!
i

L]

CHAPTER 2

An Overview of Parallel
bomputing

THIS CHAPTER CONTAINS A BRIEF SURVEY of parallel comput-
ing. In it we’ll discuss the architecture of current parallel systems and try to
give a short overview of the current state of the art in methods for program-
ming these systems. The chapter is mostly independent of the rest of the book.
It can be used as a reference chapter if some of the hardware/software issues
that arise in later chapters are not completely clear. However, since message
passing may not be the last word in parallel computing, we suggest that you
look it over so that you’ll have an idea of some of the major ideas and issues
in paralle] computing.

Hardware

There are as many varieties of parallel computing hardware as there are stars
in the sky ... well, not quite, but there are many different architectures, and
trying to impose some logical order on them may strike some as rather akin
to Procrustes’ attempts to extend hospitality to his visitors.! But we must
persevere.

“Procrustes or the Stretcher ... had an iron bedstead, on which he used to tie all travellers
who fell into his hands. If they were shorter than the bed, he stretched their Limbs to make
them fit it; if they were longer than the bed, he lopped off a portion. Theseus served him as
ke had served others” {S].

Chapter 2—An Overview of Parallel Computing

N ._ _ Flyon’s Taxonomy

The original classification of parallel computers is popularly known as
Flynn’s taxonomy. In 1966 Michael Flynn classified systems according to the
number of instruction streams and the number of data streams. The classi-
cal von Newmann machine has a single instruction stream and a single data
streamn, and hence is identified as a single-instruction single-data (SISD)
machine. At the opposite extreme is the multiple-instruction multiple-data
(MIMD) system, in which a collection of autonomous processors operate on
their own data streams. In Flynn’s taxonomy, this is the most general archi-
tecture. Intermediate between SISD and MIMD systems are SIMD and MISD
systems. We’ll discuss each of these architectures.

M _ M The Classical von Neumann Machine

The classical von Neumann machine is divided into a CPU and main mem-
ory. The CPU is further divided into a control unit and an arithmetic-logic unit
(ALU). The memory stores both instructions and data. The control unit directs
the execution of programs, and the ALU carries out the calculations called for
in the program. When they are being used by the program, instructions and
data are stored in very fast memory locations, called registers. Of course, fast
memory is more expensive, so there are relatively few registers.

Both data and program instructions are moved between memory and the
registers in the CPU. The route along which they travel is called a bus. It’s
basically a collection of parallel wires together with some hardware that con-
trols access to the bus. Faster busses will have more wires; e.g., a 32-bit bus is
faster than a 16-bit bus.

The classical von Neumann machine needs some additional devices be-
fore it can be useful: input and output devices, and usually extended storage
devices such as a hard disk.

The von Neumann bottleneck is the transfer of data and instructions be-
tween memory and the CPU: no matter how fast we make our CPUs, the speed
of execution of programs is limited by the rate at which we can transfer the (in-
herently sequential) sequence of instructions and data between memory and
the CPU. As a result, few computers today are strictly classical von Neumann
machines. For example, most machines now have a hierarchical memory: in
addition to the main memory and registers, there is an intermediate memory,
faster than main memory but slower than registers, called cache. The idea
behind cache is the observation that programs tend to access both data and
instructions sequentially. Hence, if we store a small block of data and a small
block of instructions in fast memory, most of the program’s memory accesses
will use the fast memory rather than the slower main memory.

2.1 Hardware

13

M _ w Pipeline and Vector Architectures

The first widely used extension to the basic von Neumann model was
pipelining. If the various circuits in the CPU are split up into functional units,
and the functional units are set up in a pipeline, then the pipeline can, in
theory, produce a result during each instruction cycle. As an example, suppose
we have a program containing the following code:

float x[100], y[100], z[100];
for (i = 0; 1 < 100; i++)
z[i1 = x[i1 + y[i1;

Further suppose that a single addition consists of the following sequence of
operations:

- Fetch the operands from memory.
. -Compare exponents. .
. Shift one operand.

Add.

. Normalize the result.

Store result in memory.

[S R

Now, suppose we have functional units that perform each of these basic opera-
tions, and these functional units are arranged in a pipeline. That is, the output
of one functional unit is the input to the next. Then, while, say, x[0] and
Y[0] are being added, one of x[1] and y[1] can be shifted, the exponents in
x[2] and y[2] can be compared, and x[3] and y[3] can be fetched. Thus,
once the pipeline is “full,” we can produce a result six times faster than we
could without the pipelining.

A further improvermnent can be obtained by adding vector instructions to the
basic machine instruction set. In our example of adding 100 pairs of floats, if
we don’t have vector instructions, an instruction corresponding to each of our
basic operations will have to be fetched and decoded 100 times. With vector
instructions, each of the basic instructions only needs to be issued once. The
difference is somewhat analogous to the difference between the Fortran 77
code

do 100 i = 1, 100
z(1) = x(i) + y(i)
100 continue

and the equivalent Fortran 90 code

z(1:100) = x(1:100) + y(1:100)

14

Chapter 2—An Overview of Parallel Computing

Another improvement in vector machines is the use of multiple memory
banks: operations that access main memory (fetch or store) are several times
slower than operations that only involve the CPU (e.g., add). The use of inde-
pendent memory banks can, to a degree, overcome this problem. For example,
suppose that we can execute a CPU operation once every CPU cycle, but we can
only execute a memory access every four cycles. Then if we have four memory
banks, and our data is properly distributed among the banks, we can access
memory once per cycle. In our example, if, say, z[1] is stored in memory
bank i mod 4, then we can execute one store operation per cycle.

Some authors regard vector processors as MISD machines; others state
that there is no such thing as an MISD machine, and that these machines are
a variant of SIMD machines. Still others say that they aren’t really parallel
machines at all.

Some examples of vector processors are the CRAY C90 and the NEC SX4.
See the references at the end of the chapter for information on performance
benchmarks.

The great virtue of vector processors is that they are well understood and
there are extremely good compilers. So it is relatively easy to write programs
that obtain very high performance, and, as a consequence, they continue to be
very popular for high-performance scientific computing.

There are, however, several drawbacks. The principles of pipelining and
vectorization don’t work well for programs that use irregular structures or use
many branches—the key to performance is filling the pipeline and keeping it
full. If operands aren’t laid out properly in memory, this is impossible. Further,
if a program has lots of conditional branches, there will be little opportunity
for the use of vector instructions. Perhaps the greatest drawback is that they
don’t seem to scale well. That is, it’s not clear how to modify them so that they
can handle ever larger problems. Even if we add several pipelines and manage
to keep them full, the upper limit on their speed will be some small multiple
of the speed of the CPU.

N_ N_ SIMD Systems

A pure SIMD system (as opposed to a vector processor) has a single CPU
devoted exclusively to control, and a large collection of subordinate ALUs, each
with its own (small amount of) memory. During each instruction cycle, the
control processor broadcasts an instruction to all of the subordinate processors,
and each of the subordinate processors either executes the instruction or is idle.
For example, suppose we have three arrays X, y, and z, distributed so that the
memory of each processor contains one element of each array. Now suppose
that we want to execute the following sequence of (serial) instructions:

for (i = 0; 1 < 1000; i++)
if (y[i] = 0.0}
z[i] = x[i1/y[i];
else

2.1 Hardware

15

Then each subordinate processor would execute something like the following
sequence of operations:

Time Step 1. Test Tocal_y != 0.0.
Time Step 2. 3

a. Iflocal_y was nonzero, z[i] = x[i1/y[il.
b. If Tocal_y was zero, do nothing.

Time Step 3.

a. If 1ocal_y was nonzero, do nothing.
b. If Tocal_y was zero, z[1] = x[1].

Note that this implies completely synchronous execution of statements. In
other words, at any given instant of time, a given subordinate process is either
“active” and doing exactly the same thing as all the other active processes, or
it is idle. .

The example makes the disadvantages of an SIMD system clear: in a pro-
gram with many conditional branches or long segments of code whose exe-
cution depends on conditionals, it’s entirely possible that many processes will
remain idle for long periods of time.

However, the example doesn’t make clear that SIMD machines tend to
be relatively easy to program if the underlying problem has a regular struc-
ture. Furthermore, although communication is quite expensive in distributed-
memory MIMD systems, it is basically no more expensive than computation in
SIMD machines. (We’ll try to explain why this is so, after we’ve talked about
MIMD systems.) Finally, they do scale well, as the following examples show.

The most famous examples of SIMD machines are the CM-1 and CM-2
Connection Machines that were produced by Thinking Machines. The CM-2
had up to 65,536 1-bit processors and up to 8 billion bytes of memory. Maspar
also produced SIMD machines. The MP-2 has up to 16,384 32-bit ALUs and up
to 4 billion bytes of memory.

N ﬂ m General MIMD Systems

The key difference between MIMD and SIMD systems is that with MIMD
systems, the processors are autonomous: each processor is a full-fledged CPU
with both a control unit and an ALU. Thus each processor is capable of exe-
cuting its own program at its own pace. In particular, unlike SIMD machines,
MIMD systems are asynchronous. There is often no global clock, and, unless,
the processors are specifically programmed to synchronize with each other,
there may be no correspondence between what is being done on different
processors—even if the processors are executing the same program.

The world of MIMD systems is divided into shared-memory and distributed-
memory systems. Some authors distinguish between the two architectures by

Chapter 2—An Overview of Parallel Computing

CPU CPU . CPU
Interconnection network
Memory Memory ... Memory

Generic shared-memory architecture

calling shared-memory systems multiprocessors and distributed-memory sys-
tems multicomputers. However, this terminology hasn’t gained universal ac-
ceptance, and it is quite common to hear “multiprocessor” used as a synonym
for “parallel processor.”

N ,~ m Shared-Memory MIMD

As the name implies, the generic shared-memory machine consists of a
collection of processors and memory modules interconnected by a network
(see Figure 2.1).

Bus-Based Architectures

The simplest interconnection network is bus based. However, if multiple pro-
cessors are simultaneously attempting to access memory, the bus will become
saturated, and there may be long delays between starting a fetch or store and
actually copying the data. Thus each processor usually has access to a fairly
large cache (see Figure 2.2). Because of the limited bandwidth of a bus, these
architectures do not scale to large numbers of processors. For example, the
largest configuration of the currently popular SGI Challenge XL has only 36
PIoCessors.

Switch-Based Architectures

Most other shared-memory architectures rely on some type of switch-based in-
terconnection network. As an example, the basic unit of the Convex SPP1200
is a 5 x 5 crossbar switch. A crossbar can be visualized as a rectangular mesh
of wires with switches at the points of intersection, and terminals on its left
and top edges. Processors or memory modules can be connected to the termi-

2.1 Hardware

17
CPU CPU CPU
Cache Cache B Cache
Bus
Bus-based shared-memory architecture
Memory Memory - Memory
CPU -] -
Ovc .
CPU ... —_

Crossbar switch

nals (see Figure 2.3). The switches can either allow a signal to pass through in
both the vertical and horizontal directions simultaneously, or they can redirect
a signal from vertical to horizontal or vice versa (see Figure 2.4). Thus, for
example, if we have processors on the left and memory modules on the top of
the crossbar, then any processor can access any memory module. Further, any
other processor can simultaneously access any other memory module. That
is, communication between two units will not interfere with communication
between any other two units. So crossbar switches don’t suffer from the prob-
lems of saturation that we encountered with busses. g
Unfortunately, they tend to be very expensive: an m X n crossbar will
need mn hardware switches. Thus, they tend to be fairly small. For example,

Chapter 2—An Overview of Parallel Computing

S %w 64 Configurations of the internal switches

in the Convex SPP1200, in order to have more than eight processors in a single
machine, two or more crossbars are connected in a ring.

Note that this implies that when a processor accesses memory attached to
another crossbar, the access times will be greater. This is, of course, undesir-
able, but it is a compromise that has been reached by virtually all designers of
shared-memory machines. That is, nonuniform access times are the rule rather
than the exception. Such systems are called nonuniform memory access or
NUMA systerns.

Cache Coherence
A problem that is encountered with any shared-memory architecture that al-

lows the caching of shared variables is cache consistency or cache coherence. If -

a processor accesses a shared variable in its cache, how will it know whether
the value stored in the variable is current? That is, suppose processor A wants
to access a shared variable x in its cache. How does A know that some other
process B hasn’t modified its copy of x, rendering A’s copy out of date? There
are a number of cache consistency protocols, and they vary considerably in
complexity. The simplest is probably the snoopy protocol, and it is suitable
for small bus-based machines. The basic idea is that in addition to the usual
hardware associated with a CPU, each processor has a cache controller. Among
other things, the cache controllers “snoop” on the bus; i.e., they monitor the
bus traffic. When a processor updates a shared variable, it also updates the
corresponding main memory location. The cache controllers on the other pro-
cessors detect the write to main memory and mark their copies of the variable
as invalid. Notice that the bus makes this possible: any traffic on the bus can
be monitored by all the controllers. Thus this approach is unsuitable for other
types of shared-mernory machines.

2.1

Hardware

CPU

Memory CPU Memory . CcpPU Memory

Interconnection network

Generic distributed-memory system

®)

Different types of distributed-memory systems: (a} a static network (mesh)
and (b) a dynamic network (crossbar)

N ,_ .N Distributed-Memory MIMD

In distributed-memory systems, each processor has its own private mem-
ory. Thus, a generic distributed-memory system can be represented as in Fig-
ure 2.5. If we view a distributed-memory system as a graph, where the edges
are communication wires, then there are two broad types of graphs: those in
which each vertex corresponds to a processor/memory pair, or node, and those
in which some vertices correspond to nodes and others correspond to switches.
Figure 2.6 illustrates the distinction: round vertices are nodes and square ver-
tices are switches. Networks of the first type are called static networks and
networks of the second are called dynamic networks.

From a performance and programming standpoint, the jdeal interconnec-
tion network is a fully connected network, in which each node is directly con-
nected to every other node (see Figure 2.7). With a fully connected network,
each nade can communicate directlv with everv other node. Furthermore. the

20

Chapter 2—An Overview of Parallel Computing

communication involves no delay, and any node can communicate with any
other node at the same time that any other communication is taking place. Un-
fortunately, the cost of such a network makes it impractical to construct such
a machine with more than a few nodes.

Dynamic Interconnection Networks

Perhaps the closest we can come, in practice, to a fully connected network
is a crossbar switch in which each process is connected to a terminal on the
left edge and a terminal on the right edge (see the illustration on the right
in Figure 2.6). Essentially the only delay in communication comes from the
setting of a single switch, and if node i is communicating with node j, then
any other pair of distinct nodes can communicate simultaneously. However,
as we noted in section 2.1.6, these networks are also very expensive, and it is
unusual to see crossbars with more than 16 processors. A notable exception is
the Fujitsu VPP 500, which uses a 224 x 224 crossbar with 224 nodes.

A less expensive solution is to use a multistage switching network. There
are a number of different types of multistage network. An example, an omega
network, is llustrated in Figure 2.8. If we have p nodes, then an omega net-
work will use plog, (p)/2 switches, and, as a consequence, is a good deal less
expensive than the crossbar, which uses p? switches. With the omega network,
any node can communicate with any other node. However, there is a relatively
high probability that communication between two nodes will interfere with
communication between two other nodes. Further, the delay in transmitting
a message is increased, since log,(p) switches must be set. In its SP series
of computers, IBM has compromised between the two switching strategies: it
uses an omega network, but the individual switches (represented in Figure 2.8
as 2 x 2 crossbars) are 8 x.8 crossbars. Currently the largest installed machine
has 512 nodes.

2.1 Hardware

21

An omega network

Static Interconnection Networks

At the opposite extreme from a fully connected network is a linear array, a
static network in which all but two-of the nodes have two immediately adjacent
neighboring nodes. A ring is a slightly more powerful network. This is just a
linear array in which the “terminal” nodes have been joined (see Figure 2.9).
The virtue of these networks is that they are relatively inexpensive: beyond
the cost of the nodes, there is only an additional cost of p — 1 or p wires.
They also scale well: it’s quite easy and inexpensive to increase the size of the
network so that it includes arbitrarily many nodes. The principal drawback
is that the number of available wires is extremely limited: if two nodes are
communicating, it’s very likely that other nodes attempting to communicate
will be unable to do so. Furthermore, in a linear array, two processes that are
attempting to communicate may have to forward the message aleng as many
as p— 1 wires, and in a ring it may be necessary to forward the message along
as many as p/2 wires.

Chapter 2—An Overview of Parallel Computing

O—0 -0

(@ ®)

(a) A linear array and (b) a ring

@ ’ ®) ©

TR %ﬁm@ Hypercubes of (a) dimension 1, (b) dimension 2, and (c) dimension 3

The practical static interconnection network that is closest to the fully
connected network is the hypercube. Hypercubes are defined inductively.
A dimension 0 hypercube consists of a single node. In order to construct a
hypercube of dimension d > 0, we take two hypercubes of dimension d — 1
and join the corresponding nodes with communication wires. Hypercubes of
dimensjons 1, 2, and 3 are illustrated in Figure 2.10. Since we double the
number of nodes with each increase in dimension, a hypercube of dimension
d will contain p = 2% nodes. Since we add a wire to each node when we
increase the dimension by one, in a hypercube of dimension d, each node is
directly connected to d other nodes. Thus, it is relatively easy (compared to
the linear array or the omega network) to arrange that communicating nodes
don’t interfere with other communications. Furthermore, it’s not difficult to
show that if we follow a shortest path between any two nodes in a hypercube
of dimension d, then we’ll trtaverse at most d wires (use induction on the
dimension). Thus, the maximum number of wires a message will need to be
forwarded along is d = log,{(p) wires. This is much better than the linear
array or ring. The principal drawback to the hypercube is its relative lack

23

(a) Two-dimensional mesh, (b) three-dimensional mesh, and (c) two-
dimensional torus

of scalability. In spite of the fact that the first “massively parallel” MIMD
system was a hypercube (an nCUBE 10 with 1024 nodes), each time we wish
to increase the machine size, we must double the number of nodes and add a
new wire to each node.

Intermediate between hypercubes and linear arrays are meshes and tori,
which are simply higher dimensional analogs of linear arrays and rings, re-
spectively. Figure 2.11 illustrates a two-dimensional mesh, a two-dimensional
torus, and a three-dimensional mesh. Observe that an n-dimensional torus can
be obtained from an n-dimensional mesh by adding “wrap-around” wires to
the nodes on the border. Also observe that, as we increase the dimension, it
becomes less and less likely that two pairs of communicating nodes will inter-
fere with each other, and that if a mesh has dimensions d; x dz X - - - X dn, then

24

Chapter 2—An Overview of Parallel Computing

the maximum number of wires a message will have to traverse is

> di-).
i=1

So if a mesh is square, i.e,, di = d; = --- = dn, the maximum will be
n(p*/™ —1). More or less the same reasoning applies to tori; e.g., in a “square”
torus, the maximum will be 1np'/®. Furthermore, meshes and tori scale better
than hypercubes (although not as well as linear arrays and rings). For example,
if we wish to increase the size of a ¢ x ¢ mesh, we simply add a ¢ x 1 mesh
and g wires. More generally, we need to add p™/™ nodes if we wish to
increase the size of a square n-dimensional mesh or torus. Meshes and tori are
currently quite popular. The Intel Paragon is a two-dimensional mesh, and the
Cray T3E is a three-dimensional torus. Both scale to thousands of nodes.

Bus-Based Networks

The last, and probably the simplest, network is a bus. A cluster of workstations
on an ethernet provides a popular example. Of course, busses tend to be fairly
slow, and even worse, busses, especially ethernets, soon become saturated if
there are more than a few nodes or more than absolutely minimal cormmunica-
tion. Thus, although they are very useful for program development, currently
available bus-based systems don’t show much promise for very large-scale ap-
plications.

M _ m Communication and Routing

An issue that soon appears when we study communication in distributed-
memory MIMD systems and larger shared-memory systems is that of routing.
If two nodes are not directly connected or if a processor is not directly con-
nected to a memory module, how is data transmitted between the two? Let’s
take a look at this problem on distributed-memory systems using a static in-
terconnection network. Before proceeding, however, we should note that this
problem is not necessarily completely solved with hardware: many systems
implement parts of their routing using software.

The problem of routing subsumes two additional subproblems: If there are
multiple routes joining the two nodes or processor and memory, how is a route
decided on? Is the route chosen always a “shortest” path? Most systems use a
deterministic shortest-path routing algorithm. That is, if node A communicates
with-node B, then the route that the communication uses will always be the
same, and there will be no other route that uses fewer wires. This issue arises
whether the intermediaries are other nodes or switches.

Another problem in this connection is the question of how intermediate
nodes forward communications. There are two basic approaches. In order to
understand them, let’s suppose that node A is sending a message to node C,

cm I e P Ve bdnemnan A A A S NTadA D han acanntialle trira rhaicoes it fan

2.2 Software Issues 25

11

Data
Time Node A Node B Node C
0 zZ y x w
1 z y x w
2 z y x W
3 z y x w
4 z y x w
5 z y x w
6 z y x w
7 z y x w
8 z y x w
Store-and-forward routing
Data
Time Node A Node B Node C
0 z y x w
1 z y x w
2 z y x w
3 z ¥y x w
4 z y x w
5 z y x w
Cut-through routing

read in the entire message, and then send it to node C, or it can immediately
forward each identifiable piece, or packet, of the message. The first approach is
called store-and-forward routing. The second is called cut-through routing.
Store-and-forward routing is illustrated in Figure 2.12. Cut-through routing is
illustrated in Figure 2.13. In the figures, the message is composed of four pack-
ets, w, x,y, and z. As we can see, using store-and-forward routing the message
takes twice as long as the time it takes to send a message between adjacent
nodes, while the time it takes using cut-through routing only adds the time
it takes to send a single packet. Furthermore, store-and-forward routing uses
considerably more memory on the intermediate nodes, since the entire mes-
sage must be buffered. Thus, most systems use some variant of cut-through
routing.

Software Issues
The idea of a process is a fundamental building block in most paradigms of

parallel computing. Intuitively, a process is an instance of a program or a sub-
program that is executing more or less autonomously on a physical processor.

26

Chapter 2—An Overview of Parallel Computing

A program is parallel if, at any time during its execution, it can comprise more
than one process. In order to create useful parallel programs, there must be
ways that processes can be specified, created, and destroyed, and there must
be ways to coordinate interprocess intéraction. In this section, we’ll take a brief
look at how these issues are addressed in different programming paradigms.

N M ._ Shared-Memory Programuming

Although we conventionally think of a shared-memory system as one in
which the processors have more or less equal access to all the memory lo-
cations, it is perfectly reasonable to emulate shared memory with physically
distributed memory if we have a mechanism for creating a global address
space. Thus, it may be possible to program a distributed-mermory system using
shared-memory programming primitives, and this discussion may be applica-
ble to a variety of underlying hardware configurations.

Shared-memory systems typically provide both static and dynamic pro-
cess creation. That is, processes can be created at the beginning of program
execution by a directive to the operating system, or they can be created during
the execution of the program. The best-known dynamic process creation func-
tion is fork. A typical implementation will allow a process to start another, or
child, process by calling fork. The starting, or parent, process can wait for
the termination of the child process by calling join.

Coordination among processes in shared-memory programs is typically
managed by three primitives. The first specifies variables that can be accessed
by all the processes. The second prevents processes from improperly accessing
shared resources. The third provides a means for synchronizing the processes.
To illustrate these ideas, let’s look at a very simple example. Suppose that
each process has computed a private int private_x. By a private variable, we
mean a variable whose contents are accessible to only one process. Thus, each
process has defined a distinct variable private_x that cannot be accessed by
any of the other processes. The program should compute the sum of these
private ints, and a single process will print the sum.

‘We can use the first primitive to allocate a shared variable sum. One ap-
proach might be to simply prefix the definition of the variable with the keyword
shared. So part of the variable definition component of our program might be

int private_x;
shared int sum = 0;

Things get a little more complicated when we start trying to compute the
sum. We can’t simply have each process compute

sum = sum + private_x;

In order to understand why this is a problem, recall that a typical system will

-+ 2.2 Software Issues 27

Time Process 0 Process 1
0 Fetch sum = 0 | Finish calculation of private_x
1 Fetch private_x = 2 | Fetch sum =0
2 Add 2 + 0 | Fetchprivate_x = 3
3 Store sum = 2 |-Add 3+0
4 Store sum =3

One scenario for shared-memory addition

execute something like the following sequence of machine instructions when
it performs the add:

Fetch sum into register A

Fetch private_x into register B

Add contents of register B to register A
Store contents of register’A in sum

Now suppose we have two processes, 0 and 1, the value of process 0’s pri-
vate_x is 2, and the value of process 1’s private_x is 3. Then, depending
on when the processes try to execute the addition of private_x to sum, we
can compute a value of 2, 3, or 5 for sum. For example, consider the sequences
of events depicted in Figure 2.14. Of course, sum should be 5, but since the
sequences of machine commands making up sum = sum + private_x over-
lapped, the value computed by process 0 was overwritten by process 1.
Thus, we must make sure that the command

sum = sum + private_x;

is executed by only one process at a time. When we wish to ensure that only
one process can execute a certain sequence of statements at a time, we are
trying to arrange for mutual exclusion, and the sequence of statements is
called a critical section.

One of the simplest approaches to solving the problem of mutual exclusion
is called a binary semaphore. The basic idea is that there is a shared variable s
whose value indicates whether the critical section is free. If s is 1, the section
is free. If it’s 0, the region cannot be accessed. Thus we would like to do
something like this on each process:

shared int s = 1;

while (ls); /* Wait until s =1 */
s =0; /* Close down access */
sum = sum + private_x; /* Critical section */
s =1; /* Re-open access */,

The problem is that the operations involved in manipulating s are not atomic.
That is. while one process is fetching s = 1 into a register to test whether it’s

28

Chapter 2—An Qverview of Parallel Computing

OK to enter the critical region, another process can be storing s = 0. We need
to be able to arrange that once a process starts to access s, no other process
can access it until the original process is done with the access, including the
reset of its value.

Thus, in addition to the shared variable, a binary semaphore consists of
two special functions:

void P(int* s /* in/out */);
void V(int* s /* gut *1);

The first function, P, has an effect similar to

while (1s);
s = 0;

However, it prevents other processes from accessing $ once one process gets
out of the loop. Similarly V sets s to 1, but it does this “atomically” The
mechanics of achieving atomicity are system dependent. A simple solution is
the addition of machine commands that “lock” and “unlock” variables: when
a variable is locked, only the process that locked it can write to it.

The final issue we need to address is how to make sure that the correct
sum is printed. In other words, if, say, process 0 is printing the sum, how can
it know when all the processes have completed adding in their private_xs
to sum? In view of the preceding discussion, we could create another shared
variable that we could use to maintain a count of the number of processes
that have updated sum. However, this is usually carried out with a somewhat
higher-level operation called a barrier. A barrier is usually implemented as a
function (which may or may not take an argument). Once a process has called
the function, it will not return until every other process has called it. Thus, if
we have a barrier after our sum, process 0 will know that the additions have
been completed once it returns from the call to the barrier. In summary, then,
our program body should look something like this:

int private_x;
shared int sum = 0;
shared int s = 1;

/* Compute private_x */

Ewwv”.
sum = sum + private_x;
V(&s);

Barrier();

if (I'm process 0)
nrintfi"eum = %d\n" <cim)-

2.2 Software Issues 29

The concept of shared variables and barriers is quite natural and appealing
to programmers that have some experience with conventional systems. The
idea of a binary semaphore, however, is not so appealing. It is somewhat
error-prone and forces serial execution of the critical region. Thus, a number
of alternatives have been devised. Monitors provide a higher-level alternative
available on many systems. Basically, they encapsulate shared data structures
and the operations that can be performed on them. In other words, the shared
data structures are defined in the monitor, and the critical regions are functions
of the monitor. When a process calls a monitor function, the other processes
are prevented from calling the function.

Unfortunately, monitors do nothing to solve the serialization problem. It’s
not difficult to imagine alternative approaches to our addition program that
don’t enforce serial access to the shared variables. However, the obvious so-
lutions tend to be extremely complicated in that they introduce other shared
variables and critical regions. There are other solutions, but discussion of them
is beyond the scope of this brief overview. See the references at the end of the
chapter for information on other solutions.

N M M Message Passing

The most commonly used method of programming distributed-memory
MIMD systems is message passing, or some variant of message passing. In
basic message passing, the processes coordinate their activities by explicitly
sending and receiving messages. For example, at its most basic, the Message-
Passing Interface (MPI) provides a function for sending a message:

int MPI_Send(void* buffer /* in */,
int count /* in */,
MPI_Datatype datatype /* in */,
int destination /* in */,
int tag /* in */,
MPI_Comm communicator /* in */)

and a function for receiving a message:

int MPI_Recv(void* buffer /* out */,
int count /* in */,
MPI_Datatype datatype /* in */,
int source /* in */,
int tag /* in */,
MPI_Comm communicator /* in */,

MPI_Status* status /* out */)

The current version of MPI assumes that processes are statically llocated; i.e.,
the number of processes is set at the beginning of program execution, and no
additional processes are created during execution. Each process is assigned a

30

Chapter 2—An Overview of Parallel Computing

unique integer rank in the range 0, 1, ..., p — 1, where p is the number of
processes.

To illustrate the use of the functions, suppose that process 0 wishes to
send the float x to process 1. Then it can call MPI_Send as follows:

MPI_Send(&x, 1, MPI_FLOAT, 1, 0, MPI_COMM_WORLD);

Process 1 needs to call MPI_Recv. In order that the data be received properly,
it needs to match the tag and communicator arguments, and the memory
available for receiving the message, which is specified by the buffer, count,
and datatype parameters, must be at least as large as the message sent. The
status parameter returns information on such things as the actual size of the
message received. Thus, process 1 can call MPI_Recv as follows:

MPI_Recv(&x, 1, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);

There are several issues that need to be addressed here. First, note that
the commands executed by process 0 (MPI_Send) will be different from those
executed by process 1 (MPI_Recv). However, this does not mean that the
programs need to be different. We can simply include the following conditional
branch in our program:
if (my_process_rank == 0)

MPI_Send(&x, 1, MPI_FLOAT, 1, 0, MPI_COMM_WORLD):
else if (my_process_rank == 1)

MPI_Recv(&x, 1, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);

This approach to programming MIMD systems is called single-program,
multiple-data (SPMD). In SPMD programs, the effect of running different pro-
grams is obtained by the use of conditional branches within the source code.
This is the most common approach to programming MIMD systems.

Anpother issue we need to address is the semantics of the send/receive
pairing. Suppose process 0 calls MPI_Send, but process 1 doesn’t call MPI_
Recv until some time later. Does process 0 simply stop and wait until process 1
calls MPI_Recv? Even worse, suppose process 0 calls MPI_Send, but process
1 fails to call MPI_Recv. Does the program crash or hang? The answers will, in
general, depend on the system. The key issue is whether the system software
provides for buffering of messages.

Buffering

Let’s assume that process 0 and process 1 are running on distinct nodes, say,
0 is running on node A and 1 is running on node B. In this case there are
several ways of dealing with the first situation: 0 can send a “request to send”
to 1 and wait until it receives a “ready to receive” from 1, at which point it
begins transmission of the actual message. Alternatively, the system software

OIS SV SR NI [2 IIFUE SR RO P RN i T amendad Sk

2.2 Software Issues 31

a system-controlled block of memory (on A or B, or both}, and 0 can continue
executing. When 1 arrives at the point where it is ready to receive the message,
the system software simply copies the buffered message into the appropriate
memory location controlled by 1. The first approach, i.e., process 0 waits until
process 1 is ready, is sometimes called synchronous communication. The
second approach is called buffered cornmunication.

The clear advantage of buffered communication is that the sending process
can continue to do useful work if the receiving process isn’t ready. Disadvan-
tages are that it'uses up system resources that otherwise wouldn’t be needed
(e.g., the memory for buffering), and, if the receiving process is ready, the
communication will actually take longer, since it will involve copying between
the buffer and the user program memory locations.

Most systems provide some buffering, but the details vary widely. Some
systems attempt to buffer all messages. Others buffer only relatively small
messages and use the synchronous protocol for large messages. Others let the
user decide whether to buffer messages, and how much space should be set
aside for buffering. Some systems vcmmn, messages on the sending node, while
others buffer them on the receiving node.

Note that if the system provides buffering of messages, then our second
problem—process 0 executes a send, but process 1 doesn’t execute a receive—
shouldn’t cause the program to crash; the contents of the message will simply
sit in the system-provided buffer until the program ends. If, on the other hand,
the system doesn’t provide buffering, process 0 will probably hang; it will wait
forever for a “ready to receive” from process 1.

Before proceeding, it should be noted that SIMD systems don’t incur the
overhead of buffering or waiting since every operation is synchronous across
all the processes. Thus, process 0 “knows” process 1 is ready to receive, and
the message can be immediately transmitted. It should also be noted that there
are other approaches to the problem of how to deal with messages if there is
no guarantee of synchronization among the processes. We’ll discuss one such
approach in section 2.2.4.

Blocking and Nonblocking Conununication

We also need to look at what happens if we reverse the arrival at the commu-
nication points. That is, suppose process 1 executes the receive, but process 0
doesn’t execute the send until some later time. The function we used for
the receive, MPI_Recyv, is blocking. This means that when process 1 calls
MPI_Recv, if the message is not available, process 1 will remain idle until it
becomes available. Note that this isn’t quite the same thing as synchronous
communication. In synchronous communication, the two processes directly
communicate: process 0 won’t begin sending the message until it has received
explicit permission from process 1. In blocking communication, it,may not be
necessary for 0 to receive permission to go ahead with the send. For example,

Chapter 2—An Overview of Parallel Computing

0 may have already buffered the message when 1 is ready to receive, but the
communication line joining the processes might be busy.

Most systems provide an alternative, nonblocking receive operation. In
MP], it’s called MPI_Irecv. The I stands for immediate. That is, the process
returns “immediately” from the call. It has one more parameter than MPI_
Recv: arequest. If, instead of calling MPI_Recyv, process 1 called MPI_Irecv,
the call would notify the system that process 1 intended to receive a message
from O with the properties indicated by the argument. The system would
initialize the request argument, and process 1 would return. Then process 1
could perform some other useful work (that didn’t depend on the message
from process 0) and check back later to see if the message had arrived. It
would inform the system which message it was looking for through the request
argument that was initialized by the original call to MPI_Irecv.

The use of nonblocking communication can be used to provide dramatic
improvements in the performance of message-passing programs. If a node of
a parallel system has the ability to simultaneously compute and communicate,
the overhead due to communication can be substantially reduced. For exam-
ple, if each node of a system has a communication coprocessor, then we can
start a nonblocking communication (e.g., MPI_Irecv), perform computations

that don’t depend on the result of the communication, and when the computa-

tions are completed, finish the nonblocking operation. While the computations
are being carried out, the communications co-processor can do most of the
work required by the nonblocking operation. Since communication is very ex-
pensive relative to computation, overlapping communication and computation
can result in tremendous performance gains.

M. M w Data-Parallel Languages

One of the simplest approaches to programming parallel systems is called
data parallelism. In it, a data structure is distributed among the processes, and
the individual processes execute the same instructions on their parts of the data
structure. Clearly this approach is extremely well suited to SIMD machines.
However, it is also quite common to use it on MIMD systems. One of its most
attractive aspects is that for very regular structures it is possible for the user
program to simply indicate that the structure should be distributed across the
processes, and the compiler will automatically replace the user directive with
code that distributes the data and performs the data-parallel operations. Let’s
look at a very simple example.

As we noted in Chapter 1, HPF is a set of extensions to Fortran 90 de-
signed to make it relatively easy for a programmer to write highly efficient
data-parallel programs. Here’s a simple example that performs a distributed
array addition:

program add_arrays
IHPF$ PROCESSORS p(10)

2.2 Software Issues 33

real x(1000), y(1000), z(1000)
'HPF$ ALIGN y(:) WITH x(:)
'HPF$ ALIGN z(:) WITH x(:)
IHPF$ DISTRIBUTE x(BLOCK) ONTO p

C Initialize x and y -

zZ=x+y
end

‘We begin by specifying a collection of 10 abstract processors with the first HPF
directive. After defining our arrays, the first ALIGN directive specifies that y
should be mapped to the abstract processors in the same way that x is. That is,
for each 1, y (i) is assigned to abstract processor q if and only if x(1) is. The
second ALIGN statement has a similar effect on z. The DISTRIBUTE statement
specifies which elements of x will be mapped to which abstract processors,
and since y and z have been aligned with x, it will automatically map the
corresponding elements of y and z. BLOCK specifies that x will be mapped by
blocks onto the processors. That is,the first 1000/10 = 100 elements will be
mapped to the first processor, the next 100 to the second, etc. Once the arrays
are distributed and initialized, we can simply add corresponding entries on the
appropriate abstract processors with the Fortran 90 array addition statement

z=X+y

A few observations are in order here. HPF doesn’t provide a mechanism
for specifying the mapping of abstract processors to physical processors. The
actual mapping is usually done at execution time, and most systems provide
(nonportable) means for a program to determine what the mapping is.

Explicitly aligning the arrays in the HPF directives will probably result in a
more efficient executable program. In our example, the compiler will “know”
that there won’t be any communication when the addition is carried out. If the
arrays weren’t explicitly aligned, they might not be mapped in the same way.
to the processors, and hence communication might be necessary.

Finally, the problem of mapping data structures to processors is, in general,
a very difficult one, unless the structure is static and very regular (e.g., a dense
matrix). This can be a serious problem in any parallel program. However, it is
especially problematic in data-parallel programs, where a mapping is specified
at compile time. We’ll return to the problem of mapping data structures to
processes in section 2.2.5 and section 8.4.1.

It should be noted that “data parallel” is used in a somewhat different way
in other contexts. It can be used to describe a methodology for designing a
parallel program. In this context, it is usually contrasted with control-parallel
programining, in which parallelism is obtained by partitioning the control or
instructions of the program rather than the data. In general, most parallel

nragrame niea hath annrnachac ta ahtain narallaliam

Chapter 2—An Overview of Parallel Computing

N N & RPC and Active Messages

L1

Although message-passing and data-parallel languages are the most widely
used methods for programming distributed-memory systems, there are a num-
ber of other approaches to programming these systems. Two that have been
very successful are RPC (Remote Procedure Call) and active messages. They
share the assumption that the communication among processes should be
more general than the simple transmission of data: they provide constructs
for processes to execute subprograms on remote processors. The similarities
end here however. RPC is essentially synchronous. In order to call a “remote
procedure,” one process, the client process, calls a stub procedure that sends
an argument list to another process, the server process. The argument list is
used by the server process in a call to the actual procedure. After completing
the procedure, the (possibly modified) arguments are returned to the client
process. The client is idle while it waits for the results to be returned by the
server. This inefficiency reflects the origin of RPC: it was originally developed
for use in distributed systems. The model environment is a collection of au-
tonomous multitasking computers, and client and server processes are running
on different computers. While the client process is waiting for the return of the
arguments, its host system can perform useful work on other jobs. Clearly this
will result in inefficiencies if the host systems are dedicated processors.

Active messages remedy this problem by eliminating the synchronous be-
havior of the process interaction. The message sent by the source process
contains, in its header, the address of a handler residing on the receiving pro-
cess’s processor. When the message arrives, the receiving process is notified
via an interrupt, and it runs the handler. The arguments of the handler are
the contents of the message. Thus, there is no synchronicity: The first pro-
cess “deposits” its message in the network and proceeds with its computa-
tions. Whenever the message ultimately arrives on the receiving process, the
receiving process is interrupted, the handler invoked, and the receiving pro-
cess continues its work. Thus, active messages provide features of both RPC
and nonblocking message passing.

m Data Mapping

The issue of data locality came up several times in our discussion of data-
parallel programming. It is also a critical issue in the programming of both
distributed-memory systems and nonuniform memory access (NUMA) shared-
memory systems. In general, communication is much more expensive than
computation. In conventional systems, it is almost a commonplace that in-
structions that access memory are much slower than operations that only in-
volve the CPU. This difference in cost is even more dramatic if the memory is
remote; i.e., if it is the local memory of another node in a distributed-memory
system or if it is a “distant” memory module in a NUMA shared-memory sys-
tem. Thus, considerable effort has been devoted to the problem of optimal

2.2 Software Issues 35

data mapping, that is, the problem of how to assign data elements to proces-
sors so that communication is minimized. There is an easy (silly) solution:
on a distributed-memory system map all the data-elements to the memory of
a single node and have that process do ail the calculations. (A similar map-
ping applies to NUMA shared-memory systetns.) Of course, this would result
in a considerable waste of computational resGurces. So the problem of load
balancing is counterpoised to our data locality problem. That is, we want to
assign the same amount of work to each processor, or else we’ll be wasting
our computation resources. Any mapping must take into consideration both
load balance and data locality.

In this section, we’ll take a brief look at what is probably the simplest case
of the mapping problem: how to map a linear array to a collection of nodes
in a distributed-memory system. For the sake of explicitness, suppose that our
ammay is A = (do,ai, ... ,d-1). Let’s also think of our processors as a linear
array: P = (qo,q1,... ,gp—1). We'll assume that the amount of computation
associated with each array element is about the same. In other words, if we
assign the same number of elements to_each processor, we’ll have achieved
the goal of load balancing. :

If the number of processors, p, is equal to the number of array elements,
1, then there is only one mapping that balances the load equally among the
PIOCessors:

a; -+ g;

for each i, and our problem seems a trivial one. Indeed, if p evenly divides n,
then it might at first seem that there are only two mappings that balance the
load. A block mapping partitions the array elements into blocks of consecutive
entries and assigns the blocks to the processors. Suppose, for example, that
p = 3 and n = 12. Then a block mapping would look like this:

Qo, 1, G2, d3 —* o,

s, As, Ag, A7 > 1,

ds, ds, 1o, dn ~* G2
The other “obvious” mapping is a cyclic mapping. It assigns the first element
to the first processor, the second element to the second, and so on. When
each processor has one element of the array, we go back to the first PTOCEessor,
and repeat the assignment process with the next p elements. This process is

repeated until all the elements are assigned. If p = 3 and n = 12, we’ll have
the following mapping:

o, a3, ds, ds —* o,
Iy, 4s, A7, A0 — G, »
az,as,ds, dn —* ga.

But we’ve onlv seratehed the anrfacal Cancider far avamnla +he fallawrine

36

L3

Chapter 2—An Overview of Parallel Computing

mapping:

o, 41, Qs, A7 —* Jo,
az, a3, 0z, dy — q1,
ds, 03, Q10, d11 —* 2.

This is a block-cyclic mapping. It partitions the array into blocks of consec-
utive elements as in the block mapping. However, the blocks are not neces-
sarily of size n/p. The blocks are then mapped to the processors in the same
way that the elements are mapped in the cyclic mapping. In our GmmBEm“
the blocks have size 2. If we start considering the (very real) possibility that
the blocksize and/or p don’t evenly divide n, we see that there are a huge
number of different mappings just for linear arrays, and if we start looking
at higher-dimensional arrays or trees or general graphs, the problem becomes
astronomically complex.)

So, how do we decide on the appropriate mapping? Not surprisingly, it’s
highly problem dependent. The literature is filled with &mnsmmmo.um of B.mn.
pings. See the references at the end of the chapter for pointers to information
on matrix mappings. We’ll come back and look at the nuts and bolts of how
to actually distribute an array in section 8.4.1.

Summary

In this chapter we’ve touched on a large variety of issues in parallel ooEwc.u.bm.
We began with a discussion of parallel architectures and continued with a
discussion of some issues that arise in programming parallel systems.)

Pipeline/vector processors obtain parallelism by “pipelining” functional
units in the CPU and issuing vector instructions. They continue to be very
popular, mainly due to the relative ease with which they can be programmed
to solve problems with regular structures. However, they are less successful
with irregular structures and don’t scale to arbitrarily large problems.]

SIMD systemns have one control unit and many subordinate arithmetic and
logic units. They scale well, and they don’t suffer from many of the prob-
lems inherent in communicating between asynchronous processes. However,
their relative difficulty with irregular structures and their difficulties with con-
ditional branches have led many to believe that they cannot be good general-
purpose systems. At this time, it appears that they will probably continue to
be niche machines.

The concept of shared-memory MIMD is appealing and intuitively natural
to programmers accustomed to programming conventional systems. Hence,
they have achieved a much wider acceptance than distributed-memory sys-
tems. The principal difficulty they have encountered is scalability: the hard-
ware needed to allow many processors uniform access to memory is very ex-
pensive. The compromise that has been reached is to settle for nonuniform

2.3 Summary

37

access. That is, each processor sees a hierarchy of memory speeds, and it is up
to the programmer to keep this in mind when she designs her software. At the
top of the hierarchy, most shared-memory systems use fairly large local caches.
Assuring that these caches are consistent adds to the cost of shared-memory
designs. R

Distributed-memory MIMD systems contintie to scale better than shared-
memory systems, and meshes and switch-based systems are currently the
most popular architectures. Routing is of critical importance in the design of
distributed-memory systems; we briefly discussed store-and-forward and cut-
through routing. The principal drawback to distributed-memory MIMD systems
has been that they are very difficult to program.

While processor and mermory are the fundamental conceptual units of par-
allel hardware, the process is the fundamental conceptual unit of parallel soft-
ware. Roughly speaking, a process is an instance of a program that is executing
on a physical processor. .

Most shared-memory systems provide facilities for both static and dy-
namic creation of processes. A commonly used method for the dynamic cre-
ation/destruction of processes is the familiar fork/ Join. In order to program
shared-memory systems, we need programrming primitives for defining shared
variables—variables that each process can access. We saw that the existence
of shared resources can lead to errors if we're not careful to limit access to the
shared resources. Sections of code that should only be accessed by one pro-
cess at a time are called critical sections. We used binary semaphores to limit
access. We may also need to synchronize the processes. A common means for
doing this is called a barrier.

Message passing is the most commonly used method for programming
distributed-memory systems. We saw that message passing can be synchronous
or asynchronous. If a system provides buffering, then the system can copy
the sender’s message to a system buffer, and the sender can continue with
its work. However, if there is no buffering, the processes must synchronize;
i.e., the sender must receive permission from the receiver to transmit the mes-
sage. Message-passing functions can also be either blocking or nonblocking.
In blocking message passing, a call to a communication function won't return
until the operation is complete. For example, a blocking receive function will
Dot return until the message has been copied into the user process’s memory.
Nonblocking communication consists of two phases. During the first phase,
a function is called that starts the communication. During the second phase,
another function is called that completes the communication. Thus, if the sys-
tem has the capability to simultaneously compute and communicate, we can
overlap communication and computation by doing some useful computation
between the two phases of the operation.)

Parallel programs are usually broadly divided into two categories: data
parallel and control parallel. In data-parallel programs, we obtain parallelism
by partitioning the data among the processes; in control-parallel programs, we
partition the instructions. Typical parallel programs usually use both methods.

