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Abstract. Many classic data structures have been proposed to support
geometric queries, such as range search, point location and nearest neigh-
bor search. For a two-dimensional geometric data set consisting of n ele-
ments, these structures typically require O(n), close to O(n) or O(n lg n)
words of space; while they support efficient queries, their storage costs
are often much larger than the space required to encode the given data.
As modern applications often process very large geometric data sets, it
is often not practical to construct and store these data structures.
This article surveys research that addresses this issue by designing space-
efficient geometric data structures. In particular, two different but closely
related lines of research will be considered: succinct geometric data struc-

tures and implicit geometric data structures. The space usage of succinct
geometric data structures is equal to the information-theoretic minimum
space required to encode the given geometric data set plus a lower order
term, and these structures also answer queries efficiently. Implicit geo-
metric data structures are encoded as permutations of elements in the
data sets, and only zero or O(1) words of extra space is required to sup-
port queries. The succinct and implicit data structures surveyed in this
article support several fundamental geometric queries and their variants.

1 Introduction

Many applications such as spatial databases, computer graphics and geographic
information systems store and process geometric data sets that typically consist
of point coordinates. In other applications such as relational databases and data
mining applications, the given data are essentially sets of records whose fields
are values of different properties, and thus can be modeled as geometric data in
multidimensional space. Thus the study of geometric data structures which can
potentially be used to preprocess these data sets so that various queries can be
performed quickly is critical to the design of a large number of efficient software
systems.

Researchers have studied many different geometric queries. Among them, the
following three geometric query problems are perhaps the most fundamental:

– Range search: Preprocess a point set, so that information regarding points
inside a query region, e.g., the number of points in this region, can be effi-
ciently computed;



– Point location: Preprocess a subdivision of space into a set of cells, so that
the cell that contains a query point can be located quickly;

– Nearest neighbor: Preprocess a point set, so that the point closest to a query
point can be found efficiently.

Extensive work has been done to design data structures that provide fast
support for these queries. Take planar point location for example. A number of
different data structures have been designed to support point location in 2D,
achieving O(lg n)1 optimal query time using linear space, including the classic
data structures proposed by several different groups of researchers in the 70’s
and 80’s [53, 52, 32, 28, 68]. Such work has yielded a large number of solutions to
geometric query problems, and invented many data structure design techniques.

Most geometric data structures designed to manipulate data sets in two-
dimensional space use linear, almost linear, or O(n lg n) words of space. Asymp-
totically, O(n)-space structures occupy less space than other solutions, but the
constants hidden in the asymptotic space bounds are however usually large. As
modern applications often process large data sets measured in terabytes or even
petabytes, it has become undesirable or even infeasible to construct these data
structures. Even for smaller data sets of several gigabytes, the storage cost of
these structures often makes it impossible to load them into internal memory
of computer systems, and performance is sacrificed if they have to be stored in
external memory which is orders of magnitude slower. Thus, during the past
decade, researchers have been developing data structure techniques that can be
used to reduce storage cost drastically.

Succinct data structures have been used to design more space-efficient solu-
tions to geometric query problems. Initially proposed by Jacobson [50] to rep-
resent combinatorial objects such as bit vectors, trees and graphs, the research
in succinct data structures aims at designing data structures that can represent
the given data using space close to the information-theoretic lower bound, and
support efficient navigational operations in them. Numerous results have been
achieved to represent combinatorial objects and text indexes succinctly [61, 66,
10, 64, 35, 67, 62], which save a lot of space compared with standard data struc-
tures.

The study of implicit data structures is another line of research that is focused
on improving space efficiency of data structures, and it has also been applied to
computational geometry. The term implicit means that structural information is
encoded in the relative ordering of data elements, rather than explicit pointers.
Thus an implicit data structure is stored as a permutation of its data elements,
and with zero or a constant number of words of additional space, it can support
operations. The standard binary heap is one of the earliest and most well-known
data structures that are implicit. Later, researchers have designed implicit data
structures for a number of problems such as partial match on a set of multi-key
records [59, 40, 6] and dynamic predecessor search [60, 39].

The aim of this article is to survey research work that has been conducted to
design succinct geometric data structures and implicit geometric data structures,

1 lg n denotes log
2
n.



in order to help researchers understand and follow research work in this area.
The main ideas of the most relevant work are summarized, and main results
are presented in theorems. To help readers evaluate these contributions, some
background information of each geometric query discussed in this article is also
given, though a thorough review of all the related work which is not necessarily
focused on space efficiency issues is out of the scope of this survey. In the rest
of this article, we devote one section to each of the three fundamental geometric
queries listed in this section, to discuss succinct and implicit data structures de-
signed for these queries and their variants. We present some concluding remarks
and give some open problems in the last section.

2 Range Search

In this section, we survey succinct and implicit data structures designed for
range search. As there are many variants of range search queries and they may
be studied under different models, we further divide this section into subsections.
In each subsection, before we describe succinct or implicit solutions, we define
each range query and give some background information.

2.1 Implicit Data Structures for Orthogonal Range Reporting

Orthogonal range reporting is a fundamental range search problem. In this prob-
lem, we preprocess a set, N , consisting of n points in d-dimensional space, so
that given a d-dimensional axis-aligned query box P , the points in N ∩P can be
reported efficiently. Thus in the two-dimensional case, P is an orthogonal query
rectangle. We follow the convention and let k denote the number of points to be
reported.

This problem has been studied extensively. The classic kd-tree proposed by
Bentley [11] is a linear-space data structure that can answer orthogonal range
reporting queries in O(n1−1/d + k) time. Thus in the two-dimensional case, the
query time is O(

√
n + k). By allowing penalties for each point to be reported,

different query time can be achieved; in two-dimensional space, the linear-space
data structure of Chazelle [25] can answer queries in O(lg n + k lgǫ n) time, for
any positive constant ǫ. However, to achieve the optimal O(lg n+k) query time,
more space is required. The data structure of Chazelle [25] uses O(n lgǫ n) words
of space to answer queries in optimal time, for any positive constant ǫ. For more
recent results that aim at improving query time in higher dimensions using more
space under the RAM model, see the work of Chan et al. [22]. For similar work
under the pointer machine model, we refer to results presented by Afshani et
al. [1, 2].

The first implicit data structure for range reporting is an implicit represen-
tation of kd-tree proposed by Munro in 1979 [59]. This is the only implicit or
succinct geometric structure that was not designed within the past decade. Orig-
inally, this structure was introduced as a structure storing multi-key data records



to support partial matching, but its description can be easily rewritten to sup-
port geometric queries as follows. To construct this data structure, let C[0..n−1]
be the array in which each element stores the coordinates of a point in N , and
the construction algorithm reorders the elements of C to encode the kd-tree im-
plicitly. Assume that dimensions are numbered 0, 1, . . . , d− 1. The construction
algorithm consists of ⌈lg n⌉ stages. Initially, before stage 0, we treat the entire
array C as one segment containing all the array entries; in each stage, we essen-
tially divide each segment of C produced in the previous stage into two halves
and reorder elements accordingly. More precisely, in stage i, for each segment S
produced in the previous stage, we perform the following three steps:

1. Look for the point whose coordinate in dimension (j = i mod d) is the
median among the coordinates of all the points in S in this dimension, and
swap it with the point stored in the middle of S. Let m be this median value.

2. Move the points in S whose coordinates in dimension j are smaller than m
to the first half of S, and those with large coordinates to the second half.

3. Let the first half and the median element be one new segment, and the
second half the other new segment.

At the end of the last stage, each segment will store exactly one point, and the
content of array C becomes the implicit structure.

Readers who are familiar with kd-trees can now see that after this construc-
tion algorithm, the array C encodes a kd-tree implicitly. If we number the levels
of a kd-tree starting from the root level as levels 0, 1, . . ., then a segment pro-
duced in the ith stage in this algorithm corresponds to a node at the ith level of
the kd-tree. Furthermore, the region represented by each node can be inferred
during a top-down traversal by checking the median values. Thus we can modify
algorithms over kd-trees to support orthogonal range reporting: Start from the
segment that contains all the points. Each time we investigate a segment pro-
duced in stage i, we check if the region corresponding to this segment is entirely
contained in the query box. If it is, then report all the points stored in this seg-
ment. Otherwise, perform the algorithm recursively on the two child segments
produced from this segment. The analysis on the original kd-tree can also be
used to show the following theorem:

Theorem 1 ([59]). Given a set of n points in d-dimensional space, there exists

an implicit data structure that can answer orthogonal range reporting queries

over this point set in O(n1−1/d+k) time, where k is the number of points reported.

This data structure can be constructed in O(n lg n) time.

Arroyuelo et al. [8] designed adaptive data structures for two-dimensional
orthogonal range reporting, including an implicit version. Their data structures
are adaptive in the sense that they take advantage of the inherent sortedness
of given data to improve search efficiency. In their work, they say that a set of
points form a monotonic chain if, when listed from left to right, the y-coordinates
of these points are either monotonically increasing or monotonically decreasing;
the sortedness of a given point set is then measured in terms of the minimum



number, m, of monotonic chains that the points in this set can be decomposed
into. Their linear-space data structure can support two-dimensional orthogonal
range counting in O(m + lg n + k) time. For any point set, m is bounded by
O(

√
n) (this is an obvious consequence of the Erdős-Szekeres theorem), so the

query performance matches that of the kd-tree in the worst case, and can be
significantly better if m is small. Though it is NP-hard to compute m, there is an
O(n3)-time approximation algorithm that can achieve constant approximation
ratio [38].

We briefly summarize the main idea of constructing the implicit version of
this data structure. Observe that, if we decompose the point set into m mono-
tonic chains and store each chain in a separate array, then we can perform binary
search m times to answer a query. If we concatenate these arrays into a single
array storing all point coordinates, we need encode the starting position of each
sub-array, which requires O(m lg n) = O(

√
n lg n) bits. This can be encoded us-

ing a standard technique: in each sub-array, we group points into pairs. If we
swap the points in a pair, then we use this to encode a 1 bit; otherwise, a 0 bit is
encoded. If we know whether the chain this pair is in is monotonically increasing
or decreasing, then we can decode this bit by comparing this pair of coordinates.
Extra care has to be taken to address the case in which chains contain odd
numbers of points, so that the encoded information can be decoded correctly.
Note that the query performance of this implicit structure is slightly worse than
their linear-space structure; the techniques used in the latter to speed up query
requires the storing of duplicate copies of some points which is not allowed in
the design of implicit data structures. We summarize the space and time cost of
their implicit data structure in the following theorem:

Theorem 2 ([8]). Given a set of n points in two-dimensional space, there exists

an implicit data structure that can answer orthogonal range reporting queries

over this point set in O(m lg n+k) time, where k is the number of points reported,

and m = O(
√
n) is the minimum number of monotonic chains that this set can

be decomposed into. This data structure can be constructed in O(n3) time.

2.2 Succinct Data Structures for Orthogonal Range Counting and
Reporting

Another fundamental range query is orthogonal range counting. Here we focus
on the two-dimensional case, as this is what the succinct data structures that
we survey in this section are designed for. In the two-dimensional range count-
ing problem, we are to preprocess a set, N , of n points in the plane, so that
given an axis-aligned query rectangle, P , the number of points in N ∩ P can be
computed efficiently. Among linear-space data structures for this problem, the
structure of Chazelle [25] supports range counting in O(lg n) time. When point
coordinates are integers, JáJá et al. [51] designed a linear-space structure that
answers queries in O(lg n/ lg lg n) time. This matches the lower bound on query
time proved by Pǎtraşcu [63] under the cell probe model for data structures

occupying O(n lgO(1) n) words of space.



In a special case, the point sets are in rank space, i.e., they are on an n×n grid.
The general orthogonal range counting and reporting problems can be reduced
to this using a well-known technique [42], and Pǎtraşcu’s lower bound mentioned
in the previous paragraph also applies to this special case. Some range search
structures [42, 25, 5] for the more general case were achieved by first considering
rank space. Indeed, this reduction allowed Chazelle [25] to use operations under
RAM to achieve the first linear-space solution that supports range counting in
O(lg n) time, which is more space-efficient than the classic range tree [12] which
uses O(n lg n) space to provide the same query support. In addition, the study
of this problem is crucial to the design of several space-efficient text indexing
structures [54, 14].

To describe succinct data structures designed for this problem, some back-
ground knowledge is required. In particular, there is a key structure which is
also used in most other succinct data structures: bit vectors. Given a bit vector
B[1..n] storing 0 and 1 bits, the following three operations are considered:

– access(B, i) which returns B[i];
– rankα(B, i) which returns the number of times the bit α occurs in B[1..i],

for α ∈ {0, 1};
– selectα(B, i) which returns the position of the ith occurrence of α in B, for

α ∈ {0, 1}.

Jacobson [50] considered this problem under the bit probe model; later Clark
and Munro [27] showed how to represent a bit vector succinctly using n+ o(n)
bits to support these three operations in O(1) time under the word RAM model
with word size of O(lg n) bits (this is the model that almost all succinct data
structures assume; unless otherwise specified, succinct data structure results
surveyed in the rest of this article assume this model). We refer to the work of
Pǎtraşcu [64] for the most recent result on this extensively studied fundamental
problem.

The definitions of rank and select operations on bit vectors can be gener-
alized to a string S[1..n] over alphabet [σ]2, by letting α take any value in [σ].
The first succinct data structure designed for this problem is the wavelet tree of
Grossi et al. [44]. In a wavelet tree representing string S, each node, v, represents
a range of alphabet symbols [a..b]. Let Sv be the subsequence of S (not necessar-
ily a contiguous subsequence) consisting of all the characters of S in [a..b], and
let nv = |Sv|. Then a bit vector Bv of length nv is constructed for the node v,
in which Bv[i] = 0 iff Sv[i] ∈ [a..⌊(a+ b)/2⌋]. Thus the 0 bits correspond to the
characters in the smaller half of the range of alphabet symbols represented by
v, and 1 bits correspond to the greater half. Node v has two children v1 and v2,
corresponding to the two subsequences of Sv that consist of all the characters
of Sv in [a..⌊(a + b)/2⌋] and [⌊(a + b)/2⌋ + 1..b], respectively. In other words,
v1 and v2 correspond to the 0 and 1 bits stored in Bv, respectively. Bit vectors
for these children and their descendants are defined in a recursive manner. To
construct a wavelet tree for S, the root represents the range [1..σ], and nodes at

2 [σ] denotes the set {1, 2, . . . , σ}.



01100010

11011 011

0 0111 0 11

Fig. 1. A wavelet tree constructed for the string 35841484 over an alphabet of size 8.
This is also a wavelet tree constructed for the following point set on an 8 by 8 grid:
{1, 3}, {2, 5}, {3, 8}, {4, 4}, {5, 1}, {6, 4}, {7, 8}, {8, 4}.

each successive level are created recursively as mentioned previously. Each leaf
represents a range of size 2. Thus the wavelet tree has ⌈lg σ⌉ levels. The wavelet
tree is not stored explicitly. Instead, for each level, we visit the nodes from left
to right, and concatenate the bit vectors created for these nodes. The concate-
nated bit vector is represented using a bit vector structure supporting rank and
select. Thus the wavelet tree is stored as ⌈lg σ⌉ bit vectors of the same length
n, which occupy (n+ o(n))⌈lg σ⌉ bits in total. See Figure 1 for an example.

No additional information is required to navigate in the wavelet tree; during a
top-down traversal, the rank operation over each length-n bit vector is sufficient
to identify the starting and ending positions of the bit vector Bv which corre-
sponds to a node v. By taking advantage of this, one can design algorithms that
support access, rank and select operations over S. These algorithms perform
a constant number of rank/select operations over the bit vector constructed for
each level of the tree, and hence their running time is O(lg σ).

Mäkinen et al. [54] showed that a wavelet tree can be used to support or-
thogonal range counting and reporting for n points on an n× n grid, when the
points have distinct x-coordinates (this restriction can be removed through a
reduction [14]). To construct a wavelet tree for such a point set, we conceptu-
ally treat it as a string S of length n over alphabet [n], in which S[i] stores the
y-coordinate of the point whose x-coordinate is i. Thus Figure 1 can also be
considered as a wavelet tree constructed for 8 points on an 8 by 8 grid, and this
point set is given in the caption of the figure. To show how to support range
search, take range counting for example. Suppose that the given query rectangle
P is [x1..x2] × [y1..y2]. To count the number of points in P , we perform a top-
down traversal of the wavelet tree, and use a variable c (initially 0) to record the
number of points that we have identified to be inside P during this traversal. At
each node v, if the range [a, b] represented by v is a subset of [y1..y2], then the
entries of Sv that correspond to points inside P form a contiguous substring of
Sv. The starting and ending positions of this substring in Sv can be computed
by performing rank queries over bit vectors, during the top-down traversal. With
these positions, we can increased the value of c by the size of this substring. If
range [a, b] intersects [y1..y2] but is not its subset, then we visit the children
of v whose ranges intersect [y1..y2] and perform the above process recursively.
This algorithms visits at most two nodes and performs a constant number of



rank/select operations over bit vectors at each level of the wavelet tree, and
thus range counting can be supported in O(lg n) time. Range reporting can be
supported in a similar manner, in O((k + 1) lg n) time.

There is a similarity between wavelet trees and Chazelle [25]’s data structure
for orthogonal range search in rank space. During the construction of Chazelle’s
structure for n points on an n× n grid, a set of ⌈lg n⌉ conceptual bit vectors of
length n is also defined. Unlike bit vectors in wavelet trees, these vectors encode
the process of performing mergesort on y-coordinates when points are pre-sorted
by x-coordinate. Bits in these conceptual vectors are then organized in a set of
non-succinct data structures to facilitate queries; these non-succinct structures
could be replaced by succinct bit vectors designed after Chazelle’s work to reduce
space cost. Similar algorithms can be performed on wavelet trees and Chazelle’s
structure to support range search. The exact content of these bit vectors are
however not the same. The underlaying tree structures are also different in these
two structures: The bit vectors corresponding to the nodes at the same level of
a wavelet tree may be of different lengths, while this is not the case in Chazelle’s
structure due to the nature of mergesort. The difference in layout allows wavelet
trees to directly encode strings succinctly to support rank/select when the string
length is much larger than the alphabet size.

To speed up rank/select operations on strings, Ferragina et al. [37] designed a
data structure called generalized wavelet tree. The main difference between this
structure and the original wavelet tree is that each node, v, in the generalized
wavelet tree has t = lgǫ n children for a positive constant ǫ less than 1. Instead
of constructing a bit vector for v, a string over alphabet [t] is constructed, and
each character in [t] corresponds to a subrange represented by a child of v. They
then designed a succinct representation of strings over an alphabet of size t
that can support access, rank and select in constant time. Thus a generalized
wavelet tree has O((lg σ/ lg lg n) + 1) levels, and operations at each level can
be supported in constant time. This can be used to support access, rank and
select in O((lg σ/ lg lg n)+ 1) time. Note that the idea of increasing the fanout
of a tree structure to speed up query time by an O(lg lg n) factor is a standard
strategy under the word RAM model, and was also used by JáJá et al. [51] for
range search. New auxiliary structures, however, had to be designed to guarantee
that the resulting data structure is still succinct.

To further use a generalized wavelet tree to provide better support for range
search, we need a succinct representation of n points on a narrow grid, i.e.,
an n × O(lgǫ n) grid, that supports range counting and reporting in constant
time. The simultaneous work of two groups of researchers, Bose et al. [14] and
Yu et al. [70] designed such data structures. These data structures are essentially
equivalent and they provide the same support for queries. The following theorem
summarizes the support for range search provided by a generalized wavelet tree:

Theorem 3 ([14, 70]). A set of n points on an n × n grid can be represented

using n lg n+o(n lg n) bits to support orthogonal range counting in O(lg n/ lg lg n)
time, and orthogonal range reporting in O((k + 1) lg n/ lg lg n) time, where k is



the number of points reported. This data structure can be constructed in O(n lg n)
time.

Bose et al. [14] further used this to improve previous results on designing
succinct data structures for integer sequences and text indexes. One text index
they designed is an improvement over previous results on position-restricted text

search, which looks for the occurrences of a given query string within a given
substring of the text.

2.3 Other Range Queries

2D 3-sided orthogonal range reporting. In the 2D 3-sided orthogonal range re-

porting problem, we are given a set, P , of n points in the plane, and the query
is to report the points in 3-sided query ranges of the form [x1, x2] × (−∞, y2].
The classic priority search tree of McCreight [58] can answer such a query in
O(lg n + k) time, where k is the number of points to be reported. Each node
in a priority search tree stores one point from P ; the entire tree can be viewed
as a min-heap over the y-coordinates of points in P , and a binary search tree
over x-coordinates. To facilitate the navigation in the tree by x-coordinate, each
node also stores the median value of the x-coordinates of the points stored in
its descendants, as this value is used to distribute points to subtrees rooted at
the left or right child of this node. Brönnimann et al. [15] designed a variant
of priority search trees to avoid storing this extra median x-coordinate in each
node, and this variant can be made implicit. To lay out points from P in an
array, they store the point, p0, with the smallest y-coordinate among points in
P at the head of the array, and the point, p1, with the median x-coordinate
among points in P \ {p0} in the next entry. Then they divided all the points in
P \{p0, p1} into two halves by this median x-coordinate, and recurse in these two
subarrays. The query algorithm for the original priority search tree can be easily
adapted to this implicit variant to answer a 3-sided orthogonal range reporting
query in O(lg n+ k) time.

If we would like to use this implicit priority search tree to support range
reporting for both query ranges of the form [x1, x2] × (−∞, y2] and ranges of
the form [x1, x2] × [y1,∞), then two trees have to be constructed. To avoid
the duplication of point coordinates, De et al. [29] designed a min-max priority
search tree which stores one copy of point coordinates to answer queries of both
forms. They also showed that their structure can be made implicit, answering
queries in O(lg n+ k) time.

Simplex, halfspace and ball range reporting. In the simplex range reporting prob-
lem, the query region is a simplex, while in halfspace range reporting, it is a
halfspace. For these two problems, Brönnimann et al. [15] showed how to lay
out, in an array of coordinates, the variants of partition trees proposed by Ma-
tousek [55, 56]. In d-dimensional space, one variant of their implicit partition
tree can answer simplex range reporting in O(n1−1/d+ǫ + k) time, where k is
the number of points to be reported and ǫ is a positive constant that can be



arbitrarily small. The query performance is very close to O(n1−1/d+ k) which is
believed to be the optimal query time using linear-space structures [57, 20]. They
designed another implicit partition tree that can support halfspace range report-
ing in O(n1−1/⌊d/2⌋+ǫ+k) time. For discussions of better trade-offs for halfspace
range reporting in different cases using linear-space structures, see [20]. Both
implicit data structure can be constructed in O(n lg n) expected time.

In the unpublished full version of [15], Brönnimann et al. further showed how
to speed up the support for simplex range reporting at the cost of increased pre-
processing time. More precisely, the nǫ factor in the query time can be replaced
by polylog n, and the preprocessing time is increased to O(n polylog n). They
also stated that that their implicit data structures can support simplex range

counting, i.e., counting the number of points in the query simplex, without the
O(k) additive term (this applies to both trade-offs).

The d-dimensional ball range reporting problem, in which the query region
is a ball, can be reduced to (d + 1)-dimensional halfspace range reporting by
the standard lifting transformation that maps points in R

d to points on the
unit paraboloid in R

d+1. Thus it follows from [15] that there is an implicit data
structure supporting ball range reporting in R

d in O(n1−1/⌊(d+1)/2⌋ polylog n+
k) time.

3 Point Location

In the planar point location query problem, we preprocess a planar subdivision
with n vertices, so that the face containing a given query point can be located
quickly. In a special case of this problem, the planar subdivision is a planar
triangulation, i.e., a planar subdivision in which each face is a triangle. When
the data set is static, the general problem can be reduced to this special case by
triangulating all the faces of the planar subdivision. As mentioned in Section 1, a
number of linear-space classic solutions were proposed to support point location
in the optimal O(lg n) time based on different techniques [53, 52, 32, 28, 68].

Succinct data structures that represent planar triangulations and planar
maps [17, 18, 9] using O(n) bits support queries regarding connectivity infor-
mation such as adjacency test, but they cannot be directly combined with point
location structures without using additional space of O(n) words or O(n lg n)
bits. Thus, to design space-efficient solutions to point location, Bose et al. [13]
proposed to design data structures called succinct geometric indexes. These data
structures occupy o(n) bits, excluding the space needed for the input array, which
stores the coordinates of the n vertices of the subdivision. The n vertices may be
permuted in the array. Hence o(n) bits of space is the only extra storage required
to support queries, in addition to the storage cost required of the given data.

They first designed a succinct geometric index that supports point location in
planar triangulations. To construct this index, they use graph separators twice to
decompose the given planar triangulation T . More precisely, they first, in the top-
level partition, apply the t-separator theorem [3] on the dual graph of T , choosing
t = lg3 f/f , where f is the number of faces of T . By doing so, they partition



T into a separator consisting of O(n/ lg3/2 n) faces and O(n/ lg3/2 n) subgraphs
called regions; each region consists of O(lg3 n) vertices and corresponds to a
connected component of the dual graph after removing the separator. They
further, in the bottom-level partition, apply the separator theorem on each region
to create subregions consisting of O(lg n) vertices each. The reason why they
perform two levels of partition is that they intend to create one point location
structure for the top-level partition (any linear-space solution supporting query
in logarithmic time will be sufficient) and a point location structure for each
region to answer queries. The structure for the top-level partition is constructed
by first triangulating the graph consisting of the outer face and the separator for
the top-level partition, and then building a structure to answer point location.
This structure will either report that the query point is in a separator face
and thus terminate, or locate the region containing the query point. Since the
size of this graph is O(n/ lg3/2 n), O(n/ lg1/2 n) = o(n) bits would be sufficient.
Then, they construct a similar point location structure for each region to tell
whether the given query point is in a separator face of this region, or in a
particular subregion. They hope that, since there are O(lg3 n) vertices in each
region, O(lg lg n) bits would be sufficient to identify each vertex and to encode
each pointer in these point location structures. This guarantees that all these
point location structures occupy o(n) bits in total. Finally, if the point is in a
subregion, they check each face of the subregion to compute the result. If this
idea works, then the query time would be O(lg n).

The main challenge for this to work is that after applying the separator
theorem, each vertex could appear in multiple regions and/or subregions, so
that we can not simply assign an O(lg lg n)-bit identifier for each vertex when
constructing the point location structure of a region. To overcome this difficulty,
they use the following strategy to assign identifiers at three different levels for
each vertex. First, for each subregion that a vertex is in, a subregion-label of
O(lg lg n) bits is assigned by applying the approach of Denny and Sohler [30] that
permutes the vertex set to encode the graph structure of a planar triangulation.
For each subregion, the rank of a vertex in the permuted sequence for this
subregion becomes its subregion-label for its occurrence in this subregion. Next,
for each region, a region-label is assigned to each of its vertices as follows: Visit the
subregions in this region in an arbitrary order, and for each subregion visited,
visit its vertices by subregion-label. During this traversal, they incrementally
assign region-labels (starting from 1) for each vertex in the order in which it
is first visited; thus, even if a vertex appears in multiple subregions, it has a
distinct region-label. Finally, each vertex is assigned a distinct graph-label over
the entire triangulation. Graph-labels are constructed from region-labels in a
way similar to the way in which region-labels are constructed from subregion-
labels. Point coordinates are then stored in an array, indexed by graph-label.
Given a subregion (or region) and a subregion-label (or region-label) of a vertex,
the graph-label of this vertex can be computed in constant time using succinct
sparse bit vectors [66] and other data structures; readers with background in
succinct data structures can attempt to design an o(n)-bit structure achieving



this on their own. With this, a vertex in the point location structure constructed
for a region can be identified using its O(lg lg n)-bit region-label, to guarantee
that the succinct index constructed occupies o(n) bits only. Graph-labels are
also used as point coordinates in the point location structure constructed for the
top-level partition, so that no point coordinates are duplicated.

To further construct a succinct index for a general planar subdivision, they
partition each large face into smaller faces and assign identifiers at three different
levels to each face. Their main result can then be summarized in the following
theorem:

Theorem 4 ([13]). Given a planar subdivision of n vertices, there exists an

o(n)-bit succinct geometric index that supports point location in O(lg n) time.

This index can be constructed in O(n) time.

Three variants of the succinct geometric index for planar triangulations were
also designed, to match the query efficiency of data structures with improved
query time under various assumptions. The first index supports point location
using lg n+2

√
lg n+O(lg1/4 n) point-line comparisons, which matches the query

efficiency of the linear-space structure of Seidel and Adamy [69]. The second ad-
dresses the case in which the query distribution is known. In this case, let pi
denote the probability of a query point residing in face pi, and the entropy
of the distribution is H =

∑f
i=1(pi lg

1
pi
), where f is the number of faces.

They designed a succinct index supporting point location in O(H +1) expected
time, which matches the query time of the linear-space structure of Iacono [49].
The third variant assumes that the point coordinates are integers bounded by
U ≤ 2w, where w is the number of bits in a word, and it supports queries
in O(min{lg n/ lg lg n,

√

lgU/ lg lgU}) time. This matches the query efficiency
of the linear-space structure of Chan and Pǎtraşcu [23]3. These three succinct
geometric indexes can be constructed in linear time.

The succinct geometric index can be further used to design implicit data
structures for point location. The main idea is to adopt the standard approach of
encoding one bit of information by swapping one pair of points, in order to encode
the o(n)-bit geometric index in the permuted sequence of point coordinates. This
requires several modifications to the succinct index, including labeling schemes.
The support for queries becomes slower, as O(lg n) time is required to decode
one word of information. The implicit structure is summarized in the following
theorem:

Theorem 5 ([13]). Given a planar subdivision of n vertices, there exists an

implicit data structure that supports point location in O(lg2 n) time. This data

structure can be constructed in O(n) time.

3 The query time of this variant of succinct geometric index was stated as
O(min{lg n/ lg lg n,

√
lgU}) in [13], and this was because a preliminary version of

the structure in [23] was used to prove the query time. It is trivial to apply the main
result of [23] to achieve the query time stated here.



Bose et al. [13] also showed how to design succinct geometric indexes and
implicit data structures for a related problem called vertical ray shooting. In
this problem, a set of n disjoint line segments is given, and the query returns
the line segment immediately below a given query point. The succinct index
and implicit data structure support this query in O(lg n) and O(lg2 n) time,
respectively. They can be constructed in O(n lg n) time.

He et al. [48] considered the problem of maintaining a dynamic planar sub-
division to support point location. The update operations they consider include

– Inserting a new vertex v by replacing the edge between two existing vertices
u1 and u2 with two new edges (v, u1) and (v, u2);

– Deleting a node of degree 2 by replacing its two incident edges with a single
edge connecting its two neighbors if they were not adjacent;

– Inserting an edge between two existing vertices across a face whose boundary
contains these two vertices, preserving planarity;

– Deleting an edge between two vertices of degrees greater than 2.

To design a succinct geometric index for this problem, they designed a succinct
version of the P-tree proposed by Aleksandrov and Djidjev [4] which maintains
the partition of a planar subdivision with constant face size under the same
update operations; these operations can be used to transform any connected
planar subdivision to any other connected planar subdivision. He et al. then
applied two-level partitioning on the given subdivision using a succinct P-tree.
Combined with linear-space data structures for dynamic point location [26, 7],
they designed succinct geometric indexes to match the query times of previous
results, though the update times are slightly slower:

Theorem 6 ([48]). Let G be a planar subdivision of n vertices in which faces

are of constant size and vertices have coordinates that can be encoded in M =
Θ(lg n) bits. Under the word RAM model with Θ(lg n)-bit word size, there exists

a data structure that can represent G in nM + o(n) bits to supports, for any

positive constant ǫ,

– point location in O(lg n) time and updates in O(lg3+ǫ n) amortized time4;

– point location in O(lg2 n) time and updates in O(lg2+ǫ n) worst-case time.

4 Nearest Neighbor Search

Given a set, N , of n points in the plane, the two-dimensional nearest neighbor
query returns the point that is closest (in terms of Euclidean distance) to a given
query point. It is well-known that this problem can be reduced to planar point
location: Construct the Voronoi diagram. Then the answer is the point whose
Voronoi cell contains the query point. This however cannot be used directly to
design implicit structures for nearest neighbor search, as the reduction requires
O(n) extra space.

4 This tradeoff is from the unpublished full version of He et al. [48].



To design an implicit data structure for two-dimensional nearest neighbor
search, Brönnimann et al. [15] applied a separator theorem (such as the t-
separator theorem [3]5) on T to partition the Voronoi diagram into a separa-
tor of O(n/ lg n) cells and clusters of O(lg2 n) cells each. Thus a point location
structure of O(n) bits can be constructed to tell which separator cell or cluster
contains the query point. By choosing an appropriate parameter for the sepa-
rator, this point location structure can be represented using at most n/2 bits,
which can be encoded using the standard techniques of encoding bits by swap-
ping pairs of points. This yields an implicit data structure supporting nearest
neighbor search in O(lg2 n) time.

Brönnimann et al. [15] showed that a similar approach can be used to con-
struct implicit data structures for a set of n halfspaces in 3-dimensional space
in O(n lg n) time, which answer ray shooting and linear programming queries in
the intersection of halfspaces in O(lg2 n) time. These two queries are defined as
follows: A ray shooting query determines the first halfspace hit by a query ray.
In a linear programming query, linear constraints are represented as halfspaces,
and the query returns a point that minimizes the value of a query linear func-
tion while satisfying all these constraints. Note that the linear-space structure
of Dobkin and Kirkpatrick [31] can answer both queries in O(lg n) time in R

3.

To further improve the query efficiency for nearest neighbor search, Chan
and Chen [21] designed a recursive structure. They organize points in an array
recursively in a generalization of the van Emde Boas layout [34]: Apply the sep-
arator theorem to partition the Voronoi diagram into a separator consisting of
O(

√
bn) cells and O(b) clusters each consisting of O(n/b) cells; the parameter b is

to be determined by the recursive formula for the query time. According to this
decomposition, they reorder the array of points, so that points corresponding to
the separator are stored in the first segment of the array, and points correspond-
ing to each cluster are stored in a subsequent segment. They then apply this
strategy recursively to the separator as well as each cluster, reordering points in
a separator or cluster in each recursion.

Their query algorithm over this structure is also recursive: First determine
the cluster containing the cell whose corresponding point is nearest to the given
query point among all the points whose cells are not in the separator. Then,
perform this algorithm recursively in both this cluster and the separator, to
find two points that are candidates of the nearest neighbor. Between these two
points, the one that is closer to the query point is the answer. The challenging
part is how to locate this cluster, and they proved geometric properties between
the Voronoi diagrams of a point set and a subset of it, and designed additional
recursive structures. As with the van Emde Boas tree, the query time of their
structure is also determined by a recursive function. With the choice of parameter
b = n1/3, the main recurrences in the critical cases are of the form Q(n) =
2Q(n2/3) +O(lgc n), where c is a constant number depending on the particular

5 They actually applied the separator theorem of Frederickson [41] which requires
O(n lg n) time. However, the t-separator theorem would work as well, and the ad-
vantage is that a t-separator can be computed in O(n) time.



case. Thus the query time can be shown to be O(lglog3/2 2 n lg lg n) = O(lg1.71 n),
and their main result can be summarized in the following theorem:

Theorem 7 ([21]). Given a set of n points in two-dimensional space, there ex-

ists an implicit data structure that supports nearest neighbor search in O(lg1.71 n)
time. This data structure can be constructed in O(n lg n) time.

Chan [19] considered the approximate nearest neighbor search problem in
constant-dimensional space. Here the word “approximate” means that for any
fixed positive constant ǫ, the distance between the query point q and the point
returned as the answer is guaranteed to be within a factor of 1 + ǫ from the
minimum distance to q. When point coordinates are integers, they designed
a simple strategy of laying out coordinates in an array based on shifting and
sorting. Surprisingly, it can be proved that this guarantees an approximation
ratio of 1 + ǫ. As random choices are made by the preprocessing algorithm, its
query time is expected.

Theorem 8 ([19]). Given a set of n points with integer coordinates in constant-

dimensional space, there exists an implicit data structure that supports approx-

imate nearest neighbor search in O(lg n) expected time. This data structure can

be constructed in O(n lg n) time.

We finally mention that when polylogarithmic query time is not required,
there is an implicit data structure for points in R

d supporting nearest neighbor
search in O(n1−1/⌊(d+1)/2⌋ polylog n) time. This again uses the implicit halfs-
pace range reporting structure [15] summarized in Section 2.3, via lifting trans-
formation. For ray shooting and linear programming queries in intersections of
halfspaces in R

d where d ≥ 4, Brönnimann et al. [15] designed an implicit struc-
ture that can answer these queries in O(n1−1/⌊d/2⌋ polylog n) time, which is also
based on their structure for halfspace range search.

5 Conclusion

In this article, we have surveyed previous results on designing succinct and im-
plicit data structures for geometric query problems. Research in these direc-
tions developed new algorithmic approaches for computational geometry, suc-
cinct data structures and implicit data structures. As more and more applica-
tions process large geometric data structures, we also expect that such research
will have great impact in the engineering of modern software systems.

There has been some recent development in the design of solutions to ge-
ometric query problems that make use of succinct data structures. Unlike the
work surveyed in this article that focus on designing succinct solutions, the
key strategy is to use succinct data structures to either achieve improvement
upon previous results in terms of running time, or to reduce space usage by
non-constant factors. Note that some of Chazelle [25]’s structures already used
tricks under word RAM which happen to be useful for succinct data structures
as well, though these tricks do not include techniques particularly developed



later for succinct data structures. Among the works that focus on using succinct
structures to improve running time, the work of He and Munro [45] on dy-
namic two-dimensional orthogonal range counting problem is perhaps the most
relevant to this survey. In this problem, in addition to supporting queries, the
insertion/deletion of a point into/from the given point set is also considered.
The structure of He and Munro occupies O(n) words of space, answers queries
in O((lg n/ lg lg n)2) time, and performs updates in O((lg n/ lg lg n)2) amortized
time. This is currently the most efficient linear-space solution to this problem.
Succinct data structures are also extensively used in the design of data struc-
tures occupying linear or near-linear space for dynamic range median [46], range
majority [33], path queries on weighted trees [47], orthogonal range maxima [36]
and adaptive and approximate range counting [24]. The use of succinct data
structure techniques is crucial to achieving these results.

We end our article by giving several important open problems in the design
of succinct and implicit geometric data structures:

– Can implicit partitions trees be further improved to match the performance
of Chan’s optimal partition trees [20]?

– Can the implicit data structures that achieve polylogarithmic query times,
including the structures for 2D point location and nearest neighbor search,
be further improved? The O(lg1.71 n) and O(lg2 n) query times are slower
than logarithmic query times of linear-space data structures for the same
problems.

– The implicit geometric data structures that we have surveyed are all de-
signed for static data sets, and the only dynamic succinct geometric struc-
ture is the structure of He et al. [48] for point location. Brönnimann et

al. [15] considered semi-dynamization of their implicit geometric data struc-
tures which only allows the insertion of points without supporting deletions.
Thus designing fully dynamic versions of most of the succinct and implicit
structures surveyed here remains open. Many dynamic succinct and implicit
data structures have been already designed for bit vectors [65], strings [43,
62], trees [67], graphs [16] and partial search [60, 39], and thus we expect
that progress can be made regarding this open problem.

– Even though a number of data structures have been presented here, there are
many other geometric query problems that do not have succinct or implicit
solutions. In fact, for each geometric query problem that has a linear-space
solution, we can ask the following questions: Can we construct a succinct or
implicit solution to this query problem? If the answer is negative, how to
give a related lower bound proof?

References

1. Afshani, P., Arge, L., Larsen, K.D.: Orthogonal range reporting: query lower
bounds, optimal structures in 3-d, and higher-dimensional improvements. In: Pro-
ceedings of the 26th Annual ACM Symposium on Computational Geometry. pp.
240–246 (2010)



2. Afshani, P., Arge, L., Larsen, K.G.: Higher-dimensional orthogonal range reporting
and rectangle stabbing in the pointer machine model. In: Proceedings of the 28th
Annual ACM Symposium on Computational Geometry. pp. 323–332 (2012)

3. Aleksandrov, L., Djidjev, H.: Linear algorithms for partitioning embedded graphs
of bounded genus. SIAM Journal on Discrete Mathematics 9(1), 129–150 (1996)

4. Aleksandrov, L., Djidjev, H.: A dynamic algorithm for maintaining graph parti-
tions. In: 7th Scandinavian Workshop on Algorithm Theory. pp. 71–82 (2000)

5. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range
searching. In: Proceedings of the 41st IEEE Symposium on Foundations of Com-
puter Science. pp. 198–207 (2000)

6. Alt, H., Mehlhorn, K., Munro, J.I.: Partial match retrieval in implicit data struc-
tures. Information Processing Letters 19(2), 61–65 (1984)

7. Arge, L., Brodal, G.S., Georgiadis, L.: Improved dynamic planar point location.
In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science. pp. 305–314 (2006)

8. Arroyuelo, D., Claude, F., Dorrigiv, R., Durocher, S., He, M., López-Ortiz, A.,
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