
Exploiting Multiple Features with MEMMs for

Focused Web Crawling

Hongyu Liu, Evangelos Milios, and Larry Korba

National Research Council Institute for Information Technology, Canada
Faculty of Computer Science, Dalhousie University, Canada

hongyu.liu@nrc-cnrc.gc.ca,eem@cs.dal.ca,larry.korba@nrc-cnrc.gc.ca

Abstract. Focused web crawling traverses the Web to collect documents
on a specific topic. This is not an easy task, since focused crawlers need to
identify the next most promising link to follow based on the topic and the
content and links of previously crawled pages. In this paper, we present
a framework based on Maximum Entropy Markov Models(MEMMs) for
an enhanced focused web crawler to take advantage of richer representa-
tions of multiple features extracted from Web pages, such as anchor text
and the keywords embedded in the link URL, to represent useful context.
The key idea of our approach is to treat the focused web crawling prob-
lem as a sequential task and use a combination of content analysis and
link structure to capture sequential patterns leading to targets. The ex-
perimental results showed that focused crawling using MEMMs is a very
competitive crawler in general over Best-First crawling on Web Data in
terms of two metrics: Precision and Maximum Average Similarity.

Key words: Focused Crawling, Web Search, Feature Selection, MEMMs

1 Introduction

General search engines are not always sufficient to satisfy all needs. To address
specialized search needs, general search engines and crawlers are being evolved,
leading to personalization of search engines, for example, MyAsk, Google Per-

sonalized Search, My Yahoo Search; localization of search engines, for example,
Google Local, Yahoo Local, Citysearch; topic-specific search engines and por-
tals, for example, Kosmix, IMDB, Scirus, Citeseer. The success of topic-specific
search tools depends on the ability to locate topic-specific pages on the Web
while using limited storage and network resources. This can be achieved if the
Web is explored by means of a focused crawler. A focused crawler is a crawler
that is designed to traverse a subset of the Web for gathering only documents on
a specific topic, instead of searching the whole Web exhaustively. The challenge
in designing a focused crawler is to predict which links lead to target pages. Fo-
cused crawler can only use information gleaned from previously crawled pages
to estimate the relevance of a newly seen URL, therefore, the effectiveness of the
focused crawler depends on the accuracy of this estimation process.

A variety of methods for focused crawling have been developed and focused
crawling algorithms can be roughly categorized along two different dimensions:

2 Hongyu Liu, Evangelos Milios, and Larry Korba

local-feature based and path based. The underlying paradigm of local-feature
algorithms is to train a learner with only local features collected about rel-
evant nodes alone(i.e., the parent pages and sibling pages). These works in-
clude Fish-Search, Shark-Search, URL Ordering[1], focused crawler[2], intelli-
gent crawling[3], InfoSpiders[4], generic programming[5], ontology approach[6],
and classification[7–9]. Path based algorithms include reinforcement learning[10]
and Context Graph algorithm[11]. Both methods capture longer path informa-
tion leading to targets rather than relevant nodes alone, as was the case with the
local-feature based crawler. In [10], crawlers are modeled as autonomous agents
to learn to choose optimal actions to achieve their goal. The Context Graph
method[11] uses the text of page u to estimate the link distance from u to some
target pages. Documents classified into layers closer to the target are crawled
first. However, two issues remain to be addressed. One is that the assumption
that all pages in a certain layer centered at a target document belong to the
same topic described by a set of terms does not always hold. Second, there is
no discrimination among different links on a page. Since only a fraction of out-
links from a page are worth following, offering additional guidance to the crawler
based on local features in the page to rule out some unimportant links can be
helpful.

Our approach is to model focused crawling as a sequential task, over an
underlying chain of hidden states, defined by hop distance from targets, from
which the actual documents are observed. In this paper, we extend our work[12]
to exploit multiple overlapping features, such as title, anchor text, and URL
token, with Maximum Entropy Markov Models(MEMMs) to represent useful
context including not only text content, but also linkage relations.

2 MEMMs

Maximum Entropy Markov Models(MEMMs)[13] are probabilistic sequence mod-
els that define conditional probabilities of state sequences given observation se-
quences. Formally, let o and s be random variables ranging over observation
sequences and their corresponding state (label) sequences respectively. We use
s = s1, s2, ..., sn and o = o1, o2, ..., on for the hidden state sequence and obser-
vation sequence respectively, where s and o have the same length n. State st

depends on observations ot and previous state st−1. MEMMs are discriminative
models that define the conditional probability of a hidden state sequence s given
an observation sequence o, p(s|o).

Let n be the length of the input sequence, m be the number of features.
MEMMs make a first-order Markov independence assumption among states,
that is, the current state depends only on the previous state and not on any
earlier states, so p(s|o) can be written as:

p(s|o) =

n
∏

t=1

p(st|st−1, ot) (1)

Exploiting Multiple Features with MEMMs for Focused Web Crawling 3

where t ranges over input positions 1..n. Applying the maximum entropy prin-
ciple, we can rewrite p(st|st−1, ot) as the following:

p(st|st−1, ot) =
1

z(ot)
exp(

m
∑

i=1

λifi(st−1, st, ot)) (2)

z(ot) =
∑

s′∈S

exp

m
∑

i=1

λifi(st−1, s
′, ot) (3)

where, st is the state at position t, ot is the observation at position t, the fi are
arbitrary features, λi is the weight of the feature fi, and S indicates a set of all
possible states. z(ot) is called the per-state normalizing factor.

The use of feature functions allows arbitrary, non-independent features in the
observation sequence o. The weights λ are the parameters of the model. Training
an MEMM involves maximizing the conditional probability, p(s|o), to find the
best set of feature weights λ = {λ1, λ2, ..., λm}.

3 Proposed Approach

We model focused crawling as a sequential task and learn the sequential link-
age patterns along paths leading to relevant pages by using a combination of
content analysis and link structure of such paths. To capture such sequential
patterns, we propose to apply MEMM, where the hidden states are based on
hop distance from the target and observations consist of the values of a set of
pre-defined feature values of observed pages, such as anchor text, URLs, and
keywords extracted from the pages.

3.1 Structure of MEMMs for Focused Crawling

Let k be the number of hidden states. The key quantities associated with MEMM
are the hidden states, observations(features), and the parameters(λ). Fig. 1
shows the structure of MEMM for focused crawling.

– Hidden states: S = {Tk−1, Tk−2, ..., T1, T0}. The focused crawler is assumed
to be in state Ti if the current page is i hops away from a target. The state
Tk−1 represents “k − 1” or more hops to a target page.

– Observations: Collections of feature values of page sequences O = {page1,

page2, page3, ...}. Observable page sequences represented by a sequence of
values for a set of predefined feature functions f = {f1, f2, ..., fm}. m is the
number of feature functions.

– Set of parameters λ = {λ1, λ2, ... , λm}, where λi is associated with feature
function fi.

3.2 Training MEMMs

MEMMs have parameters λ = {λ1, λ2, ..., λm} which are the weights for each
feature function f1, f2, ..., fm. Training means estimating these parameters from

4 Hongyu Liu, Evangelos Milios, and Larry Korba

st-1 st st+1

 page_t-1 page_t page_t+1

keywords

title
anchor

text title

URL token

keywords

text

st-1 st st+1

 ot-1 ot ot+1

S

O

Fig. 1. Dependency structure of MEMMs on modeling a sequence of Web pages. Di-
rected graphical model, arrow shows dependency (cause).

the training data. Given the training data D consisting of N state-observation
sequences, D = {S, O} = {(sj , oj)}N

j=1 (we use superscript j to represent train-

ing instances), where each oj = {oj
1, o

j
2, ..., o

j
n} is a sequence of observations with

length n, and each sj = {sj
1, s

j
2, ..., s

j
n} is the corresponding sequence of states.

The task of training MEMMs is to choose values of parameters {λi} which max-
imize the log-likelihood, L′

λ = log p(S|O), of the training data. We use (sj , oj)

to represent the jth state-observation sequence from the training data set, s
j
t , o

j
t

to indicate the state and observation at position t of the jth state-observation
sequence respectively. The objective function can be written as:

L′

λ = log p(S|O) =

N
∑

j=1

log p(sj |oj)

=

N
∑

j=1

(

n
∑

t=1

m
∑

i=1

λifi(s
j
t−1, s

j
t , o

j
t)

)

−

N
∑

j=1

log

n
∏

t=1

∑

s′∈S

exp
∑

i

λifi(s
j
t−1, s

′, o
j
t)

To perform the optimization of L′

λ with respect to λ, we consider the gradient
of the log-likelihood L′

λ and set it to zero. Parameter estimation in MEMMs
uses the Limited Memory Quasi-Newton Method (L-BFGS)[14, 15] to iteratively
estimate the model parameters λ.

3.3 Training Data Collection

Collecting training data consists of two extraction processes: Local web graph
extraction and Page sequence extraction.

Selection of Target Pages on Topics We collect three kinds of data about
the topics: keywords, descriptions and target pages. Keywords are formed by
concatenating the words appearing in the different levels along the topical hi-
erarchy directory from the top. For example, “Home, Gardening, Plants, House
Plants” are extracted keywords for the topic. We also further extract impor-
tant words embedded in the target pages themselves, including words from title

Exploiting Multiple Features with MEMMs for Focused Web Crawling 5

and headers(<title>...</title>, <h1>...</h1> etc.) and keywords and
descriptions from meta data(<meta>...</meta>). Descriptions are generated
using the descriptive text and the anchor text in the page of the topic in the
Open Directory Project(ODP)1. We select topics from an existing hierarchical
concept index such as the ODP, and pick topics which are neither too general
nor too specific. Our criteria for selecting topics is to pick the topics under 4 or
5 level of ODP topic hierarchy. An example of such a topic is House Plants, to
be found under the ODP topic hierarchy Home - Gardening - Plants - House

Plants.

Extraction of the Local Web Graph In order to capture the page sequences
leading to targets for training, first we construct a local Web graph to represent
the content and linkage structure associated with the known targets. The process
of Local Web graph extraction takes specified target pages as input, and builds
the local Web graph by following the inlinks to target pages using an inlink
retrieval service (as offered by the Yahoo! or Google search engines).

To construct a local Web graph, each Web page is represented by a node, and
all hyperlinks between pages are added as edges between the nodes. When a new
Web page is found and added to the existing graph, a new node will be created
and all the hyperlinks between it and existing nodes will be added into the Web
graph as edges. The local Web graph is created layer-by-layer starting from one
or more user-specified target pages. Note that we only use ODP to select initial
target pages on the topic, rather than using the ODP hierarchy for training. We
use the inlink service from Yahoo Web API2, which retrieves Web pages that
have links to the specified Web page. Starting from layer 0 corresponding to
user-specified target page(s), the graph is created layer by layer, up to layer 4.

Extraction of Page Sequences and State Sequences Page sequences are
extracted directly from the constructed local Web graph. We extract sequences
in a random manner: the process starts with a randomly-picked node in layer
4, randomly selects one of its children for the next node, and repeats until a
randomly-generated sequence length between 2 and 10 is reached. The following
rules are considered for the page sequence extraction:

– Only extract pages from higher layers to lower layers or from the same layer,
without reversing the layer order in the sequences.

– Avoiding loops in the sequence.

The complete training data includes page sequences and their correspond-
ing layer sequences. Page sequences are referred to as observation sequences or
observable input sequences, and layer sequences are referred to as hidden state
sequences or state sequences. The hidden state for a page in our system is its
lowest layer number.

1 http://www.dmoz.org
2 http://developer.yahoo.com/search/siteexplorer/V1/inlinkData.html

6 Hongyu Liu, Evangelos Milios, and Larry Korba

3.4 Focused Crawling

After the learning phase, the system is ready to start focused crawling on the
real Web to find relevant pages based on learned parameters. The crawler utilizes
a queue, which is initialized with the starting URL of the crawl, and keeps all
candidate URLs ordered by their visit priority value. The crawling respects the
Robot Exclusion Protocol and distributes the load over remote Web servers.
The crawler downloads the page pointed to by the URL at the head of the
queue, extracts all the outlinks and performs feature extraction. The predicted
state for each child URL is calculated based on the current observable features
and corresponding weight parameters, and the visit priority values are computed
accordingly. The start page are picked randomly from the 4th level of Web graph
created using backlink service for training, arranging from 2 to 6.

Efficient Inference We now discuss two kinds of inference we are going to use
in Focused Crawling stage. When the crawler sees a new page, the task of the
inference is to estimate the probability that the page is in a given state s based
on the values of all observed pages already visited before. We are using two
major approaches to compute the probabilities in our experiments: marginal
probability and the Viterbi algorithm, and they can be performed efficiently
using dynamic programming.

Marginal Probability – The marginal probability of states at each position
t in the sequence is defined as the probability of states given the observation
sequence up to position t. Specifically, the forward probability, α(s, t) is defined
as the probability of being in state s at position t given the observation sequence
up to position t. The recursive steps are:

α(s, t) =
∑

s′

α(s′, t − 1) p(s|s′, ot) (4)

Hidden states are denoted as Tj, j = 0..k − 1, the values α(Tj , t) in our focused
crawling system are calculated as:

α(Tj , t) =

k−1
∑

j′=0

α(Tj′ , t − 1)
1

z(ot)
exp(

m
∑

i=1

λifi(Tj , Tj′ , ot))

z(ot) =

k−1
∑

j”=0

exp

m
∑

i=1

λifi(Tj′ , Tj”, ot)

The Viterbi Algorithm – the goal is to compute the most likely hidden
state sequence given the data:

s∗ = arg max
s

p(s|o) (5)

δ(s, t) is defined as the best score (i.e. the score with the highest probability)
over all possible configurations of the state sequence ending in state s at position

Exploiting Multiple Features with MEMMs for Focused Web Crawling 7

t given the observations up to position t. That is

δ(s, t) = max
s′

δ(s′, t − 1) p(s|s′, ot) (6)

This is the same recursive formulate as the forward values (Equation 4),
except we replace sum with max.

Features and Feature Functions Each feature function f(s, o, t) is defined
as a factored representation:

f(s, o, t) = L(st−1, st, t) ∗ O(o, t) (7)

where L(st−1, st, t) are transition feature functions, and O(o, t) are observation
feature functions.

1. Edge Features: Transition feature functions L(st−1, st, t) can have two forms:
L1 and L2. We use Edge feature L1(st−1, st, t) to capture the possible transi-
tions from states st−1 to st, and L2(st−1, st, t) to capture the possible states
at position t.
Formally, for all i, j = 0, 1, ..., k − 1 so that specified Ti, Tj ∈ S =
{Tk−1, Tk−2, ..., T1, T0}, we can have feature functions of the following form:

L
(i,j)
1 (st−1, st, t) =

{

1 if st−1 = Ti and st = Tj is an allowed transition;
0 otherwise.

L
(i)
2 (st−1, st, t) =

{

1 if st = Ti exists;
0 otherwise.

2. Text Feature: Maximal cosine similarity value between the content of a
given candidate page and the set of targets. We define it as O1(o, t).

3. Description Feature: Cosine similarity value between the page description
of a given candidate page and the target description. We define it as O2(o, t).

4. Word Feature: Word feature Ow(o, t) identifies the keywords appearing in
the page text, as described in sec. 3.3.

Ow(o, t) =

{

1 if word w appears in the current page at position t;
0 otherwise.

We may also use the count of word w as the value of this feature, instead of
the binary value.

5. URL Token Feature: There are two possible kinds of URLs related to the
current observed page: one is the URL of the current page itself, and another
one is the URL the current page is pointing to. We define two token feature
functions O3(o, t) and O4(o, t) to identify if the keywords appear in the URLs.

O3(o, t) =

1 if any of URLs in the current page at position t contains
at least one keyword;

0 otherwise.

8 Hongyu Liu, Evangelos Milios, and Larry Korba

O4(o, t) =

1 if the URL of the current page at position t(contained in
the parent page) contains at least one target keyword;

0 otherwise.

6. Anchor Text Feature: We capture word w in the anchor surrounding text
by defining two anchor features. At least 4 words are chosen from text around
<a>...

O5,w(o, t) =

1 if word w appears in the anchor text of the link in
the parent page linking to current page at position t;

0 otherwise.

O6,w(o, t) =

1 if word w appears in the anchor text in the current
page at position t pointing to the page at position t + 1 ;

0 otherwise.

4 Experiments

In this section, we conduct experiments to test our MEMM-based focused crawl-
ing approach empirically. The topics are chosen from the ODP categories, and
the target pages are chosen based on the listed URLs under each category. The
following table shows some information about the 10 topics for the experiments.

Topic # of Target Pages # of training sequences Start Urls

Linux 19 11394 6

Biking 17 9790 2

Butterfly 17 12172 2

Hearthealthy 8 12928 2

Hockey 19 4368 2

Fitnessyoga 7 11680 3

Balletdance 7 12317 3

Skymaps 16 12073 3

Callforpapers 11 9632 3

Internetlaw 18 12210 4

4.1 Evaluation Methods

The precision is the percentage of the Web pages crawled that are relevant
to the topic. The relevance assessment of a page p we are using is based on
maximal cosine similarity to the set of target pages T compared with a confidence
threshold γ. That is, if maxd∈T cos(p, d) ≥ γ then p is considered as relevant.
Some topics may be sensitive to the threshold, therefore we choose the threshold
values between 0.5-0.8 for general comparisons. Too high or too low threshold
may result in too few or too many relevant pages based on the target pages and
the start URLs, which does not provide sufficient information for comparison
and for figure presentations.

Exploiting Multiple Features with MEMMs for Focused Web Crawling 9

The ability of the crawler to remain focused on the topical Web pages dur-
ing crawling can also be measured by the average relevance of the downloaded
documents[16–18]. In our system, since there are multiple pre-specified target
pages, we used the Maximum Average Similarity σ.

σ = max
d∈T

∑

p∈S cos(p, d)

|S|
(8)

where T is the set of target pages, S is the set of pages crawled, |S| is the number
of targets.

4.2 Results

We have conducted two experiments. One is to compare MEMM-based method
with different inference algorithms against Best-First Search(BFS) crawl. BFS
crawl assigns priorities to all children of the current page using standard lexical
cosine similarity between the content of the current page and target pages. The
URL with the best score will be crawled first. Another one is to test the impact
of the choice features on performance.

Comparison with Different Inference Algorithms: Viterbi Algorithm

and Marginal Mode First we compare our MEMM-based methods with all
the features against BFS crawl. We find that our MEMM-based crawl signifi-
cantly outperforms BFS crawl on 8 out of 10 topics. The performance of three
different crawling methods, BFS crawl, MEMM-marginal crawl, and MEMM-
Viterbi crawl, on the topic Fitnessyoga is shown in Fig. 2 (a). All three methods
give very good results on this topic, however, two MEMM-based crawls still work
better than BFS crawl on the number of relevant pages returned, which also is
confirmed on the Maximum Average Similarity metric, as shown in Fig. 2 (b).

[a]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Topic Fitnessyoga−0.7

of downloaded pages

of

 r
el

ev
an

t p
ag

es

BFS
memm−marginal
memm−viterbi

[b]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Topic Fitnessyoga

of downloaded pages

A
ve

ra
ge

 M
ax

im
um

 S
im

ila
rit

y

BFS
memm−marginal
memm−viterbi

Fig. 2. Topic Fitnessyoga: (a) the number of relevant pages with threshold 0.7, (b) the
Maximum Average Similarity.

The results on topic Linux are shown in Fig. 3 (a). Both MEMM-marginal crawl
and MEMM-Viterbi crawl also outperform BFS crawl. MEMM with marginal
mode shows significant improvement over BFS crawl, while MEMM with Viterbi

10 Hongyu Liu, Evangelos Milios, and Larry Korba

[a]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Topic Linux−0.8

of downloaded pages

of

 r
el

ev
an

t p
ag

es

BFS
memm−marginal
memm−viterbi

[b]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
Topic Linux

of downloaded pages

A
ve

ra
ge

 M
ax

im
um

 S
im

ila
rit

y

BFS
memm−marginal
memm−viterbi

Fig. 3. Topic Linux : (a) the number of relevant pages with threshold 0.8, (b) the
Maximum Average Similarity.

algorithm shows slight improvement on the number of the relevant pages. How-
ever, MEMM-Viterbi crawl gives a very close performance to MEMM-marginal
crawl on the Maximum Average Similarity, which significantly outperforms BFS
crawl as shown in Fig. 3 (b). This shows that two MEMM-based methods stay
on the topic, whereas BFS method crawls away from the topic resulting in poor
performance.

Compared to the results only based on MEMM-marginal and MEMM-Viterbi
crawls, we found that the marginal mode outperforms the Viterbi algorithm on 7
topics out of 10. In the focused crawling problem, finding the distribution for each
individual hidden state at a particular instant is more important than finding
the best “string” of hidden states of each Web page along the sequence, since
there may be many very unlikely paths that lead to large marginal probability.
To be more specific, let us see an example. If we have

“aaa” 30% probability
“abb” 20% probability
“bab” 25% probability
“bbb” 25% probability
In this example, “aaa” is the most likely sequence, ‘a’ is the most likely first

character, ‘a’ is the most likely second character, ‘b’ is the most likely third
character, but the string “aab” has 0 probability. Therefore, as we expected,
MEMM-marginal crawl shows better performance than MEMM-Viterbi crawl in
most of the cases in our experiments.

Comparison with Different Features In this section, we test the impact of
the selected features on the performance. The last section demonstrated that
MEMM-marginal crawl is better than MEMM-Viterbi crawl, so in this experi-
ment, we choose to compare MEMM-marginal crawl with different features: with
all features, with word feature only, and with the following features: Text feature,
Description feature, URL token feature and Anchor text feature (See all features
in Section 3.4). We denote them as MEMM-marginal, MEMM-marginal-word,

and MEMM-marginal-sim-meta-T in the figures, respectively.
As the results show, MEMM-marginal crawl with all features performs con-

sistently better than with Word feature only and with sim-meta-T features on

Exploiting Multiple Features with MEMMs for Focused Web Crawling 11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Topic Butterfly−0.8

of downloaded pages

of

 r
el

ev
an

t p
ag

es

memm_marginal
memm−marginal_word
memm_marginal_sim−meta−T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Topic Balletdance−0.7

of downloaded pages

of

 r
el

ev
an

t p
ag

es

memm_marginal
memm−marginal_word
memm_marginal_sim−meta−T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1000

2000

3000

4000

5000

6000

7000
Topic Linux−0.8

of downloaded pages

of

 r
el

ev
an

t p
ag

es

memm_marginal
memm−marginal_word
memm_marginal_sim−meta−T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Topic Fitnessyoga−0.7

of downloaded pages

of

 r
el

ev
an

t p
ag

es

memm_marginal
memm−marginal_word
memm_marginal_sim−meta−T

Fig. 4. Topic Butterfly, Balletdance, Linux and Fitnessyoga: Comparisons of different
methods: with Word feature only, simmetaT feature only and the all features combi-
nation on the number of relevant pages within the set of downloaded pages.

almost all topics, except topic Hearthealthy, in which MEMM-marginal-word
shows the best performance, and topic Callforpapers, in which MEMM-marginal-
sim-meta-T shows the best. Fig. 4 shows some of the results. This confirms our
approach that by using all the features, even if only some of them are present,
relevant paths can be effectively identified.

5 Conclusion

Our approach is unique that we model the process of crawling by a walk along
an underlying chain of hidden states, defined by hop distance from target pages,
from which the actual topics of the documents are observed. When a new doc-
ument is seen, prediction amounts to estimating the distance of this document
from a target. In this way, good performance depends on powerful modeling of
context as well as the current observations. The advantages and flexibility of
MEMMs fit our approach well and are able to represent useful context. With
Maximum Entropy Markov Models (MEMMs), we exploit multiple overlapping
and correlated features, such as anchor text, to represent useful context and form
a chain of local classifier models. We have studied the impact of different com-
bination strategies, and the results showed that using marginal mode performs
better than using Viterbi algorithm, and the crawler using the combination of
all features performs consistently better than the crawler that depends on just
one or some of them.

12 Hongyu Liu, Evangelos Milios, and Larry Korba

Acknowledgements This research was supported by NSERC, the MITACS
Network of Centres of Excellence, and Genieknows.com. The input of Prof. Jean-
nette Janssen to this work is gratefully appreciated.

References

1. Cho, J., Garcia-Molina, H., Page, L.: Efficient Crawling through URL Ordering.
In: Proceedings of the 7th World Wide Web Conference. (1998)

2. Chakrabarti, S., Punera, K., Subramanyam, M.: Accelerated Focused Crawling
through Online Relevance Feedback. In: Proceedings of the 11th International
WWW Conference. (1999)

3. Aggarwal, C., Al-Garawi, F., Yu, P.: Intelligent Crawling on the World Wide
Web with Arbitrary Predicates. In: Proceedings of the 10th International WWW
Conference. (2001)

4. Menczer, F., Belew, R.K.: Adaptive retrieval agents: Internalizing local context
and scaling up to the Web. In: Machine Learning. (2000) 39(2/3):203–242

5. Johnson, J., Tsioutsiouliklis, K., Giles, C.L.: Evolving Strategies for Focused Web
Crawling. In: Proceedings of the Twentieth International Conference on Machine
Learning (ICML-2003). (2003)

6. Ehrig, M., Maedche, A.: Ontology-focused crawling of web documents. In: SAC
’03: Proceedings of the 2003 ACM symposium on Applied computing, New York,
NY, USA, ACM (2003) 1174–1178

7. Pant, G., Srinivasan, P.: Learning to Crawl: Comparing Classification Schemes.
In: ACM Trans. Information Systems. (2005) vol. 23, no. 4

8. Pant, G., Srinivasan, P.: Link Contexts in Classifier-Guided Topical Crawlers.
IEEE Transactions on Knowledge and Data Engineering 18(1) (2006) 107–122

9. Frnkranz, J.: Hyperlink ensembles: A case study in hypertext classification. Infor-
mation Fusion 3(4) (2002) 299–312

10. Rennie, J., McCallum, A.: Using Reinforcement Learning to Spider the Web Ef-
ficiently. In: Proceedings of the Sixteenth International Conference on Machine
Learning(ICML-99). (1999)

11. Diligenti, M., Coetzee, F., Lawrence, S., Giles, C., Gori, M.: Focused Crawling
Using Context Graphs. In: Proceedings of the 26th International Conference on
Very Large Databases (VLDB 2000). (2000)

12. Liu, H., Janssen, J., Milios, E.: Using hmm to learn user browsing patterns for
focused web crawling. Data & Knowledge Engineering 59(2) (2006) 270–291

13. McCallum, A., D.Freitag, Pereira, F.: Maxiumu Entropy Markov Models for In-
formation Extraction and Segmantation. In: Proceedings of the Seventeenth Inter-
national Conference on Machine Learning. (2000) 591–598

14. Nocedal, J., S.J.Wright: Numerical Optimization. Springer (1999)
15. Sha, F., Pereira, F.: Shallow Parsing with Conditional Random Fields. In: Pro-

ceedings of the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology. (2003) 134–141

16. Menczer, F., Pant, G., Srinivasan, P., Ruiz, M.: Evaluating Topic-Driven Web
Crawlers. In: Proceedings of the 24th ACM/SIGIR Conference. Research and
Development in Information Retrieval. (2001)

17. Menczer, F., Pant, G., Srinivasan, P.: Topical Web Crawlers: Evaluating Adaptive
Algorithms. ACM TOIT 4(4) (2004) 378–419

18. Srinivasan, P., Menczer, F., Pant, G.: A General Evaluation Framework for Topical
Crawlers. Information Retrieval 8(3) (2005) 417–447

