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Abstract

A mobile robot exploring an unknown environment has no absolute frame of reference for its
position, other than features it detects through its sensors. Using distinguishable landmarks is
one possible approach, but it requires solving the object recognition problem. In particular, when
the robot uses two-dimensional laser range scans for localization, it is di�cult to accurately detect
and localize landmarks in the environment (such as corners and occlusions) from the range scans.

In this paper, we develop two new iterative algorithms to register a range scan to a previous
scan so as to compute relative robot positions in an unknown environment, that avoid the above
problems. The �rst algorithm is based on matching data points with tangent directions in two
scans and minimizing a distance function in order to solve the displacement between the scans.
The second algorithm establishes correspondences between points in the two scans and then solves
the point-to-point least-squares problem to compute the relative pose of the two scans. Our
methods work in curved environments and can handle partial occlusions by rejecting outliers.

1 Introduction

Previous research in mobile robotics has typically addressed several types of problems. The �rst
is path planning in the case of a perfectly known environment and perfect sensing. The optimality
criterion in this class of problems is the minimization of the cost for traversal between a start
and an end position, while avoiding obstacles [18]. The second type of problem is exploration
of an unknown world with perfect range sensing and odometry information [23]. Here the issues
are primarily the complete coverage of the environment and the complexity of the algorithm as
a function of the complexity of the environment (number of vertices and edges of objects).

The third type of problem is path execution within a known real environment. The focus here is
typically on the sensing required to accurately execute a preplanned path, and the key problem
is robot self-localization (the \where am I" problem). One primary issue in solving this problem
is how to match sensed data (vision, sonar, laser, infrared etc. ) against map information.
A comprehensive collection of literature in this area can be found in [7,13]. The robot self-
localization problem can be addressed either by metric means, by ensuring that the di�erence
between the robot's actual position and the position where the robot thinks it is remains small
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and bounded, or by qualitative and topological means. It is well understood that odometry is not
su�cient because it leads to unbounded position error [13]. A qualitative solution by tracking
which side of landmark-de�ned lines the robot is on is proposed in [20].

If the robot is equipped with vision, then matching 3D models with 2D scene images is possible
[9,16]. Because of the enormous computational requirements of using image data, using two-
dimensional laser range scans has also been proposed and demonstrated successfully [5]. The
robot \Blanche" assumes that a metric map of the environment consisting of polygonal obstacles
is available, and it matches noisy range scans against the map frequently to keep the position
error small [6]. At the heart of the method is an iterative least-squares algorithm that �nds the
congruence between a range scan and the map provided that the initial displacement is small.
We can thus consider the problem of position estimation in a known (or partially known) two-
dimensional polygonal environment as solved.

Finally, exploration of an unknown world with imperfect range sensing and odometry information
is addressed [17]. Here the self-localization of the robot is still an important issue. Distinct
locations or landmarks detected from sonar data are used in [19]. Matching local models of line
segments obtained from sonar data with a cumulative global model is adopted in [8,24].

In the context of the above literature, our work addresses the robot self-localization problem by
using laser range scans, similar to the work in [5]. However, we consider more general cases as (1)
an arbitrary two-dimensional world, not necessarily polygonal; and (2) an unknown environment.
We intend to address the localization problem for both path execution and exploration of unknown
world.

The main issue in our problem is the consistent alignment of two data sets (range scans in
particular). This is quite di�erent from model-based matching [10]. Although a range scan
represents a 2D shape (contour of the visible world), this shape is only represented by noisy
discrete points instead of a high-quality model, which makes it very di�cult to reliably de�ne or
extract features, as described in [10]. Another complication is due to the presence of occlusion,
since the range scans from two di�erent robot positions will only partially overlap. This implies
that spatial correlation methods which use arclength to reference shape contours (such as [15])
can not be easily applied to scan-matching. The registration method based on �tting Spherical
Attribute Images [12] also has di�culty in matching partial views.

Our approach is to start with an approximate alignment of the two scans (obtained from odom-
etry), and then iteratively improve the alignment by de�ning and minimizing some distance
between the scans. We present two algorithms. The �rst algorithm is based on matching data
points with tangent directions on the two scans. It is formulated as searching a distance function
to estimate the relative rotation between the scans and using an embedded least-squares proce-
dure to solve for the relative translation. Previous methods which iteratively match points to
curves or surfaces have also been reported [1,4]. They typically solve both rotation and trans-
lation from a least-squares procedure and use �xed-point iterations to improve the solution. To

2



ensure convergence, an initial small rotation and translation must be assumed. Our method dif-
fers from previous methods in that we do not include the non-linear rotation component in the
least-squares solution and we use a search procedure rather than �xed-point iterations to mini-
mize the distance function. Thus we are able to solve larger rotational error than the previous
methods.

Our second algorithm is based on iterative least-squares solutions using point to point correspon-
dences, similar to the ICP algorithm proposed in [1]. But in addition to choosing the closest
point on the model as the correspondence for a data point, we also choose the model point which
has the same distance from the origin as the data point. Using two correspondence sets allows
our method to estimate the rotation and translation very accurately and our method converges
signi�cantly faster than the ICP algorithm.

The rest of the paper is organized as follows: Section 2 de�nes the problem as the alignment of
two range scans so as to recover the relative translation and rotation of the two scans. Section
3 describes the tangent-based matching method. Section 4 describes the point-based matching
method. Section 5 summarizes the integration of the two algorithms and shows experimental
results from both simulated and real laser range data. Finally, section 6 concludes the paper.

2 Problem De�nition

2.1 Pose Estimation by Aligning Scans

A range scan is a list of points corresponding to the intersection points of a laser beam with
objects in the robot's environment. The laser beam rotates in a horizontal plane and emanates
from a sensor mounted on the robot. Thus a range scan describes a 2D slice of the environment.
Points of the range scan can be speci�ed in a polar coordinate system whose origin is the location
of the sensor, and the reference axis for the laser beam direction is the home orientation of the
rotating range sensor. Each scan point is represented by the laser beam direction, and the range
measurement along that direction. We refer to (O(x; y); �0) as the scan pose, where O is the
position of the sensor in a global coordinate system and �0 is the sensor home orientation.

Suppose that the robot starts at pose Pref (which is our reference pose) and takes a scan (call it
the reference scan Sref). The robot then moves through a static environment to a new pose Pnew
and takes another scan (call it the new scan Snew). The approximate di�erence of pose Pnew from
pose Pref (i.e. the relative translation and rotation) is usually known from odometry information.
However, this information is often imperfect due to wheel slippage. Our task is to determine the
exact di�erence of pose Pnew with respect to pose Pref , by aligning the two scans.

The matching problem is formulated as the following: Initially assuming that the pose of Snew is
P 0

new, �nd a rotation ! and a translation T for Snew such that, after the transformation, Snew is
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aligned with Sref .

2.2 Criterion for Matching Scans

A scan is a sequence of points which represent the contour curve of the local environment. Due
to the existence of random sensing noise and self-occlusion, it may be impossible to align two
scans perfectly. There exist two types of discrepancies between the scans.

In the �rst type, there are small deviations of scan points from the true contour due to random
sensing noise. These deviations can be characterized by an error distribution function which
depends on the sensor. Another type of discrepancy is the gross di�erence between the scans
caused by occlusion (i.e. some area is only visible in one scan but not in the other). We regard
this kind of discrepancy as an outlier which cannot be described by the sensing error distribution.

Naturally, we adopt a scan matching criterion as to �nd the best alignment of the overlapping part
in the sense of minimum least-squares error, while ignoring the outlier parts. We can formulate
this matching criterion as the minimization of a distance measure between the two scans, as a
function of the rotation and translation. To exclude outliers in de�ning the distance measure, we
can apply the concept of robust statistics [11,2].

3 Search/Least-Squares Matching Algorithm

3.1 Method Overview

Our approach to the scan matching problem is to de�ne a distance measure between the two scans
and search for an appropriate rigid transformation which minimizes the distance. Although the
search space is essentially a three-dimensional one (rotation and two-dimensional translation),
we try to reduce the search problem to an e�cient one-dimensional search plus an embedded
least-squares solution, by carefully formulating the distance measure.

The idea of the matching method is briey described below. First, we compute the tangent
directions on the scans by �tting lines to sets of consecutive scan points. Then we associate
approximate correspondences of scan points, assuming a known rotation angle ! (but not the
translation T ). From each pair of corresponding points, we formulate a linear equation about the
unknown translation T . Then, by using all correspondence pairs, we de�ne a least-squares model
for T which also represents a matching distance as a function of !. Outliers can be detected using
gates and they contribute a constant cost to the distance measure. The �nal step is to search
for a rotation ! which minimizes this distance function. The translation T is solved through
the least-squares method. We refer to this method as rotation search/least-squares method to
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distinguish it from pure least-squares based �xed-point iteration type of methods.

The steps of the algorithm are summarized as the following:

1. Project the reference scan Sref to the pose P 0

new so that the two scans are represented in
the same coordinate system. Discard those points on Sref which are likely not to be visible
from the new pose.

2. Compute the tangent directions on each scan by �tting lines to a neighborhood of sample
points. Discard unreliable tangent lines (such as at corners or depth discontinuities).

3. Decide on a trial value of the rotation ! from a global search procedure.

4. For each point on Snew, use the rotation angle ! to de�ne an approximate corresponding
point on Sref and compute the point through interpolation. Check the correspondence with
some thresholds in order to reject outliers.

5. Use all the correspondence pairs to construct a least-squares model for T and �nd the
least-squares solution. De�ne a matching distance as a function of ! from the least-squares
residual and the outlier penalties.

6. Update the rigid transformation by the least-squares solution of T .

7. Repeat steps 3{6 and �nd the rotation ! which minimizes the matching distance function.
Also obtain the overall translation by integrating the individual updates.

The algorithm will be explained in detail in the following sections.

3.2 Projection of Reference Scan

The reference scan Sref is originally de�ned at pose Pref . We would like to project it to the
(approximate) new pose P 0

new to emulate the world as viewed from P 0

new. This is easily done by
a change of coordinate systems for the points in Sref.

After projection, we determine whether each point in Sref is visible from P 0

new based on the
bounded obstacle assumption and opaque assumption. (1) Assume that initially the points in
Sref are ordered by their polar angles (say counterclockwise). After projecting the points to the
new pose, if the new polar angles of some points are in the wrong order (i.e. become clockwise),
then the surface containing these points is facing away from the sensor and thus the points are
not visible. (2) Along the rays from the new origin P 0

new to the points, if there are other points
(either from Sref itself or from the new scan Snew) close enough to the rays, then the points
further from the origin are considered hidden (see Fig. 1 for illustration). The points determined
as nonvisible are discarded.
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Figure 1: Scan points are considered invisible after projection if (a) their angles are in the wrong
order or (b) there are other points blocking the rays.

Finally, we obtain a set of points in Sref which are ordered by angles. The projected scan can be
readily used as a reference for registering Snew.

3.3 Fitting Tangent Lines

At each sample point on a scan, we compute an approximated tangent line by �tting to a neigh-
borhood of sample points centered at that point.

�

�

O
�

Figure 2: Parameters of a line �t to a set of points.

A line �t to a set of points (xi; yi)'s in neighborhood of size n is de�ned by the parameters �
(normal distance from the origin to the line) and � (direction of a normal to the line) (see Fig. 2)
which minimize the following error:

E�t =
nX
i=1

(xi cos�+ yi sin �� �)2: (1)

There exists a closed-form solution for �, �, and min(�;�)(E�t) (see Appendix A).

6



Figure 3: The points labeled by circles are discarded. Tangent lines are computed at all the other
points. Only some of these tangent lines are shown for clarity.

Although we �t a line at every sample point, some of the lines should not be considered as tangent
lines if the world contour itself is not smooth enough near these points. Speci�cally, we want to
exclude sample points near corners or occlusion boundaries.

Two indicators can help us to recognize these non-smooth regions. First, we check the incidence
angle �� � (� is the polar angle of the sample point and � is the computed normal direction, see
Fig. 2). A high incidence angle indicates that either the sensing direction is nearly parallel to a
surface so that the range measurements are unreliable, or there is a depth discontinuity (occlusion
boundary).

Another value we check is the �tting errormin(E�t) which indicates the co-linearity of the points
or the smoothness of the local region. The error is usually small for straight lines or smooth
curves, but large at high-curvature points or highly noisy regions. Therefore, a large �tting error
usually means that the tangent line is poorly de�ned.

We use the above two indicators to reject unreliable �tting results. Only when both values are
within prede�ned limits, we consider the �tted line as the tangent line at the current sample
point. Otherwise, we regard the tangent line to be unde�ned. Fig. 3 shows an example of using
incidence angle and �tting error to detect points where tangent lines are unreliable. We compute
tangent lines at all the other scan points.

It is interesting to note that the points we discard for being unreliable in de�ning tangent (which
are likely corners and occlusion boundaries) can be considered as features. It is possible to
do feature-based matching using these points, provided that the correspondences between the
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features on the two scans can be determined. As the number of identi�able features in the scan
is far less than the number of available data points, we believe that the feature-based solution is
less accurate and less robust than our method which uses all the data points where a tangent is
de�ned.

3.4 Correspondence De�nition

We de�ne the correspondence of scan points and set up an equation based on the values of a pair of
corresponding points. For the convenience of analysis, we initially regard the scans as continuous
curves rather than sets of discrete points and we also ignore sensing noise or occlusion, until we
instantiate the equation for the actual scan points.

Once we have projected Sref to the pose P 0

new, we represent the two scans in the same coordinate
system (de�ned by (T0; �0)). The two scans di�er only by a rotation ! and a translation T =
(Tx; Ty)

t.

Let P1 be a sample point on Snew and let P2 be the true corresponding point on Sref (i.e. they
both represent the same physical point in the world). The two points are related by

P2 = R!P1 + T; (2)

where R! =

 
cos! � sin !
sin! cos!

!
is the rotation matrix. Consider the tangent line de�ned on Snew

at P1 and another tangent line on Snew at P2. Let the normal directions of the two tangent lines
be ~n1 and ~n2, respectively. Then we can derive from Eq. 2 that

~n2 = R!~n1 (3)

~n2 � P2 = (R!~n1) � (R!P1) + (R!~n1) � T: (4)

Our strategy is to use Eq. 4 to estimate the translation T , given the rotation ! and the two scans.
However, we note that for a point P1 on Snew, the exact correspondence point P2 on Sref also
depends on T . Therefore, we want to derive an approximated version of Eq. 4 which does not
use the exact correspondence point P2.

We will choose a point P � on Sref which is close to P2. There are many choices of selecting P �

based on R!P1 (which is P1 after correcting the rotation), such as the closest point from R!P1 or
the intersection of the normal line at R!P1 with Sref . For the convenience of searching, we choose
P � as the intersection of the extension of vector R!P1 with scan Sref (see Fig. 4 for illustration).
Let ~n� be the normal direction of the tangent line at P � on Sref . If scan Sref is smooth and if P �

is not too far away from P2, we have the approximate relationships:

(R!~n1) � T � (R!~n1) � (P
� � R!P1) (5)

~n� � T � ~n� � (P � � R!P1): (6)
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Snew
!

P1

rotated Snew

O

P �

P2

T

R!P1

Figure 4: Illustration of point relationships.

The approximation errors of the above relationships are of the order O(x2) where x is related
to jT j=jP1j (see Appendix B for derivation). Therefore, if jT j � jP1j and if the contour curve is
smooth, the approximation error is small. We can combine the above two relationships to form
a more accurate approximation whose error is of the order O(x3) (see Appendix B):

(R!~n1 + ~n�) � T � (R!~n1 + ~n�) � (P � �R!P1): (7)

Eq. 7 is a linear equation about T in the form:

CxTx + CyTy � D: (8)

It is established based on the point P1 and the rotation angle !. Notice that, given P1 and !, we
can determine P � without using T . The coe�cients Cx; Cy; D can be computed from ! and the
parameters of the tangent lines.

Now if we instantiate Eq. 7 for np points on Snew, we can de�ne an error function:

E(!; T ) =

npX
i=1

(Cx
i Tx + C

y
i Ty �Di)

2: (9)

This error indicates the \distance" between the two scans as a function of ! and T . For a given !,
we can solve for T which minimizes the above distance, in terms of !. Moreover, the least-squares
error minT E(!; T ) can be considered as a matching distance function which is primarily de�ned
by the rotation !. Our �nal solution is based on searching the function for an optimal ! such
that the least-squares error is minimum.
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3.5 Correspondence Search

Considering the fact that Sref is a discrete set of points, we can obtain the approximate corre-
spondence point P � for P1 by interpolation. Let the polar angle of P1 be �, then the point P �

is at direction � + !. Note that the points in Sref are ordered by their polar angles. We can
locate two consecutive points on Sref whose angles enclose � + !. Then we linearly interpolate
for both the range and the normal direction of P � across the two points. This correspondence
search is very e�cient. We can implement the search for all correspondence pairs in linear time
with respect to the number of points in the two scans.

Correspondence points which di�er greatly in their normal directions or positions are considered
as outliers and they are not included in the least-squares solution. Typical causes of outliers are
occlusion or poor tangent estimation. We empirically choose thresholds � and Hd. A correspon-
dence pair is accepted only if both of the following conditions are met:

(R!~n1) � ~n
� � cos�; jDij � Hd: (10)

Otherwise, we consider the pair as outlier and discard it. We also exclude the points if they are
near a corner or a depth discontinuity (as detected by the line �tting procedure).

3.6 Optimization

We de�ne a total matching distance for a given rotation ! based on the least-squares error (Eq. 9)
and the number of outliers. Let np be the number of matching pairs of points and no be the
number of outliers, the total matching distance is de�ned as:

Ematch(!) =
1

np + no
(min

T
E(!; T )+ noH

2
d); (11)

where H2
d is the constant cost of an outlier (note that Hd is the threshold that detects outliers).

The e�ect of the thresholding and adding �xed cost for outliers to the least-squares error is
approximately equivalent to using a truncated quadratic robust estimator to de�ne the distance
measure. The advantage of using a robust estimator is that a small number of arbitrarily bad
outliers do not lead to an arbitrarily bad estimation [11,2].

The matching distance in Eq. 11 is a function of !. Implicitly, it is also a function of the translation
T (because the least-squares solution T may be di�erence from the true translation). But the
variable ! is dominant. We expect that the distance function should have a global minimum at
the true rotation angle and that the function is unimodal near the minimum. From the plot of a
typical Ematch(!) (Figure 5), we can see that the distance function has a single prominent valley.
Furthermore, if there is little translation, it has a well-de�ned lowest point.

An optimization procedure needs to be applied to minimize a distance function. Because the
distance function is generally not a smooth one, gradient based search methods are not applicable.
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Figure 5: Matching distance measure as a function of rotation angle, in an example. The solid
curve is the distance function when translation is zero. The dashed curve is the distance function
when translation is (0.2, 0.1) meters (comparing with dimension of the environment of 10 meters).

One possible way of searching for a minimum is to sample the search space. Stochastic methods
(such as simulated annealing) may also be applied to minimize the non-smooth distance function
(such as [3]). These methods are usually computationally expensive.

We use the search by golden section method [14] to �nd the minimum along the rotation dimension
in the distance function. We choose this method because of its e�ciency in terms of required
function evaluations. The search by the golden section method is stated as follows. Assume
that the global minimum is enclosed in an interval [!1; !2]. The �rst trial point is set at x1 =
!1 + 0:618(!2� !1). At every step, a new point is chosen at x2 = !1+ !2 � x1. Then depending
on whether the function has a lower value at x1 or x2, the better point becomes the new x1 and
the worse one replaces !1 or !2 to form a new interval which still encloses the minimum. After
su�cient iterations, the �nal interval will be narrow enough to localize the minimum point.

Due to the residue in the translation, the optimal rotation found by the one-dimensional search
may be biased. To address this problem and reduce the bias, we correct the translation by the
least-squares solution every time we evaluate the distance function. As the search narrows down
the rotation, the translation residue is also getting smaller and so is the bias.

From the plot, we can see that the valley of the curve is within an interval of about 0.5 radians
(30 degrees) in width. Beyond this interval, the curve is mostly at. We require this initial
interval to start the search procedure. However, in case the initial rotation error is very large or
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completely unknown, we can determine an initial interval by coarsely sampling the function at
some rotation values. For example, we can sample the function at every 15 degrees (resulting in
a total of 24 samples) and choose two adjacent points which have the lowest function values to
form an interval. This e�ectively allows our method to handle arbitrarily large rotations.

The amount of translational error handled by our method depends on the threshold Hd. Usually
the algorithm is good enough to handle the residuals of the odometry estimates.

4 Point Correspondence Based Matching

4.1 General Approach

We now present another method to align two range scans. It is an iterative algorithm and is based
on associating point to point correspondence. The idea of the method is the following. For each
point Pi on Snew, we use a simple rule (independent of the actual rotation and translation) to
determine a corresponding point P 0

i on Sref . Then from all the correspondence pairs of points, we
compute a least-squares solution of the relative rotation and translation. This solution is applied
to reduce the pose error between the two scans. We repeat this process until it converges.

The least-squares solution is derived by minimizing the following distance function which is de�ned
on n pairs of correspondence points:

Edist(!; T ) =
nX

i=1

jR!Pi + T � P 0

i j
2: (12)

Closed-form solutions for ! and T can be derived (see Appendix C).

The central issue of the algorithm is then to de�ne a sensible rule to determine correspondences
without knowing the actual rotation and translation.

4.2 Rules for Correspondence

We describe the correspondence rules in the following sections. For convenience, we will regard
the reference scan Sref as a continuous curve and refer to it as the model. We will consider the
correspondence search on a discrete scan later.
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a b

Figure 6: Use rules to determine correspondences (which are joined by line segments in the �gure).
(a) Use the closest-point rule; (b) use the matching-range-point rule. The model is the ellipse.
The data points are labeled by small circles. The big circle in the center is the origin.

4.2.1 Closest-Point Rule

A commonly used rule is to choose the closest point on the model as the correspondence for a
data point. We refer to this rule as the closest-point rule. Fig. 6(a) shows an example of �nding
the correspondences for a set of points in an elliptic model, using the closest-point rule. Besl and
McKay described a general-purpose iterative closest point (ICP) algorithm for shape registration
based on this rule and they proved that the ICP algorithm always converges monotonically
to a local minimum with respect to the least-squares distance function [1]. We observe from
experiments that, if the rotation is small, the ICP algorithm is good at solving the translation.

One disadvantage of the ICP algorithm is that it converges very slowly. Especially, when the
model is curved, the correspondences found by the closest-point rule may contain little information
about the rotation. As seen from Fig. 6(a), the vectors joining the correspondence pairs have
very inconsistent directions and they tend to cancel out each other when used together to solve
for the rotation. Moreover, regardless of the type of the model, the convergence speed of the
algorithm is always very slow when the distance function approachs a local minimum.

To accelerate the ICP algorithm, Besl and McKay used a line search method to heuristically
determine the transformation variables based on their values in two or three recent iterations.
Although this improves the convergence speed near a local minimum, the problem of obtaining a
poor solution for the rotation component still exists. Therefore, the improvement in convergence
speed is limited. Moreover, in order to apply the line search method, an implicit assumption
is made about the smoothness of the least-square distance function. But this is typically not
true if the number of correspondence pairs changes during the iterations (as a result of rejecting
outliers).
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Figure 7: Matching-range-point rule: For a point P , the corresponding point P 0 on the scan lies
within the sector and jOP 0j is closest to jOP j.

4.2.2 Matching-Range-Point Rule

We propose a di�erent rule which �nds the correspondences in such a way that they signi�cantly
reveal the rotation component.

Consider a data point P and its corresponding point P 0 = R!P +T . If we ignore the translation,
we have jP 0j � jP j. On the other hand, the polar angle � of P and the polar angle �̂ of P 0 are
related by �̂ � � + !. This implies that the correspondence of P under a rotation is a point
which has the same polar range as that of P , and the polar angles of the corresponding points
di�er by the rotation angle !. Now in the presence of a small translation, we can still expect
that the point P 0 with the same range as that of P is possibly a good approximation to the true
correspondence of P , and this approximate correspondence provides rich information about the
rotation angle !.

To ensure that the rule �nds a unique and reliable correspondence, we only search for the
matching-range point within a local region of the model near P . Suppose that we can esti-
mate a bound B! for the rotation !, i.e. j!j � B! . We have: �̂ 2 [� � B! ; � + B! ]. This means
that P 0 should lie within the sector bounded by � � B! . Therefore, we propose the matching-
range-point rule as the following: For a data point P , its corresponding point is P 0 on the model

where P 0 satis�es j�̂ � �j � B! and jP 0j is closest to jP j. The rule is illustrated in Fig. 7.

Fig. 6(b) shows an example of using the matching-range-point rule to �nd correspondences in
the elliptic model. We can clearly see that the vectors joining the correspondence pairs con-
sistently indicate the rotation direction. Therefore, the least-squares solution should be a good
approximation to the true transformation, especially in the rotation component.
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Based on this new rule, we design an iterative matching-range-point (IMRP) algorithm. In
this algorithm, the parameter B! controls the size of the neighborhood to be searched for a
correspondence and also the maximum rotation possibly solved in one iteration. Thus it will be
best to choose B! to be close to the rotation residual at every iteration. We empirically generate
B! using an exponentially decreasing function of the form: B!(t) = B!(0)e

��t. It is also possible
to use the least-squares solution of ! in the current iteration to determine the value of B! for
the next iteration.

A comparison of the performance of the ICP algorithm and the IMRP algorithm is illustrated in
Fig. 8. We notice that the IMRP algorithm converges faster than the ICP algorithm in estimating
the rotation. For the translation part, the IMRP algorithm is initially slower but it eventually
converges faster than the ICP algorithm.

The reason that the translation residuals from the IMRP algorithm are initially reduced slowly is
that the matching-range-point rule only tends to inuence the translation component when the
sector width B! becomes small enough. In the early iteration when B! is large, the algorithm
tends to explain the displacement between the correspondence pairs by rotation rather than
translation. This phenomenon may present a potential problem to the stability of the algorithm
if we need to dynamically reject outliers using a threshold, as good correspondences may be falsely
rejected as outliers due to the incorrect translation. We will study more about outlier detection
later.

4.2.3 Combining the Two Rules

It is desirable to combine the two rules in order to achieve both the convergence speed of the
matching-range-point rule and the stability of the closest-point rule. We propose an iterative dual
correspondence (IDC) algorithm which uses both rules, as the following:

1. In each iteration do the following steps:

2. For each data point Pi,

(a) apply the closest-point rule to determine a correspondence point P 0

i for Pi.

(b) apply the matching-range-point rule to determine a correspondence point P 00

i for Pi.

3. Compute the least-squares solution (!1; T1) from the set of correspondence pairs (Pi; P
0

i),
i = 1; . . . ; n (which are obtained using the closest-point rule).

4. Compute the least-squares solution (!2; T2) from the set of correspondence pairs (Pi; P
00

i ),
i = 1; . . . ; n (which are obtained using the matching-range point rule).

5. Form (!2; T1) as the solution for the transformation in the current iteration.
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The basic idea of the above algorithm is to take the translation component from the closest-point
rule solution and the rotation component from the matching-range-point rule solution to form
the current solution for the transformation.

The combination of the two rules appears to achieve signi�cantly better results than each of the
individual rules. It does not only ensure the stability of the iterations, but also increases the
convergence speed signi�cantly. In fact, the two rules reinforce each other by reducing di�erent
components of the transformation, so that each of them can be more e�ective in the following
iteration. We notice that the IDC algorithm is insensitive to the choices of parameter B! .

Fig. 8 illustrates the residuals of the transformation components during the iterations of the three
algorithms. The model and the data points in this example are the ones given in Fig. 6, where
the initial rotation is �6 degrees; the initial translation is (-5, 5) units (the width of the elliptic
model is 1000 units). Clearly, the IDC algorithm reduces the residuals much more quickly than
the other two single-rule algorithms.

We experimentally estimate the rate of convergence for each of the three algorithms using the
above example. The iterative closest point algorithm appears to have a sublinear convergence
rate. The ratio of error residuals (C = ei+1=ei) gets larger and larger and it approaches to 1.
In fact, after 30 iterations, C is at 0.998. For both the iterative matching-range point algorithm
and the iterative dual correspondence algorithm, the rate of convergence seems to be linear. The
error ratio for the iterative matching-range point algorithm is C = 0:875; the error ratio for the
iterative dual correspondence algorithm is C = 0:685.

4.3 Correspondence Search

We will use the IDC algorithm to register a new scan Snew to the reference scan (model) Sref .
Considering that Sref is discrete, we need to interpolate in order to locate the correspondence
point for each of the two rules.

First, we consider the matching-range-point rule. Let P (r; �) be a point on Snew. We want to
�nd another point P 0(r̂; �̂) on Sref according to the matching-range rule. Since the points in scan
Sref are parameterized in a polar coordinate system, we choose to linearly interpolate 1=r from �
between two points.

Let P1(�1; r1), P2(�2; r2) be two adjacent points, the interpolation function r̂(�̂) is:

r̂ = 1

, 
1

r1
+

�̂ � �1
�2 � �1

(
1

r2
�

1

r1
)

!

=
r1r2(�2 � �1)

r1(�̂ � �1) + r2(�2 � �̂)
(13)

This interpolation scheme is approximately equivalent to connecting the two points with a line
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Figure 8: Comparison of iterative algorithms. (a) Rotation residuals from the three algorithms
over 30 iterations (note the curve for the IDC algorithm is barely visible as it is almost zero after
three iterations). The initial rotation angle is 6 degrees. (b) Magnitudes of translation residuals.
The magnitude of initial translation is 7.07 units. The model and data set are given in Figure 6.

segment if j�2 � �1j is small. This can be seen by comparing Equation 13 with the equation of a
straight line passing through P1 and P2:

r̂ =
r1r2 sin(�2 � �1)

r1 sin(�̂ � �1) + r2 sin(�2 � �̂)
: (14)

The interpolation in Equation 13 also has the advantage that the interpolated r̂ is a monotonic
function of �̂; it is easy to inversely compute �̂ for a given r̂.

The region where we need to search for P 0 consists of pairs of points whose angular intervals
overlap with [��B! ; �+B! ]. Let [�1; �2] be one such interval. We �nd the intersection [�̂1; �̂2] =
[�1; �2]\ [� �B! ; �+B!]. Then we use Eq. 13 to interpolate two points P 0

1(�̂1; r̂1) and P 0

2(�̂2; r̂2)
at the ends of the new interval. If r̂1 � r and r̂2 � r, or r̂1 � r and r̂2 � r, one of P 0

1 and P 0

2

(whose polar range is closer to r) is a candidate for P 0. In this case, we still need to check other
intervals for a potentially better candidate. But if r̂1 � r � r̂2, or r̂1 � r � r̂2, we can (inversely)
interpolate for a P 0 which has the same range as P .

Now we consider the closest-point rule. For consistency with the matching-range rule, we slightly
modify the closest-point rule such that it chooses the closest point P 0 within the sector [� �
B! ; � + B!] only as the correspondence of P . The interpolation here is simply connecting two
adjacent points with a line segment. In a similar way as in the search for a matching-range
correspondence, we search all the angular intervals and �nd a P 0 by checking the distance from
P to the line segments (or end-points).
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The search required to determine all the correspondence pairs can be e�ciently implemented in
linear time with respect to the number of points on the two scans, by considering the fact that
all the points in the scans are ordered by their angles.

Due to occlusion, we may not �nd appropriate correspondence points for some data points. We
need to identify these outliers and exclude them from the least-squares distance function. Assume
that we have a bound Br for the maximum displacement resulting from translation for a pair of
corresponding points P and P 0, i.e. jjP 0j � jP jj � Br. We use this condition to test for outliers.
For a pair of points found by one of the rules, we accept them as a correspondence pair only if
the above condition is met. The threshold Br can be selected as the kth largest distance among
all the correspondence pairs, according to a predetermined constant fraction (p-tile).

4.4 Convergence of Iterative Algorithm

The iterative algorithm terminates when the change in the least-squares errors in su�ciently
small. In practice, we �nd it su�cient to �x the number of iterations to about 15{20.

The iterative process in the algorithm resembles �xed-point iterations. Since the zero pose error
is a stable �xed-point for the process, we expect that once the iteration converges that the �nal
solution should be very accurate. To ensure convergence a good initial estimate (small initial pose
error) is required by the algorithm. Usually, we can use odometry to provide this initial estimate.
Another possibility is to �rst apply the rotation search/least-squares method which we presented
in Section 3 to obtain a relatively good registration before applying the point-based method. We
�nd from experiments that this strategy usually guarantees the convergence of the point-based
method and the point-based method also usually improves the accuracy of the solution.

5 Scan Matching Experiments

5.1 Combining The Two Algorithms

We have presented two algorithms, the rotation search/least-squares algorithm and the iterative
point correspondence algorithm, for matching range scans. The rotation search/least-squares uses
a search procedure in the optimization process. This allows the algorithm to robustly solve for the
transformation even in the presence of a large initial pose error. However, because the matching
distance function is not smooth and we only use a simple one-dimensional search procedure to do
the minimization, the solution given by this algorithm may not be highly accurate. On the other
hand, the iterative point correspondence based algorithm gives a more accurate solution through
its �x-point iterations, as long as it converges. This natually leads to a two-staged algorithm to
solve a general matching problem by sequentially combining the two algorithms. We apply this

18



algorithm in the following experiments.

5.2 Sensing Strategy

If we have control over the sensing directions (as is the case with the ARK sensor [25]), we can
choose to take a range scan in such a way that the sampling points are evenly distributed in space.
In other words, we want the distances between adjacent points to be approximately equal. This
is more e�cient than a uniform sampling of orientation where the interval width is proportional
to the ranges of the points from the sensor.

Assume that the current sample point is P (�; r). We will decide the direction of the next shot,
�+��, such that the new point is a �xed distance d away from P . If we approximate the contour
curve near P by its tangent line (which has parameter (�; �)), the increment in sensing direction
is:

�� = arctan
d cos(� � �)

r+ d sin(� � �)
; (15)

where the angle � � � can be computed by the following:

� � � = arctan(
1

r

dr

d�
): (16)

Note that the derivative dr
d�

can be estimated from recent range measurements. Combine the
above two equations and take a �rst order approximation (for a small d), we get:

�� �
dq

r2 + (dr
d�
)2
: (17)

To avoid in�nitely small increments, we can prede�ne a minimum value for ��. Now � + �� is
the direction to take the next measurement.

This sensing strategy is used to generate both simulated and real scan data in our experiments.

5.3 Experiments with Simulated Data

Range measurements are simulated for various environments in order to test the matching algo-
rithms. We model the environments with lines and spline curves. Sensing noises are modeled as
additive random variables. For a given environment model, we can simulate a range scan from
any robot pose.

We present a series of experiments using simulated range data. In each experiment, we choose
an environment model and two poses, Pref and Pnew, from which to take the scans Sref and Snew.
The pose error is generated randomly where ! is uniformly distributed in [-0.25, 0.25] radians
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(�14:3�) and T is uniformly distributed in a disk of radius 50 centimeters (comparing with the
dimension of the environment of 10 meters). Sensing noise is assumed to be uniformly distributed.
We vary the maximum sensing noise in each experiment.

In each experiment setting, the matching process was run 1000 times (with randomly generated
initial pose error and sensing noise as described above). We computed the standard deviations
(from the theoretical zero means) of the residuals of the variables (!, Tx, and Ty) resulting from
each matching process. The standard deviations of the residuals after the �rst stage (rotation
search algorithm) and after the second stage (iterative point correspondence algorithm) were
recorded. In the matching process, the number of iterations was �xed at 15 in each of the two
stages.

The results from six experiments are listed in Table 1. In each experiment, we list the environment
model, the maximum sensing noise, and the standard deviations of the residuals. We also plot
all the translation residuals from each of the six sets of experiments (Fig. 9). Each translation
residual is shown as a dot in the x-y plane. The dots form a cluster around the origin.

We have some observations from the statistical results. (1) The pose error residuals are very small
compared with the sensing noise. The standard deviation of translation residuals is about 15% to
25% of the standard deviation of sensing noise. The rotation residuals are well within one degree.
With a typical sensor accuracy of 5cm, the rotation residuals are within one tenth of a degree.
(2) The algorithm behaved robustly over thousands of runs. (3) The second algorithm (iterative
point correspondence algorithm) gave signi�cantly more accurate estimates of rotation than the
�rst algorithm. But the two methods are equally good in �nding the translations (the second
algorithm is slightly better when the sensing noise is relatively small or when the environment
is mostly linear (experiments 1, 2, 3). (4) The residuals appear to be normally distributed with
approximately zero means. (5) When the sensing noise becomes large (experiments 5 and 6), the
algorithm degrades gracefully. In experiment 6 (where the sensing noise is set to 20cm), it appears
that the limit of the algorithm is reached. We experienced a few failure cases where the iterative
algorithm did not converge. There were about 10 such cases among the 1000 runs. The failure
is partly caused by the step of rejecting outliers using thresholds. Raising the threshold level
may improve convergence. But it may result in bias in the estimation because of outliers. High
sensing noise also leads to bad estimation of local contour directions. Thus the correspondence
association step (which involves interpolation) is subject to large error.

We plot three typical matching examples from the above experiments. In each example, we show
the two scans which are misplaced with respect to each other. Then the same two scans after
alignment are shown. In the �gures, the reference scan is plotted with x's. The big X at the
center is the actual pose Pref of the reference scan. The new scan to be registered is plotted with
circles. The big circles with arrows are the poses of the new scan before and after registration
(that is, P 0

new and Pnew).

Example 1 (Fig. 10) is a typical case from experiment 3. Here the rotation is 0:25 radians (14:3�)
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0.4414 � 0.1876 �
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Residual Standard DeviationsSimulated Environments and

Maximum Sensing Noise

Table 1: Statistics of experiments in simulated environments. Maximum initial rotation and
translation are set at �14:3� and 50cm, respectively.
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Figure 9: Translation residuals after apply the matching algorithm. (a) to (f) correspond to
experiments 1 to 6 in table 1. There are 1000 samples in each experiment. Larger spread of dots
in the plot corresponds to higher levels of sensing noise.
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Figure 10: Example 1 (from experiment 3, maximum sensing noise is 10cm). The robot went
from pose A to pose B in reality, but due to odometry errors, it thinks it went to pose B0. Points
on scans from pose A and B are labeled as x's and small circles respectively. The poses are
indicated by arrows. Part (a) shows the alignment error due to the di�erence between pose B0

and true pose B. Part (b) shows the result of aligning the two scans. The pose B0 is corrected to
the true pose B by the same transformation. Notice the large occlusion in the lower right corner.
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Figure 11: Example 2 (from experiment 4, maximum sensing noise is 10cm). Part (a) shows the
pose error (indicated by the di�erence from B0 to B) and the resulted alignment error of the
scans. Part (b) shows the result of correcting the pose error and aligning the two scans. The
large rotation and translation are corrected successfully. There is occlusion in the scan.

24



A

B’
B

A

B(B’)

a

b

Figure 12: Example 3 (from experiment 6, maximum sensing noise is 20cm). Part (a) shows the
pose error (indicated by the di�erence from B0 to B) and the resulted alignment error of the
scans. Part (b) shows the result of correcting the pose error and aligning the two scans. This
level of sensing noise is about the limit of algorithm capacity.
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and the translation is (�30;�20) centimeters. Notice that there is a substantial portion of the
world (about one third) which is visible only in one scan but not in the other. Our algorithm is
able to ignore the unmatched parts but successfully perform the matching based on the remaining
part of the world which is visible in both scans.

Example 2 (Fig. 11) is from experiment 4, in which the environment consists of mostly curves
(rotation 0:5 radians (28:6�), translation (�60; 40) centimeters). There also exist occlusions in
the scans. Our matching method is successful.

Example 3 (Fig. 12) is chosen from experiment 6, in which the maximum sensing noise is as
large as �20 centimeters. Rotation is �0:2 radians (�11:5 degrees) and translation is (�40; 30)
centimeters. The correct alignment is found by the algorithm in this example. Note this level of
sensing noise is close to the limit of algorithm capacity.

In the above experiments, the second algorithm (point correspondence based method) is not fairly
tested as its input (from the output of the �rst algorithm) is too good. Here we present another
experiment which examines the iterative point correspondence algorithm without �rst applying
the rotation search method. We use the same environment as the one in experiment 2, but set
the maximum sensing noise to �10cm. The initial pose error is randomly generated so that ! is
uniformly distributed over [-0.1, 0.1] radians and T is uniformly distributed in a disk of radius
20 centimeters. We ran this experiment 1000 times. The standard deviations of the residuals
are listed in Table 2. For comparison, we also run the rotation search algorithm using the same
input set. We can see that the second algorithm is still successful despite of the relatively larger
initial pose errors. Again, the second algorithm performs signi�cantly better than the �rst one
in �nding the rotation, but only slightly better in �nding the translation.

Residual First Algorithm Second Algorithm

Rotation �! 0.5375 � 0.1599 �

Translation x �x 0.7652 cm 0.7827 cm

Translation y �y 0.7998 cm 0.6514 cm

Table 2: Standard deviations of the residuals from the two algorithms when they are run indepen-
dently with the same set of input. Maximum sensing noise is �10cm. Maximum initial rotation
and translation are �5:7� and 20cm, respectively.

5.4 Experiments with Real Data

In this section, we present the experimental results using real range sensor data in two di�erent
environments. In the �rst experiment, we used the ARK robot [25] to collect range scans in the
Vision Lab at the Department of Computer Science, University of Toronto. The ARK robot is
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equipped with a laser range�nder (model Optech G150) mounted on a pan and tilt unit on the
robot platform. The accuracy of the range�nder is 4 centimeters.

We present two examples of matching scans from this environment (Figures 13 and 14). Relatively
large pose errors between the two scans were intentionally introduced. Unfortunately, the ground
truth for this experiment is not available as the robot was driven by hand. Our matching algorithm
successfully aligned the scans in both examples. Notice that in performing the matching the
algorithm is able to ignore the cluttered areas at the right-side wall and the bottom left corner
(which are bookshelves). The algorithm also handled the occluded area well.

Another testing environment is the cafeteria and nearby corridor in FAW, Ulm, Germany. The
laser range�nder used was a Ladar 2D IBEO Lasertechnik mounted on the AMOS robot. The
laser sensor has a maximum viewing angle of 220 degrees, and an accuracy of �20mm. We
obtained 30 scans which were taken by the robot along its path at a pace of approximately 2
meters between scan poses. We then selected 84 pairs of scans which have su�cient overlap and
applied the scan matching algorithm to each pair. Our matching algorithm successfully aligned
the scans in all 84 cases. All of these scan matching results were used by a global scan registration
algorithm which is discussed in [22,21].

Two examples of the matching results are shown in Figures 15 and 16. In both examples, we
exaggerated the pose errors for testing the algorithm. The odometry error from the actual robot
is much smaller. Note that this robot samples orientation uniformly when taking the scans, as
opposed to our early strategy of making the sample points uniformly dense. But the matching
algorithm still works well with this kind of scan.

We also include another example using real range data from a hallway (Figure 17). Notice that the
constraints along the hallway direction is weak (the only reference are several shallow doorways).
Our algorithm is able to derive the correct matching.

It appears that the real sensor data are more accurate than our typical simulated data. After
thoroughly testing our algorithm with simulations, we believe that it should also work well in
real indoor environments of this type. Moreover, in a typical indoor robot course where range
measurements are taken at short discrete steps, the pose errors are usually much smaller than the
ones we simulated. As a conclusion from the experiments, we believe that our algorithm should
work robustly in real-life robotic applications.

6 Conclusion

We have developed two methods for matching two range scans and correcting the relative pose
error. The two methods can either be used individually or applied in sequence. Our matching
methods have the following desirable properties:
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Figure 13: Example of matching scans taken by the ARK robot at U of T.
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Figure 14: Another example of matching scans taken by the ARK robot.
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Figure 15: Example of matching real scans at FAW, Ulm, Germany. The scans are shown in
dots. Part (a) shows the pose error (indicated by the di�erence from B0 to B) and the resulted
alignment error of the scans. Part (b) shows the result of correcting the pose error and aligning
the two scans.
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Figure 16: Another example of matching real scans at FAW, Ulm, Germany.
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Figure 17: Example using real data from a hallway. Notice that the constraints are weak along
the hallway direction. Alignment still can be made using our algorithm.
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1. Both methods can handle sensor noise and partial occlusion. By checking against thresholds,
the methods can e�ectively reject possible outliers. The methods are not very sensitive to
the choice of threshold values.

2. The methods do not rely on distinguishable features in the environment. Thus we avoid
the di�cult process of feature detection and feature correspondence. The availability of the
number of features should not concern us either. In fact, we use most of the sensor data in
the matching process. This suggests that our algorithms are robust.

3. We do not require an a priori world model. We can match a scan directly to another
scan. Therefore our method can be used for exploration and map building in unknown
environments.

4. Our method can work in a general curved environment. We do not require the world
contours to be linear, as many other methods do.

5. The algorithm is fast (linear time in the number of sensor data points per iteration, for a
small �xed number of iterations). There is no exponential searching needed in �nding the
primitive correspondence.

6. Our algorithm has the ability to correct arbitrarily large errors in rotation.

7. Our algorithms are demonstrated to be superior over similar existing methods in robustness
and e�ciency.

We have tested our algorithm thoroughly with simulated data under various adverse conditions.
We also tested the algorithm with real data from two di�erent environments using di�erent
sensors.
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Appendix

A Line Fitting

Let (xi; yi); i = 1; . . . ; n be a set of points in Cartesian coordinates. The line �tted to these points
has parameter (�; �) which minimizes the following error:

E�t =
nX
i=1

(xi cos�+ yi sin �� �)2:

A closed-form solution can be derived as the following:

� =
1

2
arctan

�2Sxy
Sy2 � Sx2

� = �x cos�+ �y sin�;
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and

min
(�;�)

(E�t) =
1

2

�
Sx2 + Sy2 �

q
4S2

xy + (Sy2 � Sx2)2
�
;

where

�x =
1

n

nX
i=1

xi; �y =
1

n

nX
i=1

yi

Sx2 =
nX

i=1

(xi � �x)2; Sy2 =
nX

i=1

(yi � �y)2

Sxy =
nX

i=1

(xi � �x)(yi � �y):

B Error from Approximate Point Correspondence

�

P1

T

P2
P �

O

rotated Snew

Sref

Figure 18: Illustration of approximate point correspondence.

In Section 3.4, we choose an approximate correspondence P � to replace P2 as the corresponding
point for P1 (see Fig 18). The pair P1, P

� is used to form a constraint on the translation vector
T as (assuming the rotation is already corrected out):

~n1 � T � ~n1 � (P
� � P1): (18)

The error in the above approximation is derived as the following. We regard that the reference
scan Sref is parameterized with the angle � as the index parameter. Let P2 = (x(0); y(0)),
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P � = (x(�); y(�)). Then the approximation error is:

(P � � P1 � T ) � ~n1

= (P � � P2) � ~n2

= (x(�)� x(0); y(�)� y(0)) � (�y0(0); x0(0))=
q
x0(0)2 + y0(0)2

= (�x0(0) + O(�2); �y0(0) + O(�2)) � (�y0(0); x0(0))=
q
x0(0)2 + y0(0)2

= O(�2):

Notice that � � jT j=jP1j. The above error is bounded by O((jT j=jP1j)
2), which is small when

jT j � jP1j.

Similarly, we can show that
~n� � T � ~n� � (P � � P1) (19)

with an approximation error of O((jT j=jP1j)2).

Furthermore, we can combine Eq. 18 and Eq. 19 and yield a better approximated constraint:

(~n1 + ~n�) � T � (~n1 + ~n�) � (P � � P1) (20)

whose approximation error can be similarly derived as

(P � � P2) � (~n
� + ~n2)

= O(�3) = O((jT j=jP1j)
3):

Note that in the above derivation, we assume that the curve (reference scan) is smooth.

C Closed-form Solution for Point-based Matching

For n pairs of points: P (xi; yi); P
0(x0i; y

0

i); i = 1; . . . ; n, a distance function between the trans-
formed P 's and the P 0's is de�ned as the following:

Edist(!; T ) =
nX

i=1

jR!P + T � P 0j2

=
nX

i=1

�
(xi cos! � yi sin! + Tx � x0i)

2 + (xi sin ! + yi cos! + Ty � y0i)
2
�

By minimizing Edist, we can obtain a closed-form solution for Tx; Ty, and !, as given below:

! = arctan
Sxy0 � Syx0

Sxx0 + Syy0

Tx = �x0 � (�x cos! � �y sin!)

Ty = �y0 � (�x sin! + �y cos!)
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where

�x =
1

n

nX
i=1

xi; �y =
1

n

nX
i=1

yi

�x0 =
1

n

nX
i=1

x0i; �y0 =
1

n

nX
i=1

y0i

Sxx0 =
nX

i=1

(xi � �x)(x0i � �x0); Syy0 =
nX

i=1

(yi � �y)(y0i � �y0)

Sxy0 =
nX

i=1

(xi � �x)(y0i � �y0); Syx0 =
nX

i=1

(yi � �y)(x0i � �x0):
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