
On the Advice Complexity of Buffer

Management

Reza Dorrigiv⋆, Meng He⋆⋆, and Norbert Zeh⋆ ⋆ ⋆

Faculty of Computer Science, Dalhousie University,
Halifax, NS, B3H 1W5, Canada,

{rdorrigiv,mhe,nzeh}@cs.dal.ca

Abstract. We study the advice complexity of online buffer manage-
ment. Advice complexity measures the amount of information about the
future that an online algorithm needs to achieve optimality or a good
competitive ratio. We study the 2-valued buffer management problem in
both preemptive and nonpreemptive models and prove lower and upper
bounds on the number of bits required by an optimal online algorithm in
either model. We also provide results that shed light on the ineffective-
ness of advice to improve the competitiveness of the best online algorithm
for nonpreemptive buffer management.

1 Introduction

Buffer management is an important online problem with applications in net-
work communication [13]. It models admission policies for the buffers of packet
switches in networks that support the QoS (Quality of Service) feature. In this
problem, packets have different values corresponding to their importance or pri-
ority, and the packet switch has a FIFO buffer of size B. Packets arrive at
arbitrary times and are placed at the end of the buffer. In each time unit, the
switch retrieves a packet from the front of the buffer and transmits it, unless the
buffer is empty. Multiple packets may arrive in the same time unit. If the buffer
is full when a packet arrives, the switch’s buffer management algorithm must
reject the packet. Otherwise it may choose to accept or reject the packet. The
goal of the algorithm is to maximize the total value of the transmitted packets,
which, in the absence of preemption, are exactly the packets it accepts. We con-
sider the 2-valued model here, where there are two types of packets: low-priority
packets (L-packets) of value 1 and high-priority packets (H-packets) of value
α > 1. We use p1, p2, . . . , pn to denote the sequence of packets, and we assume
for simplicity that transmission occurs at integral times, no two packets arrive
at the same time, and no packets arrive at integral times. Time starts at 0. For
an integer j ≥ 0, we define time unit j to be the time interval [j, j + 1).

⋆ Research supported by an NSERC postdoctoral fellowship.
⋆⋆ Research supported by NSERC.

⋆ ⋆ ⋆ Research supported by NSERC and the Canada Research Chairs programme.

There are two main models for buffer management. In the nonpreemptive

model all packets accepted into the buffer are eventually transmitted, that is,
accepted packets cannot be dropped at a later time. In the preemptive model,
accepted packets can be dropped as long as they have not been transmitted yet.
Online buffer management algorithms are usually analyzed using competitive
analysis [19]: Let OPT be an optimal offline buffer management algorithm, and
A an online algorithm. We use OPT(S) and A(S) to denote the solutions pro-
duced by these algorithms on an input sequence S, or the total values of the
packets in these solutions. Which will be clear from the context. Algorithm A
has competitive ratio c if OPT (S) ≤ c · A(S), for every request sequence S.

Competitive analysis of buffer management algorithms was initiated by Aiello
et al. [1], Mansour et al. [17], and Kesselman et al. [16]. Since then, various al-
gorithms have been proposed. We briefly review the results most relevant to
our work and refer the reader to surveys by Azar [5], Epstein and van Stee
[12], and Goldwasser [13] for a more comprehensive coverage. Aiello et al. [1]
introduced the nonpreemptive 2-valued model and proved a lower bound of
(2− 1

α
) on the competitiveness of any deterministic or randomized online algo-

rithm in this model. The Ratio Partition algorithm by Andelman, Mansour,
and Zhu [4] achieves this bound. This algorithm accepts each H-packet if possible
and, for each accepted H-packet, marks the earliest α

α−1
unmarked L-packets in

the buffer. It accepts an L-packet only if, after accepting it, the number of un-
marked L-packets in the buffer is at most α

α−1
times the number of empty buffer

slots. Mansour et al. introduced the preemptive model in the context of video
streaming [17]. Kesselman et al. proved a lower bound of 1.282 on the compet-
itiveness of any deterministic preemptive online algorithm [16]. The Account

Strategy algorithm by Englert and Westermann [4] achieves this bound.

These results completely characterize the competitiveness achievable for non-
preemptive or preemptive online buffer management without information about
future requests. They do not, however, provide any insight into how much an al-
gorithm may benefit from partial information about future requests that may be
available in some applications. Various models have been proposed to facilitate
the analysis of online algorithms that have access to such partial information,
e.g., the finite lookahead model [15, 14, 2, 3, 9]. A more recent model, and the one
we adopt in this paper, is advice complexity [10, 11, 7]. It measures the amount of
information about the future that an online algorithm needs in order to achieve
optimality or a certain competitive ratio. Two variants of this model have been
proposed [11, 7]. In the model by Böckenhauer et al. [7], the online algorithm A
has access to a tape of advice bits produced by an oracle. The oracle has un-
limited computational power and has access to the whole input. No restrictions
are placed on how A uses the advice bits. The performance of A is expressed as
a combination of its competitive ratio and the number of advice bits it uses on
an input of size n. In the model by Emek et al. [11], the oracle provides a fixed
number of advice bits with each request, and the algorithm has access only to
the advice bits associated with the requests that have arrived so far. Previous
work on advice complexity of online algorithms has focused on paging [10, 11],

2

ski rental [10], metrical task systems [11], the k-server problem [11, 6, 18], job
shop scheduling and routing [7], and the knapsack problem [8]. To the best of
our knowledge, the advice complexity of online buffer management has not been
studied so far. This is the focus of this paper.

It is trivial even for a nonpreemptive buffer management algorithm to achieve
optimality with one bit of advice per request: the oracle runs an offline optimal
buffer management algorithm on the given request sequence and tells the on-
line algorithm for each packet whether the optimal algorithm accepts or rejects
this packet. Since one bit of advice per request is the minimum possible in the
model of [11], online buffer management is not interesting in this model, and we
adopt the model of [7]. Our main result is that Θ((n/B) logB) bits of advice are
necessary and sufficient for a preemptive or nonpreemptive online buffer manage-
ment algorithm to produce an optimal solution. In this paper all logarithms are
base 2. We also prove that a generalization of the Ratio Partition algorithm,
which uses advice to choose the optimal ratio between unmarked L-packets and
empty buffer slots, cannot outperform Ratio Partition without advice. We
conjecture that an algorithm that chooses different ratios for different parts of
the input can outperform Ratio Partition, but we were unable to prove this.

2 Optimal Preemptive Online Buffer Management

We focus on preemptive buffer management first, as our results for the nonpre-
emptive case are extensions of the ones for the preemptive case. We prove that,
for a preemptive buffer management algorithm, Θ((n/B) logB) bits of advice
are sufficient and necessary to achieve optimality.

2.1 The Lower Bound

Theorem 1. Any optimal preemptive online buffer management algorithm re-

quires at least (n/(3B)) log(B + 1) bits of advice.

Proof. Consider the following family of request sequences of length between 2B
and 3B: In time unit 0, B L-packets arrive. Between times 1 and B + 1, one
H-packet arrives per time unit. In time unit B + 1, k H-packets arrive, where
0 ≤ k ≤ B. In the next B time units, no packets arrive. The optimal solution
accepts B − k of the L-packets that arrive in time unit 0 and rejects the other
L-packets. It then accepts all H-packets that arrive in subsequent time units.

The online algorithm also has to accept exactly B−k L-packets in time unit 0.
To see this, observe that, no matter how many of the L-packets are accepted, the
algorithm will not preempt them. This is true because between times 1 and B,
the buffer does not overflow, which implies that by time B+1, all L-packets have
been transmitted and the buffer contains h H-packets, where h is the number
of L-packets we accepted in time unit 0. Now, if h > B − k, we are forced to
reject one of the k H-packets that arrive in time unit B + 1, which leads to a
suboptimal solution. If h < B − k, we could have accepted at least one more

3

L-packet in time unit 0 without forcing us to reject an H-packet in time unit
B + 1, which is again suboptimal.

Since at time 0 the algorithm needs to know the number, k, of H-packets
that arrive in time unit B+1, and k can assume any value between 0 and B, we
need log(B + 1) bits of advice for this sequence of length between 2B and 3B.

We can construct arbitrarily long inputs of this type by concatenating a
number, q, of such request sequences S1, S2, . . . , Sq. The last B time units of
each sequence Si during which no packets arrive guarantee that the algorithm
needs to behave on each Si as if Si were the whole request sequence. Thus, at
least log(B + 1) bits of advice are needed for each Si, for a total of q log(B + 1)
bits. The length of the entire sequence S1S2 . . . Sq is 2qB ≤ n ≤ 3qB. Thus, we
need at least (n/(3B)) log(B + 1) bits of advice. ⊓⊔

2.2 The Upper Bound

We now describe an optimal preemptive online buffer management algorithm
that matches the lower bound of Theorem 1 up to a constant factor.

Theorem 2. There exists an optimal preemptive online buffer management al-

gorithm that uses ⌈n/B⌉⌈log(B + 1)⌉ bits of advice.

To prove Theorem 2, we consider a request sequence S and a “canonical”
optimal solution OPTC(S) for S, and we propose an online algorithm A that
uses ⌈n/B⌉⌈log(B + 1)⌉ bits of advice to produce this solution. Note that an
optimal offline algorithm cannot benefit from preemption because it can imme-
diately reject any packets it would preempt later. Thus, we define OPTC(S) by
describing a nonpreemptive optimal offline algorithm that produces OPTC(S).

We divide S into contiguous subsequences U0, U1, . . . , UT , where Ut is the
subsequence of requests that arrive in time unit t. Let Ht and Lt respectively
be the numbers of H- and L-packets in Ut; let H ′

t and L′

t respectively be the
numbers of H- and L-packets in Ut that we accept; and let Yt = 1 if we transmit
a packet at time t, and Yt = 0 otherwise. Since the buffer has capacity B, any
feasible solution satisfies

t′∑

t=0

(H ′

t + L′

t) ≤ B +

t′∑

t=0

Yt, (1)

for all 0 ≤ t′ ≤ T . Since we can transmit a packet only if we have not already
transmitted all the accepted packets, a feasible solution must also satisfy

t′−1∑

t=0

(H ′

t + L′

t) ≥

t′∑

t=0

Yt, (2)

for all 0 ≤ t′ ≤ T . Conversely, any set of values of H ′

t, L
′

t and Y ′

t , 0 ≤ t ≤ T ,
that satisfy (1) and (2) (as well as the trivial constraints that 0 ≤ H ′

t ≤ Ht,
0 ≤ L′

t ≤ Lt, and Yt ∈ {0, 1}, for all 0 ≤ t ≤ T) yields a feasible solution.

4

The construction of OPTC(S) starts with Yt = H ′

t = L′

t = 0, for all
0 ≤ t ≤ T . Next we greedily increase the number of H-packets accepted in each
time unit and then greedily increase the number of L-packets accepted in each
time unit, given the set of accepted H-packets. More precisely, we proceed
in two rounds. In the first round, we iterate over t′ := 0, 1, . . . , T and set

Yt′ := 1 if
∑t′−1

t=0
H ′

t >
∑t′−1

t=0
Yt, and Yt′ := 0 otherwise; then we set H ′

t′ :=

min(Ht′ , B +
∑t′

t=0
Yt −

∑t′−1

t=0
H ′

t). Before the second round, we set Y0 := 0
and Yt := 1, for all 1 ≤ t ≤ T . Now we iterate over t′ := 0, 1, . . . , T again.

For time t′, we update Yt′ so that Yt′ := 1 if
∑t′−1

t=0
(H ′

t + L′

t) >
∑t′−1

t=0
Yt,

and Yt′ := 0 otherwise. Next we choose L′

t′ maximally so that L′

t′ ≤ Lt′ and
∑t′′

t=0
(H ′

t + L′

t) ≤ B +
∑t′′

t=0
Yt, for all t′ ≤ t′′ ≤ T . OPTC(S) accepts the first

H ′

t H-packets and the first L′

t L-packets in each subsequence Ut, and rejects all
other packets. It transmits a packet at time t if and only if Yt = 1. The proof of
the following lemma is omitted due to lack of space.

Lemma 1. OPTC(S) is an optimal solution for the request sequence S.

Next we describe a preemptive online algorithm with advice, A, that com-
putes OPTC(S). We divide the request sequence S into q := ⌈n/B⌉ subsequences
S1, S2, . . . , Sq, which we call phases. For 1 ≤ i < q, |Si| = B. Sq contains the re-
maining n−(q−1)B requests. For each phase Si, the advice given to the algorithm
is the number, ai, of L-packets OPTC(S) accepts from Si. Since |Si| ≤ B, this
requires ⌈log(B+1)⌉ bits of advice for each Si, and thus ⌈n/B⌉⌈log(B + 1)⌉ bits
in total. The online algorithm now processes the packets in S one by one. While
processing the requests in Si, it keeps a count, ci, of the number of L-packets
in Si that it has accepted and not preempted. Immediately before processing
the first request in Si, we set ci := 0. For each L-packet in Si, if the buffer is
not full and ci < ai, we accept the packet and increase ci by one; otherwise we
reject the packet. For each H-packet in Si, if the buffer is not full, we accept
the packet. If the buffer is full but contains an L-packet, we preempt the most

recently queued L-packet, decrease ci by one, and accept the H-packet. If the
buffer is full and contains only H-packets, we reject the packet. Let A(S) be the
solution this algorithm produces on input S. Together with Lemma 1, the next
lemma implies that A(S) is an optimal solution.

Lemma 2. A(S) = OPTC(S).

Proof sketch. We use induction on i to prove: (i) The set of packets from Si

accepted and not preempted by A(S) by the end of phase Si is the set of packets
OPTC(S) accepts (and does not preempt) from Si. (ii) While processing the
packets in Si, A(S) does not preempt any packets from S1S2 . . . Si−1. These two
claims together imply that A(S) and OPTC(S) transmit the same set of packets.

For i = 0, the two claims hold vacuously, so assume i > 0 and the two
claims hold for phases S0, S1, . . . , Si−1. Then the buffer states of A(S) and
OPTC(S) at the beginning of phase Si are identical. First we prove that A(S)
and OPTC(S) accept the same H-packets from Si. Since OPTC(S) and A(S)

5

accept H-packets greedily, this follows if no L-packet accepted by A(S) forces
it to reject an H-packet accepted by OPTC(S). Any L-packet accepted but not
yet transmitted by A(S) can be preempted if necessary to make room for an
H-packet and thus does not force the rejection of an H-packet. After transmit-
ting the first L-packet pj from Si and before processing the last packet from Si,
the buffer contains a subset of the packets pj+1, pj+2, . . . , piB and thus is not
full. Thus, after transmitting pj , no H-packet from Si is rejected by A(S).

Next we show that A(S) does not preempt any packets from S0, S1, . . . , Si−1

while processing the packets in Si. Let pj once again be the first L-packet from
Si transmitted by A(S). We have just proved that A(S) and OPTC(S) accept
the same set of H-packets from Si. We also argued that no H-packet pk in Si that
succeeds pj forces any preemption because A(S)’s buffer cannot be full when pk
arrives. If pk precedes pj , it can force a preemption only if A(S)’s buffer is full
when pk arrives. Since the buffer states of A(S) and OPTC(S) are identical at
the beginning of the ith phase and OPTC(S) can accept pk without preempting
any packet, A(S)’s buffer must contain an L-packet ph from Si that is not in
OPTC(S)’s buffer. Thus, A(S) preempts ph ∈ Si to make room for pk.

It remains to prove that, by the end of phase Si, the set of L-packets from Si

accepted but not preempted byA(S) is the same as the set of L-packets OPTC(S)
accepts from Si. Since none of these packets are preempted in subsequent phases,
these are exactly the L-packets from Si transmitted by A(S). We prove here that
A(S) and OPTC(S) transmit the same number of L-packets from Si. This is the
first part of the proof. The second part of the proof uses this fact to prove that
A(S) and OPTC(S) transmit the same set of L-packets from Si. The proof of
this second part is omitted due to lack of space.

A(S) cannot transmit more L-packets than OPTC(S) because it bounds the
number of L-packets from Si it has accepted and not preempted by ai. Next we
prove that, after processing each packet pj in Si, the number of L-packets from
Si that A(S) has accepted and not preempted so far is no less than the number
of L-packets OPTC(S) has accepted up to that point. We use induction on the
position of pj in Si. Before processing the first packet in Si, the claim holds. If
A(S) accepts pj without preempting any other packet or if it rejects pj because
ci = ai, the invariant is maintained. If pj is an H-packet and A(S) preempts an
L-packet in favour of pj or pj is an L-packet and A(S) rejects it, then A(S)’s
buffer is full when pj arrives. SinceA(S) had accepted and not preempted at least
as many packets as OPTC(S) after processing each of the packets p1, p2, . . . , pj−1,
A(S) also transmitted at least as many packets as OPTC(S) by the time each of
these packets was processed. The number of packets any algorithm can accept up
to a certain point is B plus the number of packets it has transmitted so far. Since
A(S)’s buffer is full after processing pj , A(S) has accepted and not preempted
exactly this number of packets so far, while OPTC(S) cannot have accepted more
packets by this time. Since we already proved that A(S) and OPTC(S) accept
the same set of H-packets, this shows that the number of L-packets accepted
and not preempted by A(S) by the time pj has been processed is at least the
number of L-packets accepted by OPTC(S) by this time. ⊓⊔

6

3 Optimal Nonpreemptive Online Buffer Management

In this section, we prove the somewhat surprising result that, up to constant
factors, the same number of bits of advice required for an optimal preemptive
online buffer management algorithm suffice for a nonpreemptive online buffer
management algorithm to achieve optimality. Our lower bound for nonpreemp-
tive online buffer management is slightly stronger than for the preemptive case.

Theorem 3. There exists an optimal nonpreemptive online buffer management

algorithm that achieves optimality using ⌈n/B⌉(3⌊logB⌋ + 4) bits of advice.

Moreover, any optimal nonpreemptive online buffer management algorithm re-

quires at least (n log(B + 1))/(2B) bits of advice.

The lower bound proof is similar to the lower bound proof for the preemptive
case and is thus omitted. In the remainder of this subsection, we prove the
upper bound. We describe an online algorithm A that accepts the same number
of H-packets and L-packets as the canonical optimal solution OPTC(S) from
Section 2, even though the sets of accepted packets may differ.

A accepts H-packets greedily, that is, it accepts each H-packet when it arrives
unless the buffer is full. This does not require any advice. To define the advice
that determines the behaviour of A for L-packets, we divide the request sequence
S into q := ⌈n/B⌉ phases S1, S2, . . . , Sq as in Section 2. For 1 ≤ i ≤ q, let si
and ei be the time units during which the first and last packets in Si arrive,
respectively, and let fi be the number of packets in OPTC(S)’s buffer just before
the arrival of the first packet in Si. Observe that f0 = 0. We distinguish between
three different cases depending on the behaviour of OPTC(S) in phase Si.

– If OPTC(S)’s buffer is never full during phase Si, we call Si a type-I phase. In
this case, A’s advice consists of the number, ai, of L-packets in Si OPTC(S)
accepts. A(S) accepts the first ai L-packets in Si it can accept and rejects
the remaining L-packets in Si.

– If OPTC(S)’s buffer is full at least once during phase Si and all packets in Si

arrive over at most fi time units (i.e., ei − si + 1 ≤ fi), we call Si a type-II
phase. In this case, A’s advice consists of the number, ri, of L-packets in
Si OPTC(S) rejects. A(S) rejects the first ri packets in Si and accepts the
remaining L-packets in Si. (We prove below that it can accept these packets.)

– If OPTC(S)’s buffer is full at least once during phase Si and the packets
in Si arrive over more than fi time units (i.e., ei − si + 1 > fi), we call Si

a type-III phase. Let ti be the last time unit in Si when OPTC(S)’s buffer
is full. We divide Si into two subphases: S1

i contains the packets in Si that
arrive between time units si and ti, inclusive, and S2

i contains the remaining
packets in Si. A’s advice consists of ti, the number, r′i, of L-packets in S1

i

rejected by OPTC(S), and the number, a′i, of L-packets in S2
i accepted by

OPTC(S). A(S) then treats S1
i as a type-II phase and S2

i as a type-I phase.

To encode this advice, we use one bit per phase to indicate whether it is a
type-III phase. If it is, then the next 3(⌊logB⌋ + 1) bits represent xi, r

′

i and

7

a′i. If not, we use another bit to indicate whether this phase is of type I or II
and accordingly encode ai or ri using ⌊logB⌋+1 bits. In the worst case, we use
1 + 3(⌊logB⌋ + 1) = 3⌊logB⌋ + 4 bits per phase and ⌈n/B⌉(3⌊logB⌋ + 4) bits
for the whole sequence. It remains to show that A(S) is an optimal solution.

Lemma 3. A(S) is an optimal solution.

Proof. It suffices to prove the following three claims for every phase Si: (i) The
buffers of A(S) and OPTC(S) contain the same number of packets at the end of
phase Si. (ii) A(S) and OPTC(S) accept the same number of H-packets in Si.
(iii) A(S) and OPTC(S) accept the same number of L-packets in Si.

For i = 0, these claims hold vacuously, so assume i > 0 and (i)–(iii) hold
for phases S0, S1, . . . , Si−1. By the induction hypothesis, A(S)’s and OPTC(S)’s
buffers both contain fi packets at the beginning of phase Si. We prove that
(i)–(iii) hold for phase Si by considering the three possible types of Si.

If Si is of type I, OPTC(S) does not reject any H-packet in Si because
OPTC(S)’s buffer is never full during Si. Moreover, the L-packets in Si accepted
by OPTC(S) are exactly the first ai L-packets in Si. To see this, observe that
OPTC(S) rejects an L-packet pj in Si and accepts a subsequent L-packet pk in Si

only if its buffer is full when pj arrives or accepting pj forces OPTC(S) to reject
an H-packet pl in Si. (If accepting pj forces the rejection of an H-packet after
phase Si, so does accepting pk. Since OPTC(S) never accepts an L-packet that
forces the rejection of an H-packet, accepting pj can only force the rejection
of an H-packet in Si.) Then, however, OPTC(S)’s buffer must be full either
when pj arrives or when pl arrives, a contradiction because Si is of type I. Now,
since A(S) and OPTC(S) have the same number of packets in their buffers at the
beginning of Si, A(S) can also accept the first ai L-packets and all the H-packets
in this phase without filling its buffer. Therefore, A(S) and OPTC(S) accept the
same set of packets in Si and claims (i)–(iii) hold.

Next consider the case when Si is of type II. Since all packets of Si arrive over
at most fi time units and the buffers of A(S) and OPTC(S) contain fi packets at
the beginning of Si, A(S)’s and OPTC(S)’s buffers are never empty during this
phase. Thus, A(S) and OPTC(S) transmit the same number of packets during
phase Si, and claim (i) follows if we can prove claims (ii) and (iii).

First (ii). We observe that, at any time during Si, the number of L-packets
from Si that A(S) has accepted so far cannot be larger than the number of
L-packets from Si that OPTC(S) has accepted so far. This is true because A(S)
rejects the first ri L-packets it receives during Si, while OPTC(S) rejects a total
of ri L-packets from Si. Since A(S)’s buffer and OPTC(S)’s buffer contain the
same number of packets at the beginning of Si and A(S) accepts H-packets
greedily, this implies that, at any time during Si, the number of H-packets from
Si accepted by A(S) so far is no less than the number of such packets accepted by
OPTC(S) so far. Conversely, OPTC(S) accepts H-packets greedily and accepts
an L-packet only if this does not prevent it from accepting an H-packet it could
otherwise have accepted. Thus, the number of H-packets from Si accepted by
A(S) up to some point during Si is no greater than the number of such packets
accepted by OPTC(S) up to this point.

8

To show that A(S) and OPTC(S) accept the same number of L-packets,
we prove that A(S) rejects only the first ri L-packets in Si. Assume the con-
trary. Among the L-packets after the first ri L-packets in Si, let pj be the first
L-packet rejected by A(S). This means that the buffer of A(S) is full when pj
arrives. As shown in the previous paragraph, we know that up to this point, A(S)
and OPTC(S) have accepted the same number of H-packets from Si, and A(S)
has accepted no more L-packets from Si than OPTC(S) has. This implies that
OPTC(S)’s buffer is also full when pj arrives, and OPTC(S) has to reject pj .
Since both algorithms have fi packets in their buffers at the beginning of Si,
they transmit the same number of packets up to the arrival of pj , and both
algorithms’ buffers are full when pj arrives, they must both have rejected the
same number of L-packets from Si before the arrival of pj . Since A(S) rejects ri
L-packets from Si before pj , so does OPTC(S), and pj is the (ri +1)st L-packet
from Si rejected by OPTC(S), which is a contradiction.

Finally, consider the case when Si is a type-III phase. Since there are at most
B packets in Si and OPTC(S)’s buffer is full at time ti, the buffer can never run
empty during subphase S1

i . Thus, OPTC(S) transmits a packet in each time unit
between si and ti, and OPTC(S)’s buffer contains at most fi+|S1

i |−(ti−si+1) ≤
fi +B − (ti − si +1) packets at the end of time unit ti. Since OPTC(S)’s buffer
is full at the end of time unit ti, this implies that ti − si + 1 ≤ fi. Thus, the
argument for type-II phases shows that A(S) and OPTC(S) accept the same
number of packets from S1

i , and the argument for type-I phases shows that they
accept the same number of packets from S2

i . This completes the proof. ⊓⊔

4 Advice Does Not Help Ratio Partition

The final question we investigate is whether using advice to adjust the ratio in
the Ratio Partition algorithm helps. More precisely, we consider a class of
algorithms Γ (τ). For a fixed parameter τ , Γ (τ) accepts each H-packet whenever
possible and marks the τ earliest unmarked L-packets in the buffer. It accepts
an L-packet only if after accepting it, the number of unmarked L-packets in
the buffer is at most τ times the number of empty slots in the buffer. Ratio

Partition is the same as Γ (α
α−1

). Let Best-Threshold be an algorithm that
uses advice to choose the best possible threshold τ for the given input and then
runs Γ (τ). The following result shows that this use of advice is ineffective, that
is, that Best-Threshold is no better than Ratio Partition.

Theorem 4. The competitive ratio of Best-Threshold is at least 2− 1/α.

To prove Theorem 4, we ask the reader to verify that Γ (τ), for any τ ∈ [0,∞),
achieves a competitive ratio of exactly 2−1/α on the following input S. S consists
of α subsequences, each spanning B + 1 time units. In the first subsequence,
B L-packets arrive in time unit 0, followed immediately by B H-packets in the
same time unit. No further packets arrive in the remaining B time units of this
subsequence. For each of the remaining α− 1 subsequences, B L-packets arrive
in time unit 0, and no further packets arrive in the remaining B time units. The

9

key to this proof is that any threshold that is good for the first subsequence of
S is bad for the remaining α subsequences and vice versa. We conjecture that
an adaptive threshold algorithm, which chooses different thresholds for different
portions of the input, can achieve a better competitive ratio.

Acknowledgements. We would like to thank Marc Renault and two anony-
mous reviewers for noticing an error in the original lower bound proof for non-
preemptive online buffer management and for suggesting a way to correct it.

References

1. Aiello, W., Mansour, Y., Rajagopolan, S., Rosen, A.: Competitive queue policies
for differentiated services. In: INFOCOM. pp. 414–420 (2000)

2. Albers, S.: On the influence of lookahead in competitive paging algorithms. Algo-
rithmica 18(3), 283–305 (1997)

3. Albers, S.: A competitive analysis of the list update problem with lookahead. The-
oretical Computer Science 197(1-2), 95–109 (May 1998)

4. Andelman, N., Mansour, Y., Zhu, A.: Competitive queueing policies for QoS
switches. In: SODA. pp. 761–770 (2003)

5. Azar, Y.: Online packet switching. In: WAOA. pp. 1–5 (2005)
6. Böckenhauer, H., Komm, D., Královic, R., Královic, R.: On the advice complexity

of the k-server problem. In: ICALP (1). pp. 207–218 (2011)
7. Böckenhauer, H., Komm, D., Královic, R., Královic, R., Mömke, T.: On the advice

complexity of online problems. In: ISAAC. pp. 331–340 (2009)
8. Böckenhauer, H., Komm, D., Královic, R., Rossmanith, P.: On the advice com-

plexity of the knapsack problem. In: LATIN. pp. 61–72 (2012)
9. Breslauer, D.: On competitive on-line paging with lookahead. Theoretical Com-

puter Science 209(1-2), 365–375 (1998)
10. Dobrev, S., Královic, R., Pardubská, D.: Measuring the problem-relevant informa-

tion in input. ITA 43(3), 585–613 (2009)
11. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.

In: ICALP (1). pp. 427–438 (2009)
12. Epstein, L., van Stee, R.: Buffer management problems. ACM SIGACT News 35(3),

58–66 (2004)
13. Goldwasser, M.H.: A survey of buffer management policies for packet switches.

SIGACT News 41(1), 100–128 (Mar 2010)
14. Grove, E.F.: Online bin packing with lookahead. In: SODA. pp. 430–436 (1995)
15. Kao, M., Tate, S.R.: Online matching with blocked input. Information Processing

Letters 38(3), 113–116 (1991)
16. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,

M.: Buffer overflow management in QoS switches. In: STOC. pp. 520–529 (2001)
17. Mansour, Y., Patt-Shamir, B., Lapid, O.: Optimal smoothing schedules for real-

time streams (extended abstract). In: PODC. pp. 21–29 (2000)
18. Renault, M.P., Rosén, A.: On online algorithms with advice for the k-server prob-

lem. In: WAOA. pp. 198–210 (2011)
19. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.

Communications of the ACM 28(2), 202–208 (1985)

10

