software
in many important application areas, such as geographic information systems,
network traffic monitoring, database systems, computer aided design (e.g., very-
large-scale integration), and numerous graphical applications.

One of the most heavily studied queries of this type is that of planar point
location: Given an n-vertex planar subdivision, the goal is to support queries
of the form, “Which region of the subdivision contains the query point?” Start-
ing with Kirkpatrick’s work [14], many linear-space data structures have been
proposed to support planar point location queries in O(lg n) time3, which is the
asymptotically optimal number of point-line comparisons. Further research has
focused on determining the exact number of point-line comparisons [12, 17], de-
veloping data structures that bound the query time based on the entropy of the
query distribution [13], and exploiting word-RAM parallelism [8, 7].

Recently, Bose et al. [6] presented a space-efficient framework for planar
point location in the word-RAM model. In this framework, the coordinates of

3 We use lgn to denote dlog2 ne.

Source Model Restrictions Query Insert Delete

CJ92 [9] PM General O(lg2 n) O(lgn) O(lgn)
BJM94 [4] PM General O(lgn lg lgn) O(lgn lg lgn)a O(lg2 n)a

ABG06 [3] PM General O(lgn) O(lg1+ε n)a O(lg2+ε)a

ABG06 [3] RAM General O(lgn) O(lgn lg1+ε lgn)a,p O(lg2+ε n
lg lgn

)a,p

GK09 [11] RAM Horizontal O(lgn) O(lgn) O(lgn)

N10 [15] RAM Horizontal O(lgn
lg lgn

) O(lg1+ε n)a O(lg1+ε n)a

Table 1. Previous results for linear-space data structures for dynamic planar point
location. In the model column, “PM” denotes the pointer machine, and “RAM” the
word-RAM model. In the restrictions column, “General” denotes an arbitrary planar
subdivision, and “Horizontal” denotes point location among horizontal segments (verti-
cal ray shooting). The letters “a” and “p” in the columns showing query, insertion, and
deletion bounds indicate amortized bounds and high-probability bounds (i.e., proba-
bility 1−O(1)/nc, for some c ≥ 1), respectively. The value ε is any positive constant.

the n vertices of the subdivision are permuted and stored along with an aux-
iliary data structure called a succinct geometric index. The succinct geometric
index occupies only o(n) bits, which is asymptotically negligible compared to
the space occupied by the coordinates. With only this index and access to the
permuted sequence, they showed how to match the efficiency of many of the
previous data structures for planar point location. Specifically, they presented
several succinct geometric indexes that can answer point location queries in
O(lg n) time; O(H + 1) time, where H is the entropy of the query distribution;
O(min{lg n/ lg lg n,

√
lgU}) time, if the coordinates are integers in the range

[1, U]; and, finally, lg n + 2
√

lg n + O(lg1/4 n) point-line comparisons. Further-
more, they showed how to make their data structure implicit. Their implicit
data structure uses only O(1) words of space beyond the permuted sequence of
coordinates for the vertices and supports point location queries in O(lg2 n) time.

But what about the dynamic case, where we are allowed to modify the struc-
ture of the planar subdivision? Many data structures have been proposed to
solve this problem, though the best choice depends on whether we desire fast
queries, fast updates, worst-case behaviour, deterministic behaviour, or are oper-
ating on a restricted class of subdivisions. Table 1 summarizes the skyline results
for dynamic planar point location. Note that we consider only linear-space data
structures that are fully dynamic, i.e., support insertions and deletions. So far,
no point location data structures have been proposed that are dynamic and use
only o(n) bits of memory beyond the space required for the coordinates of the
vertices. Developing such structures is the focus of this paper.

1.1 Our Results

Our main result is a framework for creating succinct geometric indexes for dy-
namic point location in planar subdivisions with bounded face size: i.e., the

maximum number of vertices defining a face is a fixed constant that does not
depend on n. This framework allows us to convert any existing linear-space data
structure for dynamic planar point location into a succinct geometric index, sub-
ject to the constraint that the subdivision to be maintained have bounded face
size4. The query times of our data structures can be set to match any of the
data structures for general subdivisions from Table 1, since our framework in-
troduces only an additive o(lg n) term to the query cost. Updates are supported
in polylogarithmic time, where the exact update time depends on the choice
of the underlying data structure. Our update operations allow for insertion and
deletion of vertices and edges into/from G, with some restrictions that we de-
scribe in Section 3. We note that the types of update operations are similar to
previous work [9], and complete in the sense that they allow the assembly and
disassembly of any planar subdivision of bounded face size. All our results hold
in the word-RAM model with word size Θ(lg n) bits. The following theorem,
which is a consequence of our main theorem (Theorem 3 on page 9), summarizes
our contributions.

Theorem 1. Let G be an n-vertex planar subdivision with bounded face size
and each of whose vertices has coordinates occupying M = O(lg n) bits. For any
constant ε > 0, there exists a data structure for dynamic planar point location
in G that occupies nM + o(n) bits and

– Supports queries in O(lg n) time and updates in O(lg3+ε n) amortized time
with high probability (using [3]),

– Supports queries in O(lg n lg lg n) time and updates in O(lg2+ε n) amortized
time (using [4]), or

– Supports queries in O(lg2 n) time and updates in O(lg2+ε n) worst-case time
(using [9]).

Techniques and Overview: Our point location framework is based on the two-
level decomposition used in Bose et al.’s framework for obtaining succinct indexes
for static planar point location [6]. This framework uses a two-level partition
of the subdivision using planar separators. The main challenge in obtaining a
dynamic framework based on these ideas is to maintain the separator decompo-
sition under updates of the subdivision. Aleksandrov and Djidjev [2] introduced
the P-tree, a linear-space data structure for maintaining planar graph partitions
under updates of the graph. Our main technical contribution is to develop a suc-
cinct version of this data structure that requires only o(n) bits of space beyond
the space required to store the coordinates of the vertices of the graph. Ob-
taining this structure requires a non-trivial combination of the original P-tree
data structure with the labelling scheme by Bose et al. [6]. While our motivation
to develop this data structure was its importance as part of our point location
framework, we expect it to be of independent interest, as graph partitions find
applications in a wide range of algorithms.

4 Previous results for general subdivisions, e.g., [9], do not have this constraint.

2 Definitions and Preliminaries

We require the following definitions, closely following Aleksandrov and Djid-
jev [2], but making some slight modifications. For a graph G, let V (G) and
E(G) denote the vertex and edge sets of G, respectively. A planar graph G is
any graph that can be embedded (drawn) in the plane so that its edges in-
tersect only at their endpoints. A straight-line embedding of G represents each
edge as a line segment. A planar subdivision is a straight-line embedding of a
2-edge-connected planar graph. The faces of the subdivision are the connected
components of R2 \ (V (G) ∪ E(G)). We denote the set of faces by F (G), the
number of faces by N , and the number of vertices by n.

A region R is any set of faces, and we use G(R) to denote the subgraph
spanned by the edges on their boundaries. An edge e ∈ E(G(R)) is a boundary
edge of R if only one of the faces in F (G) incident to e is in G(R). All other
edges of G(R) are referred to as interior edges. The boundary of R, denoted
∂R, is the subgraph induced by the boundary edges of R. We say a region is
connected if the dual of G(R) is connected.

A partition R = {R1, ..., Rr} of G is a set of regions such that each face in
F (G) appears in exactly one region in R. A partition is weakly connected if every
region is either connected or adjacent to (i.e., shares a boundary edge with) at
most two other regions, in which case these two adjacent regions are connected.
The boundary of partition R, denoted ∂R, is the the union of the boundaries
∂Ri, 1 ≤ i ≤ r, of its regions.

Let G be a planar graph with N faces, and ε > 0. A partition R is an ε-
partition of G if no region of R contains more than εN faces. In the remainder
of this paper we deal with graphs whose face size is bounded by a constant. We
note that the number of vertices, n, is Θ(N) in this case.

We now review some preliminary lemmas that we will use extensively. The
following lemma is an extension of the result of [10], and is used throughout our
data structures to save space.

Lemma 1 ([6], Lemma 4.1). Given a planar subdivision of n vertices, for a
sufficiently large n, there exists an algorithm that can encode it as a permutation
of its point set in O(n) time and such that the subdivision can be decoded from
this permutation in O(n) time.

For a sequence S of length n, let S[i] denote the ith symbol in S. We use
rankb(S, i) to denote the frequency of symbol b in the prefix S[1], ..., S[i]. Simi-
larly, we use selectb(S, i) to denote the index j containing the ith occurrence
of symbol b in S. We make use of the following lemma, which can be used to
support rank and select operations on a bit sequence, while also compressing
the sequence if it sparse.

Lemma 2 ([16]). Given a sequence S of n bits, with m one bits 1, there exists a
data structure that represents S using m lg(n/m)+1.92m+o(m) bits and supports
rank and select operation in O(lg(n/m) + (lg4m)/ lg n) and O((lg4m)/ lg n)
time, respectively. Construction of the data structure takes O(n) time.

3 P-Trees

The P-tree, introduced by Aleksandrov and Djidjev [2], is a dynamic data struc-
ture for maintaining ε-partitions of a planar graph under the following opera-
tions, assuming the face size is bounded by a constant d:

– insert vertex(v, e) : Create a new vertex v and replace the edge e = (u,w)
with two new edges e1 = (u, v) and e2 = (v, w).

– insert edge(u,w, f) : Insert a new edge e = (u,w) across face f . Vertices
u and w have to be on the boundary of face f .

– delete vertex(v): Assuming v is a degree-2 vertex with neighbours u and w,
delete v and replace the edges (u, v) and (v, w) with a single edge (u,w).

– delete edge(e): Delete the edge e = (u,w), assuming both u and w are of
degree greater than two.

– list partition(ε): Return an ε-partition of G.

As noted by Aleksandrov and Djidjev [2], these operations can be used to trans-
form any planar graph into any other planar graph, as long as neither contains
a vertex of degree less than two. Next we give a brief summary of this data
structure. For full details, refer to [2].

The P-tree represents a hierarchy of graphs G0, G1, . . . , G`, where G0 = G
and |G`| = O(1). For 1 ≤ i ≤ `, Gi is obtained from Gi−1 by computing a
weakly connected h/Ni−1-partition Ri−1 of Gi−1, where Ni−1 is the number of
faces of Gi−1 and h is an appropriate constant. The faces of Gi represent the
regions in this partition. Every edge of Gi represents a maximal list of boundary
edges on the boundaries of the two adjacent regions. Every face f of Gi has
the faces of Gi−1 in the corresponding region of Ri−1 as its children in the P-
tree and stores a pointer to the list of edges on its boundary. Every edge of Gi
stores pointers to the edges of Gi−1 it represents. By following these pointers
recursively, every face f of Gi represents a collection of faces of G, a region
R(f), and every edge of Gi represents a collection of edges of G. The edges of
G corresponding to the edges on the boundary of a face f of Gi are exactly the
boundary edges of the region R(f). We define the cost of an edge of Gi as the
number of edges in G it represents. For a P-tree T , we use R(T, i) to denote the
partition {R(f1), ..., R(fr)}, where f1, ..., fr are the faces of Gi, that is, the faces
represented by nodes in T at distance i from the leaf level.

We call a node z of a P-tree T with children z1, z2, . . . , zq balanced if it
satisfies three properties:

(B1) z, z1, z2, . . . , zq have at most h children each, for an appropriate constant h.
(B2) If #c(z) and #g(z) respectively denote the number of children and the

number of grandchildren of z, then #c(z)/#g(z) ≤ c/h, for an appropriate
constant c ≤ h/2.

(B3) Let k be the level of z in the P -tree, i.e., its distance from the leaf level.
Then the total cost of all edges on zi’s boundary, for every 1 ≤ i ≤ q, is at
most dh(k−1)/2.

We note that all nodes of the P-tree are balanced after applying the described
construction algorithm. Furthermore, using these balancing conditions, it is easy
to prove the following lemma.

Lemma 3. Let 1 ≤ k ≤ ` and εk = hk/N , where N is the number of faces in G.
The partition R(T, k) is an εk-partition of G with boundary size not exceeding
d
√

(Nc2k)/εk.

By Lemma 3, a list partition(ε) query amounts to finding the right level
in the P -tree and reporting the regions corresponding to the nodes at this level
and their boundaries.

The update operations supported by the P-tree may create or destroy a
constant number of leaves (faces of G) and change the boundary of a constant
number of leaves. For example, insert edge increases the number of leaves by
one. This may affect the balancing of the ancestors of these leaves. In order to
rebalance the tree, the path from each such leaf to the root is traversed and
every unbalanced node z is rebalanced using the following lemma.5

Lemma 4. Let G be a planar graph with N faces, assume the edges of G have
associated costs, and assume the total cost of the edges bounding each face
is bounded by some parameter b. Then there exists a weakly connected h/N -
partition R = {R1, ..., Rr} such that the cost of each region’s boundary is at most
b
√
h and r ≤ cN/h, for some constant c. Furthermore, R can be constructed in

O(N lgN) time.

We apply this lemma to every unbalanced node z we encounter. Since we
rebalance nodes in a bottom-up fashion, z can violate condition (B1) only if
one of its children has too many children. While rebalancing, we maintain the
invariant that every node, balanced or not, has at most 2ch children and every
node below the current node is balanced. Thus, once we are done processing the
root, the entire tree is balanced.

Now consider an unbalanced level-k node z with at most h children z1, . . . , zq
that each satisfy the conditions for z to be balanced, except one which may have
between h and 2ch children or boundary cost greater than dh(k−1)/2. Moreover,
z may violate condition (B2). To rebalance z, we consider the constant-size
subgraph of Gk−2 consisting of z’s grandchildren and their boundaries, and par-
tition it into subgraphs with at most h faces each. Each region in this partition
becomes a new face of Gk−1, and these faces become the new children of z.
By Lemma 4, this restores condition (B2), the part of condition (B1) bounding
the number of children of each child of z and, since each grandchild of z has
boundary cost at most b ≤ dh(k−2)/2, condition (B3). Since z has at most h
children before rebalancing, one of which has up to 2ch children, while all others
have at most h children, z has less than h2 + 2ch ≤ 2h2 grandchildren. Thus,

5 In [2, Theorem 1], this result was stated incorrectly, but apparently the remainder of
the paper applied it correctly. The running time stated in the lemma can be reduced
to O(N), but it would have no effect on our data structure and would require a
significantly more tedious analysis.

by Lemma 4, we partition the subgraph defined by these grandchildren into at
most 2h2 ·c/h ≤ 2ch regions, each of which becomes a child of z. Thus, z satisfies
the upper bound on its number of children necessary to proceed to rebalancing
its parent. Since each rebalancing operation works with a graph of constant size
and the height of the tree is O(lgN), each update takes O(lgN) time.

Based on Lemmas 3 and 4, we get the following corollary:

Corollary 1. Let h ≥ cα, for some α > 2, and let k = logh lgλN , for some
λ > 0. The partition R(T, k) is a (lgλN/N)-partition with boundary size that

does not exceed dN/ lgλ/2−λ/αN . Furthermore, the number of regions in R(T, k)

does not exceed N/ lgλ−λ/αN .

4 Succinct P-Trees

In this section we introduce the succinct P-tree, which uses only nM + o(n)
bits of space to represent an n-vertex planar graph whose vertices have M -
bit coordinates in the plane. The price we pay for this space reduction is a
polylogarithmic slowdown in update time.

The main idea of the succinct P-tree is to prune all nodes below level logh lgλN
in the tree, for some λ > 0, referred to as the pruning level. We call the nodes at
the pruning level pruned nodes and the nodes above the pruning level internal
nodes. By Corollary 1, there are r ≤ N/ lgλ−λ/αN pruned nodes. We refer to
the regions defined by the pruned nodes as pruned regions.

Suppose we apply Lemma 1 to a pruned subgraph G(R(z)), obtaining a per-
mutation of the coordinates of its vertices that uniquely identifies the structure
of G(R(z)). Storing this permuted sequence of coordinates in the nodes at the
pruning level allows us to perform operations as in the original P-tree, at the cost
of decoding and re-encoding a subgraph of size O(lgλN) during each update.
However, explicitly storing this permutation in each pruned node causes the co-
ordinates of the boundary vertices to be duplicated in several pruned regions.
To avoid this, we adapt the labelling scheme of Bose et al. [6] to the dynamic
setting. The details are as follows.

Data structures of pruned nodes: Let πz denote the permutation of vertices
obtained by applying Lemma 1 to G(R(z)), for a fixed pruned node z ∈ T .
We denote the ith vertex in the permutation as πz(i). We separate the vertices
into two categories: vertices that are endpoints of edges on the boundary of
the pruned region are boundary vertices; all other vertices are interior vertices.
Every interior vertex belongs to exactly one pruned region. Every boundary
vertex belongs to more than one pruned region. Each pruned node z now stores
the following data structures, where ∂R(z) and nz denote the boundary of and
the number of vertices in R(z), respectively.

– A binary sequence Bz, where Bz[j] = 0 if πz(j) is an interior vertex, and
Bz[j] = 1 if πz(j) is a boundary vertex of R(z). We represent Bz using the
data structure of Lemma 2.

– An array Iz that stores the coordinates for interior vertices. Entry Iz[j] stores
the coordinates for the vertex πz(select0(Bz, j)), for 1 ≤ j ≤ rank0(Bz, nz).

– An array Xz that stores pointers to records external to node z. For 1 ≤ j ≤
rank1(Bz, nz), the record pointed to by entry Xz[j] stores the coordinates
of vertex πz(select1(Bz, j)): the jth boundary vertex in R(z).

– An array Ez that stores pointers to records representing the edges on the
boundary of ∂R(z). The ordering of Ez is any canonical ordering based on
the permutation πz. For example, we can order the edges lexicographically
by the positions of their endpoints in πz. Let C be the record representing
the jth boundary edge e of R(z) in this ordering, pointed to by entry Ez[j].
C stores the indices of e’s endpoints in arrays Xz, as well as a pointer to
z. Furthermore, C stores the symmetric information about the other pruned
region R(z′) that has e on its boundary.

Each internal node stores the same information as in a standard P-tree. Using
Corollary 1 and Lemma 2, we can bound the space occupied by the succinct P-
tree data structure as follows.

Lemma 5. The succinct P-tree occupies nM +O(n/ lgλ/2−β−1 n) bits, for any
constant β > 0.

We next state the following lemma about supporting updates. Intuitively, the
idea is to simulate the operation of a standard P-tree. Above the pruning level,
each update operation proceeds identically as if it were run on a standard P-tree
and, thus, takes O(lg n) time. In order to implement the portion of the update
operation that operates on nodes below the pruning level, we reconstruct the
affected pruned region from its succinct representation and build a P-tree from
it. This takes O(lgλ n lg lg n) time. Since each update affects only a constant
number of pruned regions, the lemma follows.

Lemma 6. A succinct P-tree supports the operations insert vertex,
insert edge, delete vertex, and delete edge in O(lgλ n lg lg n) time.

Combining Lemmas 5 and 6, and setting λ > 2 leads us to our main theorem
of this section.

Theorem 2. Let G be a planar subdivision with n vertices and N faces, where
each face has at most d vertices, for some constant d ≥ 3. Each vertex is as-
sumed to store M -bit coordinates. Let ε be any positive constant. There exists
a data structure representing G in nM + o(n) bits of space that can perform
the operations insert vertex, delete vertex, insert edge, and delete edge

in O(lg2+ε n) time. The operation list partition(ε′) can be performed in time
proportional to the partition’s size, for lg2+εN/N ≤ ε′ ≤ 1. The boundary size of
the partition returned by list partition(ε′) does not exceed d

√
(N1+δ)/(ε′1−δ),

where δ > 0 is an arbitrarily small constant but depends on our choice of ε.

5 Dynamic Planar Point Location

As an application of Theorem 2, we develop a succinct geometric index for
dynamic planar point location. To do this, we add extra data structures to the
pruned nodes of the succinct P-tree. These extra data structures are analogous
to the subregion level data structures of the two-level index of Bose et al. [6].

Let γ be a positive constant in the range (0, 2]. We refer to the regions in
R(T, logh lgγ n) as γ-subregions. Since λ > 2, each γ-subregion is contained in
a pruned region and thus is not accessible without decoding this pruned region.
The next lemma states that we can augment the succinct P-tree to provide
efficient access to γ-subregions.

Lemma 7. The succinct P-tree can be augmented to support extraction of the
graph structure of an arbitrary γ-subregion (within a specified pruned region) in
O(lgγ(n)polyloglog(n)) time, where γ ∈ (0, 2] is fixed at construction time. The

space bound becomes nM+O((n lg lg n)/ lgγ/2−γ/α n), which is o(n) for γ ∈ (0, 2]
and α > 2, and the update costs remain as stated in Theorem 2.

We now sketch how to use γ-subregion extraction to efficiently support point
location queries, resulting in our main theorem:

Theorem 3. Let D be a dynamic point location data structure that uses O(n)
words of space to store an n-vertex subdivision and supports queries and updates
on this subdivision in Q(n) and U(n) time, respectively. We assume Q(n) +
U(n) = O(polylog(n)). Let G be a planar subdivision, each of whose faces has
a constant number of vertices, and assume the coordinates of each vertex can be
stored in M bits. Let ε > 0 be any positive constant, and choose any constant γ ∈
(0, 2]. There exists a data structure for dynamic planar point location that occu-
pies nM+o(n) bits of space, supports queries in O(lgγ(n)polyloglog(n)+Q(n))
time, and supports the operations insert vertex, delete vertex, insert edge,
and delete edge in O(U(n) lg1+ε/2 n+ lg2+ε n) time.

Proof (Sketch). We maintainG in a succinct P-tree T , augmented as in Lemma 7.
The planar subdivision defined by the boundaries of the pruned regions of G is
stored in the data structure D. This is the first level point location structure.
Inside each pruned node z, we also store another instance of D, denoted Dz. This
second-level point location structure stores the planar subdivision defined by the
boundaries of the γ-subregions contained in R(z). Each face f of this subdivision
corresponds to a connected component of a γ-subregion Si. We store its index i
with f . To answer a query for a point p, we first query D to identify the pruned
region R(z) that contains p. Next we query Dz to identify the γ-subregion Si
that contains p. Finally, we extract Si and perform a brute-force search to find
the face of Si that contains p. The queries to D and Dz require Q(n) time,
and the γ-subregion extraction step requires O(lgγ(n)polyloglog(n)) time, by
Lemma 7. The total query time is therefore O(Q(n) + lgγ(n)polyloglog(n)).
The key idea of achieving the claimed update time is to use condition (B3) to
bound the number of edges and vertices in D that are changed by an update. ut

By choosing the data structures from Table 1 as D in the previous theorem,
and setting γ appropriately, we get the result of Theorem 1.

References

1. Agarwal, P., Erickson, J.: Geometric range searching and its relatives. Contempo-
rary Mathematics 223, 1–56 (1999)

2. Aleksandrov, L., Djidjev, H.N.: A dynamic algorithm for maintaining graph par-
titions. In: Proc. SWAT, LNCS, vol. 1851, pp. 3–30. Springer (2000)

3. Arge, L., Brodal, G., Georgiadis, L.: Improved dynamic planar point location. In:
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science. pp. 305–314. IEEE Computer Society (2006)

4. Baumgarten, N., Jung, H., Mehlhorn, K.: Dynamic point location in general sub-
divisions. Journal of Algorithms 17(3), 342–380 (1994)

5. Berg, M.d., Cheong, O., Kreveld, M.v., Overmars, M.: Computational Geometry:
Algorithms and Applications. Springer, Santa Clara, CA, USA, 3rd edn. (2008)

6. Bose, P., Chen, E., He, M., Maheshwari, A., Morin, P.: Succinct geometric indexes
supporting point location queries. ACM Trans. on Algorithms 8(2), 10 (2012)

7. Chan, T.M.: Persistent predecessor search and orthogonal point location on the
word ram. In: SODA. pp. 1131–1145 (2011)

8. Chan, T.M., Patrascu, M.: Transdichotomous Results in Computational Geometry,
I: Point Location in Sublogarithmic Time. SIAM J. Comput. 39(2), 703–729 (2009)

9. Cheng, S., Janardan, R.: New results on dynamic planar point location. SIAM
Journal on Computing 21, 972 (1992)

10. Denny, M., Sohler, C.: Encoding a triangulation as a permutation of its point set.
In: Proc. CCCG (1997)

11. Giora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear planar
subdivisions. ACM Transactions on Algorithms (TALG) 5(3), 28 (2009)

12. Goodrich, M., Orletsky, M., Ramaiyer, K.: Methods for achieving fast query times
in point location data structures. In: Proc. SODA. pp. 757–766. SIAM (1997)

13. Iacono, J.: A static optimality transformation with applications to planar point
location. In: Symposium on Computational Geometry. pp. 21–26 (2011)

14. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1),
28–35 (1983)

15. Nekrich, Y.: Searching in dynamic catalogs on a tree. Arxiv preprint
arXiv:1007.3415 (2010)

16. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: ALENEX (2007)

17. Seidel, R., Adamy, U.: On the exact worst case query complexity of planar point
location. Journal of Algorithms 37(1), 189–217 (2000)

