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Abstract. A key di�culty in the design of multi-agent robotic systems is the size and complexity of the
space of possible designs. In order to make principled design decisions, an understanding of the many
possible system con�gurations is essential. To this end, we present a taxonomy that classi�es multi-
agent systems according to communication, computational and other capabilities. We survey existing
e�orts involving multi-agent systems according to their positions in the taxonomy. We also present
additional results concerning multi-agent systems, with the dual purposes of illustrating the usefulness
of the taxonomy in simplifying discourse about robot collective properties, and also demonstrating that
a collective can be demonstrably more powerful than a single unit of the collective.
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1. Introduction and Motivation

Task oriented behaviour by groups of agents is
ubiquitous in nature. How and why should mul-
tiple mobile robots be used for a task? Although
most mobile robotic systems involve a single robot
operating alone in its environment, a number of
researchers have considered the problems and po-
tential advantages involved in having an environ-
ment inhabited by a group of robots which co-
operate in order to complete some required task.
For some speci�c robotic tasks, such as explor-
ing an unknown planet, pushing objects (Parker,
1994b; Mataric et al., 1995; Rus et al., 1995), or

�
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cleaning up toxic waste, it has been suggested that
rather than sending one very complex robot to
perform the task it would more e�ective to send a
number of smaller, simpler robots. Such a collec-
tion of robots is sometimes described as a swarm

(Beni and Wang, 1989), a colony , or as a collec-

tive, or the robots may be said to exhibit coop-

erative behaviour (Parker, 1993). Using multiple
robots rather than a single robot can have sev-
eral advantages and leads to a variety of design
tradeo�s. Collectives of simple robots may be sim-
pler in terms of individual physical design than a
larger, more complex robot, and thus the result-
ing system can be more economical, more scalable
and less susceptible to overall failure.
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There is a continuum of possible collective de-
signs. A collective might consist of a collection of
completely autonomous agents which only com-
municate by pairwise transfer of information. A
collective might consist of a number of remotely
controlled appendages so that the entire collec-
tive might more properly be described as a single
large robot with distributed actuators. Both of
these extremes exist in the literature. Although
this later extreme might be considered as a col-
lective, the more interesting case occurs when the
elements of the collective lack any functionally rel-
evant, permanent physical connectivity. We thus
distinguish between a single, complex and possi-
bly distributed robot R and a collective of robots
frig which lack a functionally relevant, permanent
physical connection.

Collectives o�er the possibility of enhanced
task performance, increased task reliability and
decreased cost over more traditional robotic sys-
tems. Although they have this potential, many
possible collective designs are neither more e�-
cient, nor more reliable, nor more robust than a
comparable single (more complex) robot. In or-
der for a collective to have these advantages the
collective must be designed with these issues in
mind.

In addition to having these properties, it is es-
sential that the collective have a collective be-
haviour or set of actions that accomplishes the
same behaviour or action that was required of the
single more complex robot. For a collective to ex-
hibit cooperative intelligent behaviour, the mem-
bers of the collective must be able to communi-
cate with each other. This communication may
take place directly via an explicit communication
channel or indirectly through one robot sensing a
change in other robots in its environment. Intra-
collective communication presents di�culties in
terms of collective e�ciency, fault tolerance, and
cost.

Interactions between natural organisms such
as birds, ants, termites, wasps, primates, �sh or
wolves have been examined in the context of ethol-
ogy (Tinbergen, 1951; Tinbergen, 1972; McFar-
land, 1989). Observations from biology and ethol-
ogy have provided inspiration for developments
ranging from subsumption architectures for sin-
gle robots to inter-robot communication strate-

gies for groups of robots (Anderson and Donath,
1991;Brooks, 1991). Canonical issues for biologi-
cal groups include the maintenance of an appro-
priate distance between members of a school or
ock, often via purely local communications (Par-
tridge, 1982), or the communication of the loca-
tion of a goal such as a food source. While the
speci�c behaviours used by animals have been ex-
amined rigorously, the alternative design options
for inter-agent communication has been less ex-
tensively examined.

Cao et al. (1995) identify Tra�c Control, Box
Pushing and Foraging as typical multiple robot
tasks. Although these tasks have been addressed
by robotic collectives, are they appropriate tasks
for this type of approach? Some tasks seem ide-
ally suited to multiple robotics. Gage (1992) iden-
ti�es a number of military applications such as
mine deployment, carrier deck foreign object dis-
posal, etc., as potential applications for robotic
collectives. These tasks are typi�ed by the high
potential for damage to individual collective ele-
ments, and thus it is the expendability of collective
elements which is identi�ed as the major reason
for proposing robot collectives for the task, rather
than any particular computational e�ciency or re-
liability requirement. Although expendability is
certainly a strong argument for collections of inex-
pensive robots over a single more complex expen-
sive robot, are there computational reasons why a
collective of robots should be preferred? Given a
particular task T , which can be solved with either
one very complex robot R, or with a collective of
robots frig, under what conditions should R be
chosen over frig? We consider several possible
cases:
Tasks that require multiple agents Does there

exist a task T which can be solved by frig but
for which no R can be found? Consider the
following (missile launch) example;

There are two keys which are a large
distance apart which must be turned
at the same time.

Note that this task does not necessarily re-
quire multiple robots to solve it. If the keys
are not too far apart then a single large robot
can be used to solve the problem. If the keys
can be turned within some small time inter-
val of each other then a single fast robot R
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can solve the problem. In order to exclude
solutions which are based on a single robot
R, the task must involve spatially separate
tasks which require some sort of synchroniza-
tion. This synchronization implies inter-robot
communication. The robots must either have
their clocks synchronized initially (which re-
quires communication) and then plan to turn
their keys at precisely the same time, or they
must be able to communicate with each other
in order to indicate that it is time to turn the
key. A more prosaic example is a multi-robot
scene exploration system that uses the motion
of shadows in a scene to compute spatial occu-
pancy. In this case, one robot uses a camera to
examine the scene while a second robot moves a
light source about the scene to cast appropriate
shadows (Langer et al., 1995).

Tasks that are traditionally multi-agent

Many modern transportation, industrial, agri-
cultural, and �shing related tasks are currently
performed by a group of e�ectively autonomous
agents. The tasks that they perform are typ-
ically parallelized with small amounts of co-
ordinating communication at either the start
(for truck delivery) or at the end (forestry). In
these tasks each element of frig operates in-
dependently for the most part, utilizing inter-
agent communication either initially, to parcel
up the expected workload in an e�cient man-
ner, or penultimately, just before dealing with
any work that was not covered during the par-
allel portion of the processing. From a robotic
collective point of view, the computational pro-
cessing is relatively straightforward due to the
inherent parallelism of the tasks.
Elements of these collectives operate in e�ec-
tive ignorance of each other. Similar strategies
have been proposed in robotic collectives work.
For example, the ignorant swarms of Mataric
(1992) and the communication-less swarms of
Dudek et al. (1993) propose to solve simple,
highly parallel tasks by having a number of
robots solve a problem in parallel without com-
munication. Although this approach may max-
imize reliability, it fails to maximize perfor-
mance as members of the collective cannot be
directed to uncompleted work which they can-
not sense directly. If elements of the collective

do not communicate at all then task comple-
tion can become probabilistic and while a prob-
abilistic solution may be acceptable for some
problems it is not in general. For some forag-
ing or search tasks, such as �nding lost children,
a probabilistic solution is not appropriate and
inter-robot communication must occur.

Tasks which are inherently single agent

There exist tasks which do not bene�t from
the use of additional agents in order to solve
them. Task and environment can combine
to remove any bene�t of the use of multiple
agents. A single task at a single location does
not bene�t from the use of multiple robots, as
a single robot is both necessary and su�cient.

Tasks that may bene�t from the use of

multiple agents Between these extremes exist
tasks which could be performed faster, or more
reliably with a collective frig rather than with
a single robot R.
Consider the issue of speed. Perhaps the col-
lective frig can perform a particular task faster
than a single robot R. A typical task in this
class is that of �nding a particular object in a
�nite region. If there are n elements of frig,
then one should expect a speedup of at most
n if we assume that each element of frig can
do no more work per unit time than can R.
Note that in order to obtain a speedup near
n the work performed by each collective mem-
ber must be well coordinated and each element
of frig must have abilities near those of R. If
this is not the case then there will be a loss
of speedup as multiple robots will search the
same area or individual elements of frig will
search less e�ciently. Once again, a high level
of inter-robot communication is required.
It is also unlikely that individual elements of
frig will be able to do the same amount of work
per unit time that can be accomplished by R.
Indeed, given a task T in which the only ad-
vantage of a collective is speed, then it might
be worthwhile improving the performance of R,
rather than constructing a reliable collective of
frig to accomplish the same task.
Reliability (redundancy) is one performance
measure for which collectives easily exhibit per-
formance over that of a single robot. Failure of
a single element of frig may not result in task
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failure. Failure of R guarantees task failure.
What sort of design features should be included
in frig so that the swarm exhibits reliability?
The communication mechanism utilized by

the collective is critical to its practicality, ef-
�ciency and reliability. The need for e�ective
communication is made quite clearly by Parker
(1995) who performed various tasks with collec-
tives whose members could and could not commu-
nicate with other collective members. She found
that global awareness of the state of the collec-
tive members improves task e�ciency. Rus et al.
(1995) describes furniture moving experiments us-
ing centralized and distributed control, and also
an experiment where communication takes place
through the task itself.

Balch and Arkin (1994) have examined the ex-
tent to which various amounts of shared infor-
mation facilitate certain simple multi-robot tasks.
For example, if robots are grazing (i.e. consum-
ing) some widely distributed resource to what ex-
tent is it helpful to have them explicitly transmit
information on which regions have already been
grazed? While it is not surprising that informa-
tion facilitates certain tasks, the extent to which
it does so (or sometimes fails to do so) must be
carefully weighed against the additional cost of
transmitting the information.

The requirements of practicality, e�ciency and
reliability are typically at odds with one an-
other. Sophisticated inter-robot communication
can maximize performance for many tasks, yet
such communication requirements often leads to
reduced reliability. If there are �xed communica-
tion topologies (e.g. Ueyama et al., 1992) or con-
troller robots (e.g. Hackwood and Beni, 1992),
or other fragile communication mechanisms, then
failure of these �xed links in the communications
network will cause the entire collective to fail. In
order to maximize the reliability of the collective,
the communication mechanism between elements
of frig must survive the worst possible destruc-
tion of collective elements. Communication, like
action, should be distributed throughout the col-
lective.

Many di�erent collective architectures have
been proposed. The behaviour based control
strategy proposed by Brooks (1991) has become
established as one possible approach for collec-

tions of simple independent robots, particularly
for simple tasks. Other authors have considered
how a collection of simple robots can be used to
solve complex problems. Ueyama et al. (1992)
propose a scheme whereby complex robots are or-
ganized in tree-like hierarchies with communica-
tion between robots limited to the structure of the
hierarchy. Hackwood and Beni (1992) propose a
model in which the robots are particularly simple
but act under the inuence of \signpost robots".
These signposts can modify the internal state of
the swarm units as they pass by. Under the action
of the signposts, the entire swarm acts as a unit
to carry out complex behaviours.

Mataric (1992) describes experiments with a
homogeneous population of actual robots acting
under di�erent communication constraints. The
robots either act in ignorance of one another, in-
formed by one another, or intelligently (cooper-
ating) with one another. As intra-collective com-
munication improves, more and more complex be-
haviours are possible. In the limit, in which all
of the robots have complete communication, then
the robots can be considered as appendages of a
single larger robot (or robotic \intelligence"). One
major goal of many robotic collectives is to dis-
tribute not only the sensing (and possibly actions)
of the robots, but also the intelligence. What sort
of processing can be accomplished by a collection
of robots that cannot be accomplished by a single
one? What e�ects do limits on communications
and unit processing capabilities have on the poten-
tial actions of the collective? How do we compare
the structure of various possible collectives?

The information processing ability of a collec-
tive is dependent upon a large number of fac-
tors including the number of units, their sensing
abilities, their communication mechanisms, etc.
(Arkin and Hobbs, 1992; Nitz and Arkin, 1993).
In order to understand more fully the properties
of various designs of collectives, it is instructive to
group collectives into classes and to determine the
capabilities of each class. It may be the case that
certain collective organizations have more poten-
tial processing ability than others, and that some
collective organizations may be similar to existing
parallel models of computation.

In this paper we consider alternative design di-
mensions for the communication and coordination
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of a group of cooperating mobile robots. Section 2
of the paper presents a taxonomy or design space
to provide a common language of discourse for
work on robot collectives. Following that, in Sec-
tion 3 we present selected illustrative results con-
cerning particular collectives and problems, with
the two objectives of demonstrating the usefulness
of the taxonomy in simplifying collective descrip-
tions and demonstrating that a collective can be
provably more powerful than a single unit of the
collective in fundamental ways. Further, these re-
sults illustrate how di�erent points in the design
space can be related to one another, for exam-
ple by showing that collectives made up of robots
with rudimentary computational abilities can per-
form more complex computations. Section 4 de-
scribes illustrative experimental results with a pair
of robots demonstrating some of the behaviours
discussed previously. In Section 5 we draw some
�nal conclusions.

2. A Taxonomy of Robot Collectives

Dudek et al. (1993, 1993c) and independently Cao
et al. (1995) have proposed the classi�cation of
swarm, collective or robot collaboration research
by de�ning a taxonomy or collection of axes. Cao
et al. identify group architecture, conict res-
olution strategy, origins of cooperation, learning
and geometric problems as `research axes' or tax-
onomic axes within which cooperative robots can
be compared. These axes are highly interdepen-
dent and very broad making it di�cult to identify
isolated sample points within the taxonomy.

Yuta and Premvuti (1992) subdivided collec-
tives based on the interactions of collective el-
ements; do individual elements work towards a
common objective or do they work independently.
Arkin et al. (1993) also examined di�erent collec-
tives along several dimensions but only in terms
of a particular task. The objective of each of these
taxonomies is both to clarify the strengths, con-
straints and tradeo�s of various designs, and also
to highlight various design alternatives. Whereas
(Dudek et al., 1993a) and (Dudek et al., 1993c)
concentrated on de�ning a taxonomy within which
di�erent robot collectives could be compared and
contrasted, (Cao et al., 1995) expands the axes of
comparison to include learning and the geomet-

ric structure of the problem. Following Dudek et
al. this paper concentrates on the more restrictive
taxonomic comparison.

There are several natural dimensions along
which robotic collectives can be naturally classi-
�ed. These dimensions address the characteris-
tics of the collective as a whole rather then the
architectural characteristics of individual robots.
The dimensions follow, with key points along each
dimension noted with symbolic labels. Table 1
summarizes the axes of the taxonomy. Table 2
samples the current literature and places existing
collectives within this taxonomy.

By size of the collective: The number of
robots in the environment.
SIZE-ALONE 1 robot. The minimal collective
SIZE-PAIR 2 robots. The simplest group.
SIZE-LIM Multiple robots. The number n is

small relative to the size of the task or envi-
ronment.

SIZE-INF n � 1 robots. There is e�ectively an
in�nite number of robots.

Two robots can, of course, perform problems
which are impossible with a single robot. Almost
any operation involving simultaneity or near si-
multaneity of events (such as turning two keys at
the same time), is impossible with a single spa-
tially limited robot. Multiple robots can be used
to obtain speedups in terms of task performance
subject to robot task synchronization.

The distinction between SIZE-LIM and SIZE-
INF is a property of the size of the task. A num-
ber of robot collectives assume that the number of
robots available for the task is unbounded (SIZE-
INF) and this provides a number of simpli�ca-
tions in terms of probabilistic task completion. As
a simple example, consider the task of searching
a bounded environment for a lost child or robot
(this is known as the \�nd robbie" task). Pro-
vided that the collective is SIZE-INF then one
algorithm is given by ood �lling the environment
with the robots. Eventually every location will ei-
ther be �lled with a robot (robbie wasn't there)
or one of the robots will �nd robbie. Note that
the robots do not have to communicate with each
other to complete this task - they just need suf-
�cient sensing in order to be able to determine if
they have found robbie and to navigate to ood
the environment. For any �nite sized collective
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(SIZE-LIM) this same algorithm is only proba-
bilistic.

By communication range: In most systems
there are limits to the range of direct communica-
tion for any single robot. This is a function both
of the communications medium and the robot dis-
tribution. We list three key classes for this dimen-
sion.
COM-NONE Robots cannot communicate with

other robots directly. It is possible for robots to
communicate with each other indirectly by ob-
serving their presence, absence or behaviour (as
many animals seem to). In order to have truly
\ignorant robots" (Mataric, 1992), the robots
must not only not communicate with each other
they must not try to signal each other through
behaviour.

COM-NEAR Robots can only communicate
with other robots which are su�ciently nearby.
This corresponds to the communication mech-
anism proposed by Hackwood and Beni (1992).
Distance, in this context, can be interpreted ei-
ther topologically or in a Euclidean sense. A
limited communication distance can occur due
to physical communication constraints. For ex-
ample, the power of the communication signal
is often limited not only for local design rea-
sons, but also to allow non-overlapping use of
the same channel (a scarce resource) by agents
in di�erent geographical areas.

COM-INF Robots can communicate with any
other robot. This is a classical assumption,
which is probably impractical if n � 1. The
distinction between COM-NEAR and COM-
INF is analogous to the distinction between
SIZE-LIM and SIZE-INF. From a practical
point of view, the collective may be consid-
ered to be COM-NEAR if the communication
range is smaller than the maximum separation
of the robots during their execution of the task
of interest, and COM-INF if the communica-
tion range is greater than this maximum sep-
aration. We identify these two points in the
communication range continuum to highlight
the qualitative di�erence in the constraints im-
posed on the solution of a problem as the result
of di�erences in communication range.

Note that we have deferred issues related to hav-
ing multiple robots (autonomous agents) commu-

nicating (writing) to a single robot (memory loca-
tion). This is a classic problem in parallel compu-
tation (Fich et al., 1988). As minor modi�cations
in the communication design of parallel machines
can result in major changes in the power of the
resulting machine (Boas, 1989), we also partition
the taxonomy by considering the topology of the
inter-unit communication strategy utilized by the
collective.

Cao et al. (1995) identify the communication
structure as one of their taxonomic axes, and iden-
tify interaction via the environment, sensing and
communications as three critical structures. The
taxonomy presented here provides a �ner granu-
larity in terms of communications in order to high-
light the importance of di�erent communication
strategies on the overall capability of the collec-
tive.

By communication topology: Robots may
not be able to communicate with an arbitrary el-
ement of the collective regardless of its proxim-
ity. Robots may only be allowed to communi-
cate within a particularly hierarchy (Ueyama et
al., 1992), or with speci�c controller robots (Hack-
wood and Beni, 1992). Individual robots may
have names and messages may be sent to them di-
rectly, or messages may be broadcast to all robots.
Some key variations are:
TOP-BROAD Broadcast. Every robot can com-

municate with all of the other robots. It is not
possible to send a message only to a particular
element of the collective.

TOP-ADD Address. Every robot can communi-
cate with any arbitrary robot by name or ad-
dress.

TOP-TREE Tree. Robots are linked in a tree
and may only communicate through this hier-
archy. This communication topology is utilized
in systems with controlling robots or supervi-
sors such as in the FIRST system (Causse and
Pampagnin, 1995).

TOP-GRAPH Robots are linked in a general
graph. This is a more general connectivity
scheme than the tree and is more robust since
redundant links can prevent the entire collec-
tive from becoming disconnected.
Communication strategies based on either tree-

like or address based communication topologies
are likely to be highly sensitive to failure of par-
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ticular robots in the collective. Failure of a par-
ticular robot will isolate robots on either side of
the failed node in the hierarchy. Addressing im-
plies distinctive roles for individuals; resulting in
reduced interchangeability, unless the robots' roles
change dynamically based on actions or failures of
other members of the collective. Note that the ac-
tual set of robots that can communicate directly
at any time is a function both of this dimension
and of the communication range and robot distri-
bution in space.

By communication bandwidth: Communi-
cation may be inexpensive in terms of the robots'
processing time, in that the robot has a special
channel for communication, or it may be expensive
in that the robot is prevented from doing other
work while communicating. Sample points along
this dimension include;
BAND-INF Communication is free. The com-

munication bandwidth is su�ciently high that
the communication cost and overhead can be
ignored. This is a common assumption in the-
oretical computational models and can lead to
robots that behave as if there was a central in-
telligence.

BAND-MOTION Communication costs of the
same order of magnitude of the cost of mov-
ing the robot between locations. This can
be thought of as being similar to the mech-
anism by which bees communicate by per-
forming an intricate dance that is observed
by other bees in the neighborhood. Systems
such as the block moving algorithm of Brown
and Jennings (1995) and some of the furniture
moving approaches of Rus et al. (1995) use
the task to signal communication. Although
these may appear to be classi�ed as BAND-
ZERO (described below), they are more cor-
rectly classi�ed as BAND-MOTION as the
pushing action (motion) of one robot is com-
municated through the object being pushed to
other robots in the collective.

BAND-LOW Very high cost. Communication
costs much more than the cost of moving from
one location to another. This suggests very in-
dependent robots.

BAND-ZERO No communication. Robots are
unable to sense each other. As mentioned ear-

lier, this is probably an impractical case if co-
ordinated collective behaviour is desired.

Note that low bandwidth may be acceptable if the
primary reason for using multiple robots is redun-
dancy rather than e�ciency.

Collective recon�gurability: The rate at
which the collective can spatially re-organize it-
self; roughly equivalent to the rate at which mem-
bers can move with respect to one another. For
example, bees can presumably recon�gure their
spatial layout with respect to one another very
quickly while soldiers marching in lock-step or cars
on a highway cannot. This dimension is closely re-
lated to the communication range of members of
the collective. Changes in topology, however, will
alter the nearest-neighbor relationships and thus
are not equivalent to simple scaling of the com-
munication range. In practice, there may be topo-
logical constraints to the allowed recon�gurations.
For example, if the members of a robotic collec-
tive drive on roads, then only certain topological
changes are allowed irrespective of member veloc-
ity. This can be seen in the work of Aguilar et al.
(1995). Here global control of a collective oper-
ating within a roadway-like environment utilizes
controllers at intersections to communicate with
robots adjacent to and heading towards the inter-
section as well as other controllers. Another issue
that determines recon�gurability is the possible
presence of non-holonomic motion constraints on
collective members: non-holonomic robots can re-
duce the rate of recon�guration due to complex
maneuvering that may be required, or they may
render some con�gurations unattainable.
ARR-STATIC Static arrangement. The topol-

ogy is �xed.
ARR-COMM Coordinated rearrangement. Re-

arrangement with members that communicate.
In interesting example of this is the formation
control work of Arkin et al. (1996) where the
group of robots can sometimes change to a
speci�ed alternative topology.

ARR-DYN Dynamic arrangement. The relation-
ship of members of the collective can change
arbitrarily.

Static collective arrangement is likely to result in
very fragile collectives.

The centralization/decentralization axis of Cao
et al. (1995) includes aspects of the collective re-
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Table 1. Summary of the taxonomic axes

Axis Description

Collective Size The number of autonomous agents in the collective.
Communication Range The maximum distance between two elements of the col-

lective such that communication is still possible.
Communication Topology Of the robots within the communication range, those which

can be communicated with.
Communication Bandwidth How much information elements of the collective can trans-

mit to each other.
Collective recon�gurability The rate at which the organization of the collective can be

modi�ed.
Processing Ability The computational model utilized by individual elements

of the collective.
Collective Composition Are the elements of the collective homogeneous or

heterogeneous.

con�gurability and collective topology axes. Cao
et al. distinguish between collectives in which
there is a single controlling agent and those which
do not, while the design space presented here
places less emphasis on this particular dichotomy,
in contrast with other options.

By processing ability of each collective unit:

Each unit of the collective has a particular model
of computation. It may be useful to model indi-
vidual members of the collective with a computa-
tional model that is simpler, and therefore weaker,
than that of a Turing Machine. For example, if in-
dividual members of the collective are modelled as
�nite state machines (Hopcroft and Ullman, 1979)
(operating as a function of their sensors, the cur-
rent communication input, and some �nite num-
ber of internal states) then it will be possible to
provide formal bounds on the execution of an indi-
vidual member of the collective. It is interesting
to note that, even if individual members of the
collective have a particular limited computational
model, the entire collective may have an overall
computational ability that is considerably more
powerful (see x3.1). Thus, there exists the at-
tractive possibility of having collectives where the
computational power of individual units is deliber-
ately restricted, in order to allow formal reasoning
about their behaviour for example, but where the
collective as a whole exhibits very general compu-
tational abilities.

For simplicity, we deal only with the common
simple sequential computational models. Note
that this is a non-continuous dimension.

PROC-SUM Non-linear summation unit (Hertz
et al., 1991). This very simple unit is used
in constructing a simulated neural network but
may be too simple to be a realistic model for
a single robot although it illustrates the near-
extremum of this dimension.

PROC-FSA Finite state automaton. This is
the computational model preferred by the sub-
sumption architecture computational systems
(Brooks, 1986). Finite state models are also
used for many communication protocols to
facilitate proofs of correctness (Tanenbaum,
1988). It should be noted that individual units
may in fact be general-purpose processors, pro-
grammed to behave as FSAs in order to simplify
reasoning concerning their behaviour.

PROC-PDA Push-down automaton.
PROC-TME Turing machine equivalent. The

computational model assumed by most robotic
systems.

By collective composition: Even an ensemble
of robots that is homogeneous in terms of phys-
ical structure may be di�erentiated by program-
ming or behaviour. Thus, heterogeneity can be
subdivided into both a physical component and a
purely procedural component implemented using
physically homogeneous robots. Thus, a collective
may be:
CMP-IDENT Identical. The collective is made

up of units that are homogeneous in both form
and function (hardware and software). Note
that this does not preclude di�erentiation in
the roles assumed by members of the group
based on environmental or stochastic factors.
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Table 2. Full taxonomic labelling of some sample collectives

Collective Size Comm. Comm. Comm. Reconfigur- unit composition
range topology bandwidth ability processing

combat aircraft SIZE-LIM COM-LONG TOP-BROAD BAND-INF ARR-DYN PROC-TME CMP-HET
wolf pack SIZE-LIM COM-NEAR TOP-BROAD � BAND-MOTION ARR-DYN PROC-TME � CMP-HOM
automobiles SIZE-LIM COM-NEAR TOP-BROAD � BAND-MOTION ARR-DYN PROC-TME CMP-HET
bees SIZE-INF COM-NEAR TOP-BROAD � BAND-MOTION ARR-DYN PROC-TME CMP-HET
Turing-machine SIZE-INF COM-NEAR TOP-ADD BAND-INF ARR-STATIC PROC-FSA CMP-HOM
example
Graph exploration varies COM-NEAR TOP-ADD BAND-INF ARR-STATIC PROC-TME CMP-HET
example
Metric exploration SIZE-LIM COM-NEAR TOP-ADD BAND-INF ARR-DYN PROC-TME CMP-HOM
example
Reconfiguration SIZE-LIM COM-NEAR TOP-BROAD BAND-INF ARR-DYN PROC-TME CMP-HOM
example
Positioning SIZE-INF COM-NEAR TOP-GRAPH BAND-INF ARR-COMM PROC-TME CMP-HOM
example
Herding/following SIZE-PAIR COM-NEAR TOP-BROAD varies ARR-STATIC PROC-TME CMP-HET
example
Aguilar (1995) SIZE-LIM COM-NEAR TOP-GRAPH BAND-INF ARR-COMM PROC-TME CMP-HET
Anderson (1995) SIZE-LIM COM-NEAR TOP-ADD BAND-INF ARR-STATIC PROC-TME CMP-HET
Arkin (1993) SIZE-LIM COM-NEAR TOP-ADD BAND-INF ARR-STATIC PROC-TME CMP-HOM
Brown (1995) SIZE-PAIR COM-NEAR TOP-BROAD BAND-MOTION ARR-STATIC PROC-TME CMP-HET
Causse (1995) SIZE-LIM COM-INF TOP-TREE BAND-INF ARR-STATIC PROC-TME CMP-HET
Dickson (1995) SIZE-LIM COM-NEAR TOP-BROAD BAND-LOW ARR-DYN PROC-TME CMP-HOM
Habib (1992) SIZE-LIM COM-INF TOP-ADD BAND-INF ARR-DYN PROC-TME CMP-HOM
Hackwood (1992) SIZE-LIM COM-NEAR TOP-GRAPH BAND-INF ARR-DYN PROC-TME CMP-HET
Kurabayashi (1995) SIZE-LIM COM-NEAR TOP-ADD BAND-INF ARR-STATIC PROC-TME CMP-HOM
Kurazume (1995) SIZE-LIM COM-INF TOP-ADD BAND-INF ARR-STATIC PROC-TME CMP-HOM
Marapane (1995) SIZE-LIM COM-NEAR TOP-BROAD BAND-MOTION ARR-STATIC PROC-TME CMP-HET
Mataric (1992) SIZE-LIM varies varies varies ARR-DYN PROC-TME CMP-HOM
Mataric (1995) SIZE-PAIR COM-NEAR TOP-ADD BAND-INF ARR-STATIC PROC-TME CMP-HOM
Parker (1993) SIZE-LIM COM-NEAR TOP-BROAD BAND-MOTION ARR-DYN PROC-TME CMP-HOM
Parker (1995) varies COM-NEAR TOP-ADD varies ARR-STATIC PROC-FSM varies
Rao (1995) SIZE-LIM COM-NEAR TOP-ADD BAND-INF ARR-STATIC PROC-TME varies
Rus (1995) varies varies varies varies varies PROC-TME varies
Sandini (1993) SIZE-LIM COM-NEAR TOP-BROAD BAND-INF ARR-DYN PROC-TME CMP-HOM
Sekiyama (1996) SIZE-LIM COM-INF varies BAND-INF ARR-DYN PROC-TME CMP-HET
Ueyama (1992) � SIZE-INF COM-NEAR TOP-TREE BAND-INF ARR-STATIC PROC-TME CMP-HOM
Yuta (1992) SIZE-LIM COM-INF TOP-ADD BAND-INF ARR-DYN PROC-TME CMP-HOM

Note, further, that assigning unique labels to
elements of the collective is consistent with this
classi�cation since it could be achieved proce-
durally, as it is in some computer networks.

CMP-HOM Homogeneous. The collective is
made up of units all with essentially the same
physical characteristics.

CMP-HET Heterogeneous. The collective is
made of of units that are not physically uni-
form. In general, this also implies di�erence at
the behavioral level.

This axis corresponds almost exactly to the di�er-
entiation axis of Cao et al. (1995).

The value of the taxonomy as a language of

discourse concerning swarm robotics is twofold.
First, it provides for the succinct description of
systems and results in the literature. Second, it
maps out the space of possible designs for a collec-
tive, giving the researcher guidance and perspec-
tive when engaged in any theoretical or practical
work. To illustrate the descriptive power of the

taxonomy, Table 2 provides the full taxonomic la-
belling of some sample collectives from the liter-
ature and nature as well as the labelling of the
collectives presented in the following sections.

3. The power of robot collectives: case

studies

Distributed computer processing has been exten-
sively studied by theoretical computer scientists
and mathematicians, as well as by computer de-
signers. Many models of robot collectives map
onto pre-existing computational or hardware mod-
els. An example of a related computational model
is PRAM (parallel random access machines) (Van-
Leeuwen, 1990), which is highly developed, but
has signi�cant di�erences from robot collectives,
because the latter involve mobile processors.

The following case studies illustrate that there
is something to be gained by using a collective in
place of a single robot. We show that su�ciently
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sophisticated collectives can be used to solve par-
ticular problems and relate these collectives to the
taxonomy given above. We show that the perfor-
mance of a collective can be provably better than
that of a single robot for certain tasks such as ex-
ploration.

The �rst case study involves a proof that a
collective of robots operated by �nite automata
is as powerful as a Turing machine, which is
fundamentally more powerful than each individ-
ual member of the collective. The second case
study demonstrates how a robot collective can
make the exploration of a graph-like world pos-
sible without the use of a movable marker, and,
with enough robots, also be more e�cient than
using a marker. The third case study shows how a
collective of robots that can sense each other can
make possible the self-localization of the robots
in a landmark-poor environment, where individ-
ual robots alone cannot locate themselves. The
fourth case study examines another aspect of ro-
bust positioning and mapping by a collective of
robots that can sense each other, without refer-
ence to external landmarks. The last case study
examines recon�gurable collectives, and in partic-
ular chains of robots.

3.1. Turing Equivalence of a Collective of Finite
Automata

An unbounded number of robots fAig (INF-
GROUP) whose processing abilities can be mod-
elled individually as �nite automata (PROC-
FSA) with the ability to communicate their
state to their neighbours (COM-NEAR,TOP-
ADD,BAND-INF) may simulate an arbitrary Tur-
ing Machine. This is notable, because this fact
makes it possible in principle to construct a spa-
tially distributed intelligence from a large collec-
tion of very simple devices. The individual au-
tomata may be mobile (moving according to their
own current state, as assigned by the distributed
computation), and thus able to accomplish some
interesting actions in the world. It is not our pur-
pose to explore applications of the simulation con-
structed for the proof of this result, because it is
undoubtedly the case that more e�cient use could

be made of the collective members by tailoring
their behaviour to the particular problem of inter-
est instead of a Turing machine simulation.

For the purposes of the exposition, the au-
tomata and Turing machine are de�ned using the
conventions and notation of Hopcroft (1979). Let
M be an arbitrary Turing machine, given by

M = (QM ;�M ;�M ; �M ; q0M ; BM ; FM )

where the symbols in the tuple have the following
meanings:

QMthe �nite set of states of the control
�M the �nite set of tape symbols
BM the blank symbol,

initially marking unused tape locations
�M the �nite set of input tape symbols

(�M � �M , BM 62 �M )
�M the next move function

�M : QM � �M �! QM � �M � fL;Rg
q0Mthe start state. q0M 2 QM .
FM the set of �nal states. FM � QM .

The function �M is the \program" of the Turing
machine, giving its behaviour on each (state, in-
put) pair of interest. Turing machines are inter-
esting because they seem to capture formally the
informal notion of computation.

We de�ne an in�nite set of communicating �-
nite automata (aka the elements of the collective)
Ai; i = 0; 1; 2; ::: as

Ai = (QA; �A; q0A; FA; TA; LA; RA)

where the symbols in the tuple have the following
meanings:

QA the �nite set of states of the control
�A the next state function

�A : QA �QA �! QA

q0A the start state. q0A 2 QA.
FA the set of �nal states. FA � QA.
TA the transmitting states. TA � QA.
LA the left-receiving states. LA � QA.
RA the right-receiving states. RA � QA.

The function �A captures the notion of communi-
cation. If Ai is in a transmitting state, then the
value of �A depends only on the current state of
Ai. If Ai is in a left-receiving state, then the value
of �A depends on the pair consisting of the current
state of Ai and the current state of Ai�1 (such



A Taxonomy for Multi-Agent Robotics 15

states are unde�ned for A0). If Ai is in a right-
receiving state, then the value of �A depends on
the pair consisting of the current state of Ai and
the current state of Ai+1.

To simulate an arbitrary Turing machine M ,
we set the components of the Ai as shown below.

QA = QM � �M � C
q0A = (q0M ; BM ; �) for i > 0
q0A = (q0M ; BM ; �) for i = 0
FA = f(q;X; s)jq 2 FM ; X 2 �M ;

s 2 Cg
TA = f(q;X; �)jq 2 QM ; X 2 �Mg
LA = f(q;X; �)jq 2 QM ; X 2 �Mg
RA = f(q;X; �)jq 2 QM ; X 2 �Mg

The set C = f�; �; �g labels the communications
mode (transmit, left-receive, right-receive). The
basic idea is that each automaton simulates both
the �nite control ofM and one square ofM 's tape.
At any time, the automaton corresponding to the
current tape square is in transmit mode (one of the
� states). The automata to the left of the trans-
mit automaton are in right-receive mode (one of
the � states). The automata to the right of the
transmit automaton are in left-receive mode (one
of the � states).

The transition executed by the transmit au-
tomaton does two things. First, it causes a state
change to propagate outwards from the transmit
automaton to the surrounding automata. Second,
it causes one of the neighbours of the transmit au-
tomaton to become the new transmit automaton,
simulating a move of the read-write head of the
Turing machine.

For each transition �M (q;X) = (p; Y; L), cor-
responding to a left move of the Turing machine
head, we de�ne corresponding transitions for the
Ai:

�A((q;X; �); (no rec: state)) = (p; Y; �)
�A((r; Z; �); (q;X; �)) = (p; Z; �)
�A((r; T; �); (p; Z; �)) = (p; T; �)
�A((r; Z; �); (q;X; �)) = (p; Z; �)
�A((r; T; �); (p; Z; �)) = (p; T; �)

The �rst transition speci�es that the current
transmit automaton goes into left-receive mode,
after executing the desired state change. The au-
tomaton state records both the Turing machine
state and the symbol written by the Turing ma-

chine. The second transition speci�es that the au-
tomaton immediately to the left of the transmit
automaton also records the Turing machine state
change in its state and becomes the new trans-
mit automaton. The tape symbol recorded in its
state remains unchanged. The remaining transi-
tions specify that all other receive automata states
that will arise should lead to a propagation of the
Turing machine state information, while preserv-
ing the Turing machine tape content information.

For each transition �M (q;X) = (p; Y;R), cor-
responding to a right move of the Turing machine
head, there are similarly corresponding transitions
for the Ai:

�A((q;X; �); (no rec: state)) = (p; Y; �)
�A((r; Z; �); (q;X; �)) = (p; Z; �)
�A((r; T; �); (p; Z; �)) = (p; T; �)
�A((r; Z; �); (q;X; �)) = (p; Z; �)
�A((r; T; �); (p; Z; �)) = (p; T; �)

There is a delay of one state-transition time at
each automaton as the encoding of the Turing ma-
chine state propagates outward from the transmit
automaton. Since this delay is the same for all op-
erations, however, it has no e�ect on the outcome
of any computation. Delay e�ects would become
important if the states of the automata could be
a�ected by the world they inhabit, which is in-
evitable for interesting systems.

The alternative of broadcast communications
(TOP-BROAD) has also been considered. In or-
der to adapt the above simulation to this case,
replace left-receive and right-receive modes with a
single receive mode. In order for control to pass
from one transmit automaton to a new transmit
automaton, each automaton must know its own
index number, and the broadcast transmission
must include the index number of the transmit au-
tomaton. This is a tradeo� which exchanges the
uniformity of the individual automata in favour of
a machine with a synchronous update of its com-
ponents.

3.2. Exploring an unknown non-metric environ-
ment

In this section, we will consider how a group of
robots can explore a graph-like (topological) envi-
ronment more e�ectively than a single robot. In



16 Dudek, Jenkin, Milios and Wilkes

earlier work (Dudek et al., 1991) it was demon-
strated that a single robot lacking metric informa-
tion is unable to explore a graph-like environment,
but that if the robot is equipped with a marker
that can be put down and picked up at will then
the robot can do so. Algorithms were also devel-
oped for a single robot with a large number of
markers. These results can be readily extended
to robotic collectives of the class (TOP-ADD,
BAND-INF, ARR-COM, PROC-TME, COMP-
HOM) with very limited communication distances
(COM-NEAR) by replacing the markers with in-
dividual members of a robotic collective.

Model the collective's environment as an em-
bedding of an undirected graph G: G = (V;E)
with set of vertices V and set of edges E. The
vertices are denoted by: V = fv1; :::; vNg Here
the world model is restricted to graphs G that
contain no cycles of length � 2, i.e. the graph
contains no degenerate or redundant paths. This
restriction prohibits the world from having multi-
ple edges between two vertices or an edge incident
twice at the same vertex.

The de�nition of an edge is extended slightly to
allow for the explicit speci�cation of the order of
edges incident upon each vertex of the graph em-
bedding. This ordering is obtained by enumerat-
ing the edges in a systematic (e.g. clockwise) man-
ner from some standard starting direction. An
edge Ei;j incident upon vi and vj is assigned labels
n and m, one for each of vi and vj respectively.

A member of the collective can move from one
vertex to another by traversing an edge (a move),
and it can sense the presence or absence of a par-
ticular unit from the collective at its current loca-
tion. Sensing is limited to the current nodes. The
robot collective is homogeneous (but we identify
a speci�c controller robot which will be used to
herd all of the other robots).

Assume that a member of the collective is at
a single vertex, vi, having entered the vertex
through edge Ei;l. In a single move, it leaves ver-
tex vi for vertex vj by traversing the edge Ei;j ,
which is r edges after Ei;l according to the edge
order at vertex vi. This is given by the transi-
tion function: �(vi; Ei;l; r) = vj . Assume the fol-
lowing property about the transition function: if
�(vi; Ei;l; r) = vj and �(vj ; Ei;j ; s) = vk, then

�(vj ; Ej;k;�s) = vi. This implies that a sequence
of moves is invertible, that is, a robot can retrace
the steps it has taken1.

A single move is thus speci�ed by the order r of
the edge along which the robot exits the current
vertex, where r is de�ned with respect to the edge
along which the robot entered this vertex. Note
that in the special case of a planar embedding of a
graph, enumeration of edges in a clockwise fashion
satis�es the above assumption.

A member of the collective's perception is of
two kinds, robot-related and edge-related percep-
tion.
Robot-robot-related Perception. Assume that a
robot is at vertex vi, having arrived via edge
Ei;j . The robot-related perception is a K-tuple
Bs = (bs1; bs2; :::; bsK), where bsk has a value
from the set fpresent; not�presentg, according
to whether robot k is present at vertex vi.

Edge-related Perception. A robot can determine
the relative positions of edges incident on the
vertex vi in some consistent manner, for exam-
ple it can count o� the doors in a clockwise
ordering relative to the one it entered by. As
a result, it can assign an integer label to each
edge incident on vi, representing the order of
that edge with respect to the edge enumera-
tion at vi. The label 0 is assigned arbitrarily
to the edge Ei;j , through which the robot en-
tered vertex vi. The ordering is local, because
it depends on the edge Ei;j . Entering the same
vertex from two di�erent edges will lead to two
local orderings, one of which is a permutation
of the other. Note that if the graph is pla-
nar and a spatially consistent (e.g. clockwise)
enumeration of edges is used, then two permu-
tations will be simple circular translations of
each other. But this will not hold in general,
and in this paper we only assume that the edges
can be ordered consistently.
The sensory information that the robot ac-
quires while at vertex vi is the pair consisting
of the marker-related perception at that vertex
and the order of edges incident on that vertex,
with respect to the edge along which the robot
entered the vertex. If the robot visits the same
vertex twice, it must relate the two di�erent
local orderings produced and unify them into
a single global ordering, for example by �nding
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the label of the 0-th edge of the second ordering
with respect to the �rst ordering. Determining
when the same vertex has been visited twice
and generating a global ordering for each vertex
is part of the task of the exploration algorithm.
In prior work, we demonstrated that it is not

possible for a single robot to explore and map
an unknown environment with this sort of limited
sensory information without the ability to some-
how mark locations it visits (Dudek et al., 1991).
This is consistent with human intuition: fairy
tales and mythology are full of stories of heroes
who escaped from a maze by dropping markers or
unwinding string as they went. The basic problem
is that, when the explorer enters an environment,
he cannot always determine if he has visited this
location before. In (Dudek et al., 1991) it was also
demonstrated that as long as the explorer had a
single unique marker which could be dropped and
picked up at will it was possible for the explorer
(or robot) to map fully his environment in O(N3)
steps. The basic technique to use the invertibility
of the path taken by the robot, and the fact that
the marker is unique, to disambiguate locations
which could be confused. The algorithm proceeds
by incrementally expanding a map of the explored
part of the world (the explored subgraph). When-
ever a potentially new location is encountered, the
marker is dropped at that location and all nodes
in the already-explored subgraph are visited. If
the marker is found, then this new location corre-
sponds to an existing location. On the other hand,
if it is not found, then this location really is new.
In either case, additional information about the
world has been obtained, which is added to the
explored subgraph. In practice, there is usually
more sensory information available than this prob-
lem formulation assumes and hence better perfor-
mance can be achieved.

These results can be readily extended to show
that a group of robots as speci�ed above with re-
spect to the taxonomy can perform polynomial
time exploration without any static markers. Con-
sider the case of a collective of two robots. One
robot (the controller robot) can treat the other
robot like the pebble, having the pebble robot
move on the controller robot's command. En-
vironmental exploration in this sensory deprived
world cannot be solved by a single robot but it

can be solved by a collective of size two or larger.
A larger group of robots, however, can perform
more sophisticated and e�cient strategies analo-
gous to those that are possible with a large num-
ber of markers (Dudek et al., 1989). One approach
entails having the robots expand the boundaries
of the known subgraph in parallel, hence avoid-
ing the time consuming component of the explo-
ration strategy that involves checking for corre-
spondences with previously visited locations. In
the extreme case, where there is a very large num-
ber of robots (more robots than nodes in the graph
{ essentially a group of SIZE-INF) then it is pos-
sible to have a much simpler exploration strategy.
Each robot simply moves until it �nds an empty
node and then stays there. This may be accom-
plished via (for example) a breadth-�rst search
from the robots' start position, in which the �rst
robot into each node is responsible for directing
later arrivals out of the node by the least-recently-
used exit. For each node in the graph, there will
exist a robot that found the node in under N
steps. Robots unable to �nd a free node may ter-
minate their wandering whenever they encounter a
robot that they have seen before. This will happen
in at most N steps. As each node is now uniquely
identi�ed, it is straightforward for a robot to be-
gin from the start node and visit all of the (now
unique) nodes in the graph by traversing every
edge twice (O(N2)). If members of the collective
have the ability to communicate farther than the
current node then even more complex and e�cient
strategies are possible. If robots can communi-
cate with every other robot (COM-INF), then no
robot steps beyond the initial N are needed to
map the graph, because it is possible to keep a
globally accessible adjacency matrix that is up-
dated with each step of every robot. Note, how-
ever, that robots that are forced to maintain a
static arrangement (ARR-STATIC, in terms of ei-
ther position or communications) will not be able
to reduce their worst-case performance since com-
plex evolutions in the shape of the set of the nodes
to be explored can be constructed.

The number of robot moves used in exploring a
graph with a small �xed number of robots (much
smaller than N) has a bound of O(N3) (Dudek et
al., 1991). This results from the need to go back
and actually visit all of the locations in the graph
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to solve the \have I been here before" problem.
With a large collective (SIZE-INF) this worst-case
bound will be reduced to O(N2) (and often lower
in practice, for example O(N) for a planar graph)
since the unbounded size of the collective makes a
costly re-examination of the known graph unnec-
essary.

3.3. Self-location and exploration in a metric en-
vironment

The previous section considered the task of ex-
ploring a graph-like environment with a robotic
collective. Metric-based representations of space
are common, and exploration and self-location
in metric-based environments are common mo-
bile robot tasks. For a collective to perform self-
location and exploration in a metric environment
two tasks emerge: The �rst is to estimate the pose
and heading of members of the collective with re-
spect to the underlying metric, and the second
problem involves mapping unknown landmarks
using measurements made by collective elements.
In this framework it is possible to encounter sit-
uations, in which the self-location problem is not
solvable by a single robot, but it is solvable by a
robot collective (Milios et al., 1995). Such a situ-
ation can arise in an environment with few land-
marks and many occluding obstacles. In such an
environment there may not exist a location from
which a single robot sees the minimum number
of landmarks required for self-location, whereas
a robot collective, the members of which see less
than the minimum number of landmarks, but also
see each other and exchange sensory data, may
have enough information to locate itself.

The metric self-location problem for a robot
collective can be formulated as an optimization
problem (Milios et al., 1995). Assume that the
collective frig consists of n distinct robots (SIZE-
LIM), that have the capability of moving, turn-
ing, recognizing landmarks and other robots, and
measuring bearing and elevation angles (or equiv-
alently range). Each element of frig has access to
a global metric map of the environment where the
distinct known landmarks are accurately placed.
Elements of the collective are similar (COMP-
HOM), can communicate with each other (COM-
NEAR, TOP-ADD, BAND-INF), have local pro-

cessing capability (PROC-TME) and are free to
move about with respect to each other (ARR-
DYN) provided that the entire collective remains
in communication contact.

The state vector x of the problem consists of
the poses of all members of frig. The pose of an
element of the robot collective is a set of three
variables, the x and y coordinates of the robot in
a global coordinate system, and the heading of the
robot, i.e. the angle from the x-axis to the forward
direction of the robot, a vector in the x-y plane.

To de�ne bearing and elevation angles, assume
that each robot R in frig has a local coordinate
system whose x and y axes are on a horizontal
plane, and the z axis is vertical. A bearing an-
gle from R to L(xL; yL; hL), where L is either a
known landmark or another robot, is de�ned as
the angle from the x-axis of the measuring robot
to the projection of the ray RL onto the x-y plane.
An elevation angle to L is de�ned as � = �=2� �p
where �p is the angle from the z-axis to the ray
RL. If the height hL of L is known, then the hor-
izontal range from the robot to L (the length of
the projection of the ray RL onto the x-y plane) is
related to the elevation angle by hL = jRLj tan(�).

The measurement vector z of the problem con-
sists of the angle measurements (bearings and/or
elevations) from all the robots to all other robots
and to all landmarks, provided they are visible.
z is a nonlinear function of the problem state
x, z = h(x). The components of the mea-
surement function h(:) are computed from z =
� � tan�1((yL � y)=(xL � x)) when z is a bear-
ing, and z = tan�1(hL=

p
(x� xL)2 + (y � yL)2)

when z is elevation. Here (x; y; 0) is the location
of the measuring robot and (xL; yL; hL) is the lo-
cation of the landmark or the other robot, all in
global coordinates.

The size of the measurement vector z in gen-
eral changes as the collective moves among opaque
obstacles, and di�erent landmarks (and other
robots) become visible by each robot. Therefore
the Jacobian matrix size and value also changes.

The problem of estimating the state x of the
collective can be expressed as the minimization
of the total squared di�erence Q(x) between
the predicted measurement vector h(x), and the
actual measurement vector z, where Q(x) =
[z� h(x)]TW [z� h(x)]. The diagonal weight ma-
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trix W is based solely on the (measured) geome-

try, and its purpose it to weigh the contribution

of each error according to how much we trust that

particular landmark. In practice, distant land-

marks are less reliable since the same angular error

will correspond to a larger positional error for a

landmark that is farther away, and weight more

distant landmarks accordingly.

The objective function Q(x) is a known non-

linear function of the state vector x, and there-

fore this optimization problem can be solved by

using a standard numerical method, for example

the conjugate gradient method (Dennis and Schn-

abel, 1983; Fletcher, 1987). Minimizing Q(x) re-

sults in an estimate of the position and orientation

of each of the elements in the collective.

Now consider the problem of localizing un-

mapped (but distinctly recognizable) landmarks

(this is the metric exploration problem). In this

context, the collective moves about and senses rec-

ognizable landmarks that are not in its map. The

collective senses at the same time a su�cient num-

ber of known (mapped) landmarks to be able to

locate itself. The objective is then to be able to

locate the unmapped landmarks on the map as

precisely as possible from bearing and/or eleva-

tion measurements by individual members of the

collective.

One possibility would be to include the posi-

tions of the unmapped landmarks in the state

vector x, and solve for the globally optimal x.

A longer state vector would lead to a higher-

dimensionality search space and a longer measure-

ment vector would lead to a larger Jacobian ma-

trix. In this work, we have chosen to uncouple the

two problems, that of multirobot self-location and

of unmapped landmark localization. This leads to

two decoupled optimization problems that can be

solved in sequence. The solution thus obtained

may be suboptimal according to the coupled opti-

mization criterion stated previously, but it is def-

initely more practical, because the two optimiza-

tion problems are much \smaller" than the cou-

pled version, especially for robot collectives with

a large number of robots. Another advantage of

decoupling is that the landmark localization prob-

lem can be further decoupled by constructing a

separate optimization problem for each unmapped
landmark.

A single unknown landmark Lu at unknown lo-
cation (x; y; s) may be observed from several robot
poses resulting in bearings (�1; �2; :::; �M ) and ele-
vations (#1; #2; :::; #M ). Because the bearing mea-
surements depend only on the (x; y) of Lu and the
elevation measurements depend only on the height
s of Lu, we further decouple the problem into two
separate problems, the �rst for computing (x; y)
from the bearings, and the second for computing
the height s from the elevations.

Estimation of (x; y) of Lu. A bearing �i is ide-
ally equal to hi(x; y), where the function hi de-
pends on the pose of the sensing member of the
collective. In practice the actual measurement of
bearing is only approximately equal to the pre-
dicted measurement, and

P
i[�i�hi(x; y)]

2 is min-
imized with respect to (x; y), where the index i
ranges over all elements of the collective which
sense this landmark.

Estimation of height s of Lu. The height of
the landmark can be estimated using the eleva-
tion measurements #i, by minimizing

P
i[#i �

hi(s)]
2 with respect to s, where the index

i ranges over all elements of the collective
which sense this landmark. Here hi(s) =
tan�1(s=

p
(xi � x)2 + (yi � y)2), where (x; y) is

the estimated position of the landmark, and
(xi; yi) the estimated position of the ith element
of the collective.

The following �gures show the results of sim-
ulation experiments for self-location of a robot
collective. In all experiments the robots traverse
polygonal paths and they stop at the vertices of
their path to measure bearings and/or elevations
to landmarks. The angle sensing and motion er-
rors were normally distributed with standard de-
viations approximated experimentally from a No-
madic Technologies mobile robot.

Figure 1 describes scenario 1, which includes
two robots, continually traversing the paths
shown. Robot 1 sees three �xed landmarks, and
therefore can estimate its pose by measuring the
bearings to these landmarks. Robot 2 sees only
two landmarks, and therefore it cannot estimate
its pose by bearing only, unless it includes the
bearing measurement to Robot 1.
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Fig. 1. The world of scenario 1, of size 6m x 3m. Five
landmarks, L1..L5. Two robots traverse the paths shown
and one opaque obstacle.

Figure 2 describes scenario 2, which includes 4
robots, continually traversing the same path and
following each other at equal distances. None of
these robots can estimate its pose by bearings to
landmarks alone, since the robots only sense two
landmarks each through the gaps between the ob-
stacles. However, they can estimate their poses
collectively, by measuring bearings towards each
other, in addition to bearings towards landmarks.

The result of the experiments for scenario 1 is
that without pose estimation or path correction,
the maximum position and heading errors during
50 iterations of the paths were 0.5m and 40 de-
grees respectively, while with pose estimation and
path correction using bearing measurements were
4cm and 2.5 degrees, and with pose estimation
and path correction using both bearing and ele-
vation measurements (thus implicitly estimating
range) were 2.5cm and 2.5 degrees respectively.
The result for scenario 2 is that without pose esti-
mation or path correction the maximum position
and heading errors during 50 iterations of the path
were 1.4m and 100 degrees, whereas with pose es-
timation and path correction using bearing mea-
surements the maximum errors were 2cm and 2
degrees. In similar simulation experiments for ex-
ploration (landmark localization), where a single
robot observed both known and unknown land-
marks, the maximum residual error of the posi-
tion of the unknown landmarks was 8cm, with an
average residual error less than 4cm.

3.4. Robust positioning and mapping

Although construction of a global metric repre-
sentation may be useful for some applications of

Fig. 2. The world of scenario 2, of size 6m x 3m. Eight
landmarks, L1..L8. Four robots traverse the same path and
follow each other at equal distances. Four opaque obsta-
cles.

robotic collectives, it is also possible to use the
collective itself to de�ne a global representation
of space. In (Dudek et al., 1993b) we demon-
strated how a collection of autonomous robots can
de�ne a mesh of local coordinate systems with re-
spect to one another without reference to environ-
mental positions (landmarks, markers, etc.). This
simpli�es tasks requiring robots to occupy or tra-
verse a set of positions in the environment, such
as mapping, conveyance and search. In this ap-
proach, sensing errors remain localized, and dead-
reckoning plays no role. The approach involves a
robot-based representation for the environment,
in which metric information is used locally to
determine the relative positions of neighbouring
robots, but the global map is a graph, captur-
ing the neighbour relations among the robots. We
show that many tasks can be solved without refer-
ence to a global coordinate system, but that global
metric maps may be constructed as desired, with
small errors in the vicinity of any chosen position.

The problem is to use a collective of robots
(CMP-IDENT, PROC-TME, ARR-COMM,
BAND-INF, TOP-GRAPH, COM-NEAR, LIM-
GROUP) each assigned a unique identi�cation
number, deployed on a �nite 2-D surface to map
the surface.

Let each robot de�ne a unique local 2-D coor-
dinate system in the space. The coordinate sys-
tem used by robot ri is a Cartesian system whose
origin is at ri and whose unit x-axis is the line
segment joining robots ri and rjmin , where rjmin
is the robot neighbouring ri with minimum sub-
script value. The y-axis is chosen using the right-
hand rule with the z-axis pointing up out of the
plane.
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Fig. 3. Finding parameters in the local neighbourhood

Data is exchanged among robots in each local
neighbourhood to determine the positions of the
neighbours of each robot. A robot is considered a
neighbour of another if there is reliable communi-
cation between the pair. A pair of robots may fail
to be able to communicate if there is excessive dis-
tance between them or if there is an obstacle inter-
posed between them (if communication requires a
clear line-of-sight between them).

Locations of interest in space can thus be de-
scribed relative to the positions of the neigh-
bouring collective members. Positioning errors in
each local neighbourhood are independent of those
in other neighbourhoods, because no reference is
made to a global coordinate frame. Instead, only
topological (graph-like) relationships are used to
relate one neighbourhood to another.

De�nition of the representation The map
representation kept at each ri is illustrated in
Figure 4. It consists of two graphs with la-
belled edges, Gd(V;Ed) and Ga(V;Ea). The two
graphs are isomorphic but have di�erent edge la-
bels. Each edge eij 2 Ed is given the weight 1
if robots i and j are not neighbours. Otherwise,
eij is the distance between ri and rj , in ri's co-
ordinate system. Each edge eij 2 Ea is similarly
labelled 1 if ri and rj are not neighbours, but
otherwise is labelled with the direction from ri to
rj , measured counter-clockwise from the x-axis of
ri's coordinate system.

Construction of the representation Each
robot ri participates in the construction of the
graph by �rst determining the set of robots with
which it has reliable two-way communication.
Then, information is exchanged with the other

robots in this set to determine the labellings of
edges eij , for all j, in each of Ed and Ea. Finally,
this information is propagated over the entire set
of robots, to be integrated into the complete edge
sets. The details of the necessary communications
protocols are complicated, but can be found in the
existing literature, e.g. (Tanenbaum, 1988).

The details of the edge construction depend on
what can be sensed by each robot. We consider
two models, neighbour distance only and neighbour
azimuth (i.e. orientation) only. The former corre-
sponds to an ability to measure the signal propa-
gation delay or phase shift with each robot in the
neighbourhood. The latter corresponds to hav-
ing line-of-sight communications, with direction-
sensitive receivers. In both cases, our problem re-
duces to one of �nding the unknown parameters
in triangles such as the one shown in Figure 3.

In the case in which only the distance to each
neighbour is known, our unknown parameters are
the angles �i, �j and �k, which may be found from
the known parameters di, dj and dk.

In the case in which only the azimuth to each
neighbour is known, our unknown parameters are
the distances di, dj and dk . We may �nd only
relative distances, since all similar triangles share
the given values for �i, �j and �k. Setting dk = 1
puts the distances in Ri-based coordinates.

Applications The main reason for using the
above representation instead of a global, metric
map, is that there is the potential for localization
of features of the environment, without reference
to �xed landmarks or dead-reckoning to learn or
return to a position in the space. This is feasible
because the location of a feature, like the positions
of the robots, need only be determined relative
to the closest robots in the space. All position-
ing may be done via triangulation with multiple
robots.

The problems of mapping an environment with
some sensors, conveying objects from place to
place, and searching for a lost object, all require
that at least one robot pass near each point in free
space.

Figure 5 describes in high-level terms, a simple
algorithm for doing this traversal. Once again,
the many details of the communications neces-
sary to coordinate the robots have been omitted.
The algorithm makes greedy choices of strategy
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1. Select a set of non-overlapping triangles
among the robot triangles found.

2. While there remain triangles to traverse
Do a serial traversal step as follows:
a. while possible to do so:
i. select an untraversed triangle with
no corners selected to traverse other
triangles and at least one corner
free to move in this step

ii. select a corner to traverse the
interior of the triangle

iii. disallow the remaining corners
from moving in this step

b. do the selected traversals in parallel.

Fig. 5. Traversal algorithm

at each step. As such, its performance is not opti-
mal, but the algorithm serves as a demonstration
of the principles underlying our map representa-
tion. The idea is to divide free space into non-
overlapping triangles with a robot at each vertex.
For each triangle, one of the robots is chosen to
traverse the interior, while the other two robots
maintain �xed positions. This allows the moving
robot to determine its position by triangulation
with the other two. Interesting locations within
the triangle may be stored as a pair of angles with
respect to the �xed robots. At all times, each tri-
angle must have two �xed corners, in order that
the third corner may resume its correct position
following the traversal. This constrains the degree
of parallelism in the traversals of di�erent trian-
gles.

Figure 6 illustrates the use of the algorithm on
an example con�guration of robots. The robots

are labelled with integers, the triangles are la-
belled with letters. Triangles are shaded once they
have been traversed. Five serial steps are required
for the search of 22 triangles by 17 robots. Each
step consists of the traversal, in parallel, of several
triangles. The �rst four steps are shown in the
�gure. In each graph, circled nodes correspond to
robots that are to move during the step; nodes
enclosed in squares refer to robots that are con-
strained to be immobile during the step.

The network of triangles produced by the col-
lective is a good representation of the free space
in the environment, provided that the presence or
absence of communication between robots is gov-
erned by the presence of absence of a free \line of
sight" between the robots. Non-triangular faces in
the mesh imply the existence of obstacles, while
each edge in the mesh indicates an obstacle-free
path segment.

The result of the above exploration process is a
graph of the collective con�guration labelled with
local distance and/or azimuth measurements and
including the relative locations of the objects of
interest. All triangular faces of the graph are as-
sumed to be part of free space (in Figure 6 there
are no obstacles). As a result, the topology of free
space is captured by the topology of the graph, in
that non-triangular faces of the graph must con-
tain obstacles. Features of interest in the environ-
ment are associated with the face to which they
belong. Another robot collective, which returns to
the same space equipped with this type of map,
can use the map to �nd a feature of interest by ex-
panding to occupy approximately the same posi-
tions in space as the original collective. Although
the con�guration cannot be duplicated accurately
due to sensing errors, it will preserve the topology
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Fig. 6. Traversal example

The sequence A, B, C shows a lone ran-
domly moving element of a collective approach-
ing a chain. Arriving at the centre of the
chain (A) it moves along the chain towards
one of the ends (B) until it can join at the
end becoming the new end of the chain (C).

CA B

Fig. 7. A lone unit joins an existing chain

of free space, and the features of interest will not
be too far from the face they are associated with.
The objects of interest could now serve as land-
marks to help reconstruct the original collective
more accurately.

3.5. Building a reliable, recon�gurable communi-
cating collective

Techniques such as the one presented above, for
distributing sensing throughout the collective and
then integrating the spatially disparate data into

a global representation, require a collective con-

nected by communication. The previous section

assumed that this connectivity exists. Here we

demonstrate a technique for maintaining this con-

nectivity.

Assume that each element of frig can commu-

nicate with other nearby elements of the collec-

tive (COM-NEAR, TOP-BROAD, BAND-INF).

As an example implementation, each robot could

display, say by using a modulated beacon on the

robot such as that proposed by Sandini et al.

(1993) or Suzuki et al. (1995), information that

nearby robots can sense. In addition assume that

each robot is given an ID number which is unique

(this is used only to break ties and its use is

described later) but that otherwise the elements

are identical (CMP-IDENT, PROC-TME, SIZE-

LIM). Now suppose that these robots are dropped

into an unknown environment and that their �rst

goal is to form a communication network that

will be used for later, more complex operations.

The recon�gurable communication described here

forms a connected chain of the elements of the col-

lective. The chain may break, or reform, but the

goal is to continually reform the available collec-

tive elements into a single connected component.

This connected component adapts to the physical

restrictions of the environment and limitations of
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The sequence A, B, C, D, shows a complete
chain (A) within which an element fails (B)
breaking the chain into two sections. These
two chains move independently (C) until they
encounter each other again and rejoin (D).

DA B C

Fig. 8. Break in a chain

individual elements of the collective such as ele-
ment failure or sensor limitations.

Each element of the collective is in one of two
states. It is either in a chain or out of one. All
robots initially start out of a chain. Robots broad-
cast this state information plus the ID number of
the ends of the chain. (This information is con-
tinually passed up and down the chain.) Each
robot's (ri) behaviour is described as a function
of its state:
� Not in a chain: Move randomly until ri en-

counters another robot. Establish reliable com-
munications with that robot. That robot is ei-
ther in a chain or out of one. If it is out of one,
the two robots form a chain. If that robot is
in a chain, establish if it is an end unit or in
the middle. If it is an end unit, attach ri onto
the chain and become the new end unit. If it
is not an end unit move along the chain. Fig-
ure 7 illustrates a single unit attaching itself
to a chain. Other strategies are possible, for
example splicing the new robot into the chain.
This may involve information exchange, if the
individual elements of the collective have roles
depending on their order along the chain.

� In a chain: If ri is in the middle of the chain,
pass messages up and down and broadcast the
chain state. If communication fails between ri
and one of its neighbours then ri becomes the
new end unit of the chain and assert that infor-
mation up or down the chain. If ri is at the end
of the chain, pass messages along the chain and
broadcast the chain state. If ri encounters the

end of a di�erent chain (or a single robot), join
at your position (if it can join at more than
one position it will choose one randomly). If
the robot ri joins, then ri becomes an internal
element of the chain and a new end unit will be
chosen.
The unique robot identi�cation number can be

used to simplify synchronization between elements
of the collective. Note that the resulting commu-
nication topology is independent of the underly-
ing surface metric. The chain may not be physi-
cally mobile. It may simply be a communication
mechanism. Mechanisms for two dimensional con-
nectivity can be designed in a similar way (using
triangular connectivity, for example).

Of course more complex operations are possi-
ble. It is possible to have robots in the chain move
so as to have a regular spacing so that the chains
cover more space. Also, long chains could attempt
to straighten so that the chains form long lines
rather than random walks.

It is interesting to note what happens in a chain
when a node fails. Nodes above and below the
failed node recognize that they are now the ends
of two shorter strands, and begin to act accord-
ingly. If they can communicate with each other
then they can reform around their dead colleague
(this is illustrated in Figure 8). If they cannot,
two independent chains are formed which may or
may not reconnect at some later time.

As a simple example application, suppose that
a collective of robots is dropped on some planet
by a landing vehicle (a lander). The lander can
act as a �xed end of a robot chain. If it is not
permitted to join more than one chain then it will
always end up as a �xed head of a chain, and the
chain of robots will grow away from the lander.

4. Some Practical Experiments

In the preceding sections we have proposed a de-
sign space or taxonomic space for multi-robot sys-
tems and considered some of theoretical impli-
cations and relationships between points in the
space. In the following section, we will briey ex-
amine the feasibility of the behaviours described
and illustrate the instantiation of the taxonomy in
practice. We will do this using a simple behaviour
that can serve as a building block for more com-
plex operations such as those described above.
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Fig. 9. The two robots used in the experiments, Rosie (on
the left) and Agamemnon (on the right).

Two RWI B-12 mobile robot bases, referred to
as Agamemnon and Rosie, were used to implement
a collective (SIZE-PAIR, COM-NEAR, TOP-
BROAD, ARR-STATIC, PROC-TME, COMP-
HET) with di�erent communication mechanisms
(BAND-INF, BAND-MOTION, BAND-ZERO)
to solve the convoy task (Dudek et al., 1995).
There is considerable research interest in the task
of having one autonomous vehicle follow another
(c.f. Dickmanns and Zapp, 1987; Parker, 1994a).
The task is usually implemented as only a single
robot following some other autonomous agent. In
particular, a variety of strategies are available for
implementing this type of inter-robot collabora-
tion. In previous approaches it has been assumed
that the target to be followed does not actively
aid in the processes but rather that the follower
must attempt to track the leader as the leader
undergoes possibly rapid random motion changes.
By communicating the leader's intentions to the
follower, simpler, more reliable convoy behaviours
are possible. There are several natural design al-
ternatives for this communication

Two-way communication The leader and the
follower are in constant two-way communica-
tion (BAND-INF).

Explicit one-way communication The leader
signals the follower(s) through some behaviour
which can be sensed (BAND-MOTION).

Completely implicit behaviour The classic
convoy model in which the leader ignores the
follower(s) (BAND-MOTION).

Experiments have been conducted using each
of these communication alternatives and are de-

Agamemnon's view of Rosie. This image
shows Agamemnon's view after image process-
ing. Horizontal lines have been coloured white,
and small crosses have been placed in candidate
horizontal stripes. Given the height of the top
stripe, and the relative position of the third stripe,
Agamemnon can compute Rosie's relative pose.

Fig. 10. Robot's sensor view

scribed in Dudek et al. (1995). Rather than de-

scribing each of the cases, we consider only the

case of explicit one-way communication here. In
the explicit one-way communication experiments

Agamemnon (shown on the right in Figure 9),
senses visually. The spiral pattern on Rosie's tur-

ret (see Figures 9 and 10), is designed to allow

Agamemnon to compute easily the relative pose
between Agamemnon and Rosie. Agamemnon can

compute the distance between the two robots by
locating the spiral pattern pattern in the image

and computing the height of the lines in the pat-

tern. Rosie's relative orientation is determined by
the relative height of the 3rd stripe (counting from

the top) in Rosie's pattern. Simple image process-

ing is applied by Agamemnon to compute these
values in his view of Rosie, as shown in Figure

10.

The �rst experiment involves herding: Rosie

moves autonomously under external control, while

Agamemnon moves to centre Rosie horizontally
and to keep Rosie a particular distance away.

Agamemnon implements this by de�ning an en-
ergy function that has a minimum when Rosie is

centred and at an appropriate distance. This cor-

responds to the type of operation that a member
of a robot collective would have to perform as part
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of a communication network described in section
3.5.

Given a collection of RWI's equipped with both
the texture display as well as video sensors, a com-
munication network can be established based on
having robots maintain a preferred distance from
other robots (sensed in the way described above),
and then transmitting information based on rota-
tional motion of each element of the collective.

In the herding experiments we found that Rosie
could successfully herd Agamemnon around the
lab, provided that Rosie made su�ciently small
steps so that she did not move out of Agamem-
non's �eld of view.

In a second experiment, Agamemnon followed
Rosie while Rosie moved about her environment.
This \following" or \convoy" task has been sug-
gested for a number of di�erent materials trans-
port applications. The \following" task was im-
plemented with two di�erent levels of sophisti-
cation. In the �rst, the Herding algorithm was
used. Rosie moved and Agamemnon followed, try-
ing to maintain a preferred distance away from
Rosie. This technique was successful, but as
with the Herding experiment, small movements of
Rosie were required in order to keep Rosie within
Agamemnon's limited �eld of view.

In a second version of this experiment, Rosie
telegraphed her movements to Agamemnon by ro-
tating in the direction that Rosie was going to
move. Agamemnon would then wait until after
Rosie had moved and then move to where Rosie
had been previously and then turn to have the
same pose as Rosie. Using this technique, Rosie
could move much farther and faster than using the
herding technique above, because the �eld of view
of Agamemnon's sensor was no longer a problem.

5. Conclusions

By providing a taxonomy for systems of multiple
mobile robots, we have provided a common lan-
guage for the description of seemingly disparate
theoretical and practical results. The taxonomy
serves the dual functions of allowing concise de-
scription of the key characteristics of di�erent col-
lectives, and describing the extent of the space of
possible designs. As a result, we have been able
to provide a succinct comparative survey of the

current literature, and present our own work with
reference to the taxonomy. Our results include
constructive proofs of the following:
1. Collectives (SIZE-INF, COM-NEAR, TOP-

ADD, BAND-INF, PROC-FSA) are equivalent
to Turing machines.

2. Collectives (SIZE-INF, COM-NEAR, TOP-
ADD, BAND-INF, PROC-TME, ARR-COM)
can map a graph in O(N2) edge transitions
per robot. If the collective is (COM-INF), then
mapping can be done in O(N) edge transitions
per robot.

3. Collectives (SIZE-LIM, COM-NEAR, TOP-
ADD, BAND-INF, PROC-TME, ARR-DYN)
are able to perform mutual self-location in sit-
uations in which single robots cannot.

As well, we have presented practical algorithms
for maintaining communications connectivity in
the presence of possible failures, robust, accu-
rate positioning based on the use of topologically-
connected local frames of reference, and practical
(BAND-MOTION/BAND-ZERO) convoying.

We are elaborating this framework to expand
our understanding of the capabilities of various
theoretical and practical collectives. Ongoing
work relates to the formal inter-relationship be-
tween di�erent collective classes.

Notes

1. To simplify the exposition, we also assume that there
does not exist a t 6= �s such that �(vj ; Ej;k; t) = vi,
although this could be readily accommodated.
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