
On VEPSO and VEDE for Solving a Treaty
Optimization Problem

Omar Andres Carmona Cortes∗, Andrew Rau-Chaplin†, Pedro Felipe do Prado‡
∗Informatics Academic Department

Federal Institute of Science, Education and Technology of Maranhão
omar@ifma.edu.br
†Risk Analytics Lab

Dalhousie University
arc@cs.dal.ca

‡Institute of Mathematics and Computer Science
University of São Paulo

pfprado@icmc.usp.br

Abstract—The purpose of this paper is to evaluate the perfor-
mance of Vector Evaluated Differential Evolution (VEDE) and
Vector Evaluated Particle Swarm Optimization (VEPSO) in solv-
ing a real world financial optimization problem. The algorithms
have been applied to the Reinsurance Contract Problem, which
is a challenging problem in computational finance, and their
performance has been evaluated in terms of metrics including
the average number of solutions, the average hypervolume and
the coverage. Results have shown that both algorithms can reach
good solutions, however VEPSO tends to perform better.

I. INTRODUCTION

The vector evaluated approach for multiobjective optimiza-
tion was pioneered by Shaffer [1] in 1985 in the context of
Vector Evaluated Genetic Algorithms (VEGA). At that time,
GAs were a popular form of optimization, while algorithms
such as Particle Swarm Optimization (PSO) and Differential
Evolution had yet to be introduced. Recently, Matthysen et.
al. [2] has shown that VEGA tends to get trapped into
local optima. Therefore, it is interesting to explore the vector
evaluated approach in the context of more recent evolutionary
strategies.

VEPSO and VEDE were proposed by Parsopoulus in [3]
and [4], respectively. Since then, their applications have in-
cluded optimization of radiometry array antenna [5], pro-
duction scheduling [6], steady-state performance of a power
system [7], and energy preservation in communication sys-
tems [8].

In this work, we have evaluated VEPSO as well as VEDE
approaches for solving a specific treaty optimization problem
called Optimization of Reinsurance Contracts (ORC), which,
from the perspective of the insurance company, consist of given
a main structure of layers, their limits, deductibles, recoveries
and premiums, we have to find out the best combination of
shares or placements which hedge the maximum risk to a
second insurance company (a reinsurance company) and at
the same time maximize the amount of money received in
case of massive claims (expected return). Figure 1 represents
a structure and two particular solutions.

Cortes in [9] and [10] presented the first papers to tackle
this type of problem using evolutionary algorithms, includ-

Fig. 1. Structure and two solutions with different placements.

ing Population-Based Incremental Learning (PBIL), PSO and
DE. While these methods performed significantly better than
the previous exhaustive enumeration approach they suffered
from one significant drawback. They were based on a mono-
objective function, where the maximum risk was obtained
only for a given expected return. So in order to generate a
Pareto frontier the algorithms had to be executed many times
resulting in a method that was sometime too slow to be used
on industrial scale problems. A key advantage of the true
multiobjective approaches described in this paper is that they
generate the whole Pareto frontier at once.

The remainder of this paper is organized as follows:
Section II introduces both the fundamentals of multiobjective
problems and the treay optimization problem being solved in
this paper; Section III outlines the algorithms we have been
used; Section IV presents metrics, parameters and the perfor-
mance evaluation; finally, Section V shows the conclusions of
this works and intended works.

II. MULTIOBJECTIVE PROBLEMS

A multiobjective optimization problem (MOP) has to ad-
dress two or more conflicting objective function [11] at the

same time. The resulting solution is a Pareto frontier, i.e., a
set of points where no solution is better than another one.
Otherwise, the global optima would be only one point in the
search space.

Thus, assuming that a solution to a MOP is a vector in
a search space X with m elements. A function f : X → Y
evaluates the quality of a solutions mapping it into an objective
space. Therefore, a multi-objective problem is defined as
presented in Equation 1, where f is a vector of objective
functions, m is the dimension of the problem and n the number
of objective functions.

Max y = f(x) = (f1(x1, ..., xm), ..., fn(x1, ..., xm)) (1)

In order to determine whether a solution belongs to the
Pareto frontier or not, it is necessary to use the concept of
optimality, which states that given two vectors x, x∗ ∈ < and
x 6= x∗, x dominates x∗ (denoted by x � x∗) if fi(x) is
not worse than fi(x∗),∀i and there exist at least one i where
fi(x) > fi(x∗) in maximization cases and fi(x) < fi(x∗)
otherwise. Hence, a solution x is said Pareto optimal if there
is no solution that dominates x, in such case, x is called non-
dominated solution. Mathematically, assuming a set of non-
dominated solutions ℘, a Pareto frontier(pf) is represented as
pf = {fi(x) ∈ R|x ∈ ℘}.

A. A Treaty Optimization Problem

The reinsurance contract optimization problem is a partic-
ular kind of treaty optimization problem, which consists of
a fixed number of contractual layers and a simulated set of
expected loss distributions (one per layer), plus a model of
reinsurance market costs [9]. Taking this into consideration,
the task is to identify optimal combinations of shares (also
called placements) in order to build a Pareto frontier that
quantifies the best available trade-offs between expected return
and risk. In other words, insurance companies aim hedge their
risk against potentially large claims, or losses [12]. Having
these trade-offs the insurance companies are able to offer them
to the reinsurance market.

All in all, the purpose is both to maximize the amount
of return ($) received from the reinsurance company and
maximize the risk hedge to it, at the same time. Doing so,
the insurance company minimize the loss faced per year. In
this context, Equation 2 represents the problem in terms of
optimization, where V aR is a risk metric, R is a function
in term of placements (π) and E is the Expected Value1. For
further details about the problems refer to [9] and [12].

maximize f1(x) = V aRα(R(π))
maximize f2(x) = E[R(π)]

(2)

1In probability theory, the expected value, usually denoted by E[X], refers
to the value of a random variable X that we would “expect” to find out if
we could repeat the random variable process an infinite number of times and
take the average of the values obtained.

III. VECTOR EVALUATED ALGORITHMS

As mentioned before, VEGA was the first vector evaluated-
based algorithm. The main idea is to evolve different popula-
tions, one per evaluation function, then exchange information
between them.

Extending this idea to other algorithms is a natural ap-
proach. The popularity of the vector evaluated approach comes
from two advantages: it is easy to implement and it can be
parallelized in a straight-full manner [4].

A. VEPSO

VEPSO “evolves” two independent swarms and exchange
information between them. Basically, the best particle of one
swarm directs the evolution of the other one. The pseudo code
is presented in the Algorithm 1 considering a minimization
problem.

1 forall the Swarms ∈ k do
2 Sk ← generate swarm(fk,n,d)
3 P k ← Sk

4 V k ← init velocity(n,d,Vmin,Vmax)
5 fitk ← evaluate fk(S

k)
6 fitP k ← fitk

7 fitgk ← best(fitk)
8 gk ← locate best particle(Sk,fitgk)
9 for iter = 1 to #iterations do

10 for i = 1 to #swarm size do
11 V ki =

w∗V ki +c1∗r1∗(P ki −Ski)+c2∗r2∗(gl−Ski)
12 Ski = Ski + V ki
13 fitki = evaluate(Ski)
14 if (fitki < fitP ki) then
15 swap(fitP ki ,fitki)
16 swap(P ki ,Ski)
17 end
18 if (fitki < fitgk) then
19 swap(fitgk,fitki)
20 swap(gk,Ski)
21 end
22 end
23 archive = join(Sk,Sk+1)
24 fitl2 ← evaluate f2(S

l)
25 fitl1 ← evaluate f1(S

l)
26 archive fit ← join(fit1,fit12,fit21,fit2)
27 pareto ← evaluate domination(archive fit)
28 pareto pop ← n dominated(indexes,archive)
29 end
30 end

Algorithm 1: VEPSO

Considering two swarms S1 and S2, the algorithm starts
initializing each swarm with n particles of dimension d. The
matrix P k, k = 1, 2., stores the best position where each
particle has passed by. V k, k = 1, 2., represents the velocity
which is used to change the position of a particle in the search
space. The vector fitk stores the fitness of the current particle
position. The structure fitP k is a vector containing the fitness

for each line from P k. The global optima is saved in fitkg and
its respective position is stored in gk.

On each swarm and iteration, the velocity of each particle
is updated using the equation V ki = w ∗ V ki + c1 ∗ r1 ∗ (P ki −
Ski) + c2 ∗ r2 ∗ (gl − Ski), then the position is updated using
Ski = Ski +V

k
i , where i is an index which represents a line on

both V and S matrix, i.e., these equations are vector-based
operations, and k indicates in which swarm the operations
are being done. Afterwards, the fitness of each new particle
position is evaluated and compared against its historic position
in P , if the new fitness is better than the known one the
algorithm swaps them. Thereafter the same operation has to be
done in order to verify whether a new global best was achieved
or not. At the end of each iterations, the fitness of each particle
is evaluated in the opposite function, for example, the swarm
S1 is evaluated in terms of the function f2, and vice-versa.
This operation allows the algorithm to construct and maintain
the archive whose the aim is to store the Pareto frontier and
its respective positions in the search space.

B. VEDE

The idea behind Vector Evaluated Differential Evolution is
similar to the previous algorithms, i.e., evolve to independent
populations and share information between them. The Algo-
rithm 2 outlines how the VEDE works.

Firstly, the algorithm initializes the populations and their
fitness. Then on each iteration and for each individual in popu-
lation (also called target individuals) the algorithm executes the
mutation process, which is to obtain the vector of differences
between three individuals selected randomly according to the
equation v ← P kidx[3] + F ∗ (Popkidx[1] − Popkidx[2]). This
startegy is named DE/Rand/1. Afterwards the crossover
process in started, which is very similar to the one called
discrete crossover performed in genetic algorithms, where each
individual is created by selecting a gene from the vector of
differences (v) or form the current population. This choice
is made based on the crossover rate (CR), then if a random
number is less than CR the gene used in the new individual
comes from vj , otherwise it comes from an individual from
the current population popij .

After coming up with the new individual its fitness is
evaluated. If the new fitness is better than the target one in the
current population the new individual replaces it, otherwise
the target is maintained in the population. Giving the new
population, it is necessary to identify the best solution of
each population (named sol1 and sol2, representing indiv1
and indiv2 from population P 1 and P 2, respectively) and
compare them against each other in terms of dominance. If
sol1 dominates sol2 then indiv1 replaces indiv2 in P 2, and
vice-versa otherwise. Then the archive is updated in the same
way as in VEPSO.

A secondary VEDE approach was also implemented in
order to make VEDE more similar to VEPSO. In this case,
lines ranging from 21 to 25 were removed and the best
individual from a particular population is used to compute
the vector of differences, i.e., v ← Popkidx[1] + F ∗ (best1 −
Popkidx[1]) + F ∗ (best2 − Popkidx[2]), where best1 represents
the best solution in terms of the current population and best2

1 forall the Pop ∈ k do
2 P k ← generate pop(fk,n,d)
3 fitk ← evaluate fk(P k)
4 for iter = 1 to #iterations do
5 for i = 1 to #pop size do
6 idx← select indiv(3)
7 v ← P kidx[3] + F ∗ (Popkidx[1] − Pop

k
idx[2])

for j = 1 to dimension do
8 nj = rand()
9 if (nj < CR) then

10 pop’← vj
11 else
12 pop’← popij
13 end
14 end
15 fit′i ← evaluate fk(P ki)
16 if fit′i < fiti then
17 popi ← pop′i
18 fiti ← fit′i
19 end
20 end
21 solk ← get best(P k)
22 if (sol1 dominates sol2)) then
23 replace(indiv1 ∈ P 2)
24 else if (sol2 dominates sol1)) then
25 replace(indiv2 ∈ P 1)
26 archive ← join(P 1,P 2)
27 fit12 ← evaluate f2(S1)
28 fit21 ← evaluate f1(S2)
29 archive fit ← join(fit1,fit12,fit21,fit2)
30 pareto ← evaluate domination(archive fit)
31 pareto pop ← n dominated(pareto,archive)
32 end
33 end

Algorithm 2: VEDE

depicts the best solution coming from the other population.
This strategy is called DE/best/2 and eliminates the necessity
of comparing the dominance of best solutions belonging to P 1

and P 2.

IV. EXPERIMENTS

A. Metrics

In this section, we discuss the experimental evaluation
of the vector evaluated-based algorithms. Firstly, the number
of non-dominated points (number of solutions) found in the
Pareto frontier was determined. Secondly, the hypervolume,
which is the volume of the dominated portion of the objective
space as presented in Equation 3, was measured, where for
each solution i ∈ Q a hypercube vi is constructed. Having
each vi, we calculated the final hypervolume by the union of
all vi.

hv = volume(

|Q|⋃
i=1

vi) (3)

Thirdly, the dominance relationship between Pareto fron-
tiers obtained with different algorithms, i.e., the coverage,
was calculated as depicted in Equation 4. Roughly speaking,
C(A,B) is the percentage of the solutions in B that are
dominated by at least 1 solution in A [13], therefore, if
C(A,B) = 1 then all solutions in A dominate B, and
C(A,B) = 0 means the opposite. It is important to notice that
this metric is neither complementary by itself nor symmetric,
i.e, C(A,B) 6= 1− C(B,A) and C(A,B) 6= C(B,A).

C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(4)

For further details about the use of these metrics see [11].
Finally, the resulting frontiers can be reviewed by experts for
reasonability.

B. Statistics and Parameters

All experiments have been executed using 100, 500 and
1000 iterations, and 31 trials for each configuration. We
chose this number of runs because of the central limit theory
which roughly states that 30 runs is the minimum number of
repetition in order to consider a distribution as a normal one,
allowing us to use parametric tests as Analysis of Variance
(ANOVA) and Tukey test. So, considering a null hypotheses
(h0) as “all means presented by the algorithms are statically
the same” and a level of significance α = 0.05, we use the
ANOVA test in order to identify whether h0 is true or not.
In such test if F is outside of the boundaries [−Fcrit, Fcrit]
then the difference exist, i.e., we reject h0. Even though the
ANOVA test might identify that there are differences between
means, the test is not able to detect where the differences are.
In this case, we use a Tukey Test to identify it, comparing the
algorithms in pairs according to Equation 5, where M1 is the
average of the first sample, M2 is the average of the second
sample, MS is the error between groups from the respective
ANOVA test and n is the number of trials (n = 31 in our case).
If HSD is outside from the range [−q, q], obtained from the
Tukey’s significance/probability table, then there is a difference
in this particular pair of samples.

HSD =
M1 −M2√

MS
n

(5)

All the parameters were chosen empirically and all tests
have been conducted using R version 2.15.0 and RStudio on
a Windows 7 64-bit Operating System running on an Intel i7
3.4 Ghz processor, with 16 GB of RAM.

The parameters used in all experiments for PSO algorithms
were: c1 = c2 = 0.5 + log(2); numbers of particles = 50; w0

= 0.9; wf = 0.1, where w has a linear updating based on the
Equation 6 as proposed in [14], where w0 is the initial weight,
wf is the final one, NG is the number of iterations and i
depicts the current generations. The initialization was done as
recommended in [15]; and, regarding the parameters for DE,
they are f = 0.7, CR = 0.9, population size = 50, and the
strategies DE/Rand/1 (called VEDE-R) and DE/Best/2
(called VEDE-B).

w = (w0 − wf)×
NG
i

(6)

The final Pareto frontier after all executions is also shown
at the end of the experiment section. Moreover, we are not
narrowing the size of the archive, therefore we can compare
the average number of solutions. Data came from a real
industry, was anonymized, comprising of 7 layers and we
used a discretization level of 5%, i.e., all combination of
shares will range from 0 to 1 with a variation of 0.05. The
discretization level is a market requirement and normally can
be set as 1%, 5%, 10% and 25%. The last two discretization
options can be used by exhausted search algorithms, whereas
1% and 5% can be solved only by meta-heuristics. Figure 2
shows an estimation of the time required for solving the
problem by an exhaustive search algorithms, where the entire
space is discretized then the solutions are evaluated. Thus, we
can see that using the same parameters set in our work, the
exhaustive method would take much more than a week to solve
the problem. Actually, considering the same architecture and
parameters the real estimation would take 1 year to complete.

Fig. 2. Estimation of time required by the exhaustive search algorithm.

C. Performance Evaluation

Figure 3 shows the average time in seconds for 100, 500
and 1000 iterations of each algorithm. According to the figure,
the difference starts being noticeable from 1000 iterations for-
ward; however, an ANOVA test presented in Table I indicates
that the difference in terms of the execution time is significant
using 500 iterations, as well. The Tukey test presented in
Table II proves that there are differences in all algorithms
we have tested because all HSD are outside from the range
[−3.47, 3.47], meaning that VEPSO is the fastest approach.

Figure 4 depicts the average number of solutions obtained
by each algorithm considering 100, 500 and 1000 iterations.
The vertical axis is in a Log10 scale, otherwise the data
from 100 and 500 iterations would not be noticed. Clearly,
the differences between VEDE and VEPSO seem significant.
In fact, Table III identifies that there are differences between
the algorithms, and Table IV proves that, giving to VEPSO
the best average amount of non-dominated points per trial.
Further, we can observe in the tukey test table (IV) that

Fig. 3. Average execution time for 100, 500 and 1000 iterations.

TABLE I. ANOVA CONSIDERING THE EXECUTION TIME.

100 iterations
Source SS df MS F P-value F-crit

Between Groups 763.35 2 381.67 121.21 2.9e-26 3.1
Within Groups 283.40 90 3.15

500 iterations
Source SS df MS F P-value F-crit

Between Groups 18003.3 2 9001 125.66 8.9e-27 3.1
Within Groups 6447.3 90 71.64

1000 iterations
Source SS df MS F P-value F-crit

Between Groups 82342.5 2 41171.25 289.66 6.13e-40 3.1
Within Groups 12792.32 90 142.14

TABLE II. TUKEY TEST CONSIDERING THE EXECUTION TIME.

q=3.47
100 iterations 500 iterations 1000 iterations

VEDE-R vs VEDE-B 7.79 12.52 14.6
VEDE-R vs VEPSO 21.73 22.37 33.92
VEDE-B vs VEPSO 13.94 9.84 19.33

strategies DE/Rand/1 and DE/Best/2 presented similar
results regardless the number of iterations.

Fig. 4. The average number of solutions for 100, 500 and 1000 iterations.

Regarding the hypervolume, Figure 5 shows the average
hypervolume achieved by each algorithm using 100, 500
and 1000 iterations, where we can see that VEPSO got the
better average hypervolume. Indeed, Table V confirms that the
difference between hypervolumes is significant. Furthermore,
Table VI indicates that there are no differences between

TABLE III. ANOVA CONSIDERING THE NUMBER OF SOLUTIONS.

100 iterations
Source SS df MS F P-value F-crit

Between Groups 100866.6 2 50433.3 538.4 8.4e-51 3.1
Within Groups 8430.2 90 93.67

500 iterations
Source SS df MS F P-value F-crit

Between Groups 41475131 2 20737565 937.2 5.6e-61 3.1
Within Groups 1991461 90 22127.34

1000 iterations
Source SS df MS F P-value F-crit

Between Groups 4.43e08 2 2.22e08 2593.11 2.73e-80 3.1
Within Groups 7693118 90 85479.1

TABLE IV. TUKEY TEST CONSIDERING THE NUMBER OF SOLUTIONS.

q=3.47
100 iterations 500 iterations 1000 iterations

VEDE-R vs VEDE-B 1.19 0.20 0.044
VEDE-R vs VEPSO -29.58 -52.92 -88.17
VEDE-B vs VEPSO -40.77 -53.13 -88.22

VEDE strategies (DE/Rand/1 and DE/Best/2) when 1000
iterations are considered; however, this difference is significant
when VEDE is compared against VEPSO, where this last one
presented the best average hypervolume.

Fig. 5. The average hypervolume for 100, 500 and 1000 iterations.

TABLE V. ANOVA CONSIDERING THE HYPERVOLUME.

100 iterations
Source SS df MS F P-value F-crit

Between Groups 1.65e31 2 8.26e30 245.68 3.47e-37 3.1
Within Groups 3.03e30 90 3.36e28

500 iterations
Source SS df MS F P-value F-crit

Between Groups 1.94e31 2 9.7e30 465.66 3.38e-48 3.1
Within Groups 1.87e30 90 2.08e28

1000 iterations
Source SS df MS F P-value F-crit

Between Groups 1.92e31 2 9.61e30 367.72 4.9e-44 3.1
Within Groups 2.35e30 90 2.61e28

TABLE VI. TUKEY TEST CONSIDERING THE HYPERVOLUME.

q=3.47
100 iterations 500 iterations 1000 iterations

VEDE-R vs VEDE-B 7.6 7.7 0.38
VEDE-R vs VEPSO -22.53 -32.95 -33.02
VEDE-B vs VEPSO -30.14 -40.61 -33.40

Figure 6 presents the final Pareto frontier for the 7 layers
problem after 31 trials. Axis present negative numbers because
it is a matter of hedging risk. Better results should go toward

zero located in the upper right corner. Using 100 iterations
it is clear that VPSO achieves better results than both VEDE
approaches. Considering 500 and 1000 iterations the VEDE
approaches improve their result; nonetheless, VEPSO seems be
better. In this context, the coverage metrics becomes essential
in order to make an accurate evaluation. Thus, Table VII
shows the coverage metrics which, therefore, proves that
VEPSO is the better approach. Taking this into account we
can observe that VEPSO dominates 85% and 81% of VEDE-
R and VEDE-B approaches with 100 iterations, respectively.
In the remaining results, VEPSO still finding the best Pareto
frontier. Extending the analysis we can notice that the approach
VEDE-B tends to be better than VEDE-R.

Fig. 6. Final Pareto frontier for 7 layers using 100, 500 and 1000 iterations,
respectively.

V. CONCLUSIONS

This paper presented a new study about the use of three
vector evaluated approaches (VEDE-R, VEDE-B and VEPSO)
in the ORC problem. Results clearly show that VEPSO
achieves the best results in this particular application, taking
approximately 5 hours to find out 90 points in the Pareto
frontier. Future work includes: tests in other applications, com-
parison against VEGA and other multiobjective algorithms,

TABLE VII. COVERAGE FOR VEDE-R, VEDE-B AND VEPSO.

100 iterations
VEDE-R VEDE-B VEPSO

VEDE-R - 0.28 0.03
VEDE-B 0.5 - 0.06
VEPSO 0.85 0.81 -

500 iterations
VEDE-R VEDE-B VEPSO

VEDE-R - 0.31 0
VEDE-B 0.51 - 0.008
VEPSO 0.96 0.87 -

1000 iterations
VEDE-R VEDE-B VEPSO

VEDE-R - 0.28 0.02
VEDE-B 0.5 - 0.06
VEPSO 0.85 0.81

hybridizing VEDE with other multiobjective evolutionary ap-
proaches and/or fuzzy in order to improve its results.

REFERENCES

[1] J. D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms” . In Proc. of First International Conference on
Genetic Algorithms, pp. 93-100,1985.

[2] W. Matthysen and A. P. Engelbrecht and K. M. Malan, “Analysis of
stagnation behavior of vector evaluated particle swarm optimization”,
IEEE Symposium on Swarm Intelligence (SIS), pp.155,163, 2013.

[3] K. E. Parsopoulos and M. N. Vrahatis, “Particle Swarm Optimization
Method in Multiobjective Problems”, In Proceedings of the 2002 ACM
Symposium on Applied Computing, pp. 603–607, ACM Press, 2002

[4] Parsopoulos, K.E.; Tasoulis, D.K.; Pavlidis, N.G.; Plagianakos, V.P.;
Vrahatis, M.N., “Vector evaluated differential evolution for multiobjec-
tive optimization”, Congress on Evolutionary Computation, pp.204-211,
2004.

[5] D. Glies and Y. Rahmat-Samii, “Vector evaluated particle swarm opti-
mization (VEPSO): Optimization of a radiometer array antenna”, in Proc.
of the IEEE International Symposium on Antennas and Propagation,vol.
3, Jun. 2004, pp. 2297-2300.

[6] Grobler, J. and Engelbrecht, A.P. and Yadavalli, V. S S, “Multi-objective
DE and PSO strategies for production scheduling”, IEEE Congress
onEvolutionary Computation, pp.1154-1161, 2008.

[7] J. G. Vlachogiannis and K. Y. Lee, “Multi-objective based on parallel
vector evaluated particle swarm optimization for optimal steady-state
performance of power systems”, Expert Systems with Applications, vol.
36, no. 8, pp. 802-808, 2009.

[8] S. Hou and X. Zhang and H. Zheng and L. Zhao and W. Fang,
“An effective interference management framework to achieve energy-
efficient communications for heterogeneous network through cognitive
sensing”,International ICST Conference on Communications and Net-
working in China (CHINACOM), pp.536,541, 2012.

[9] O. A. C. Cortes and A. Rau-Chaplin and D. Wilson and I. Cook and
J. Gaiser-Porter, “Efcient Optimization of Reinsurance Contracts using
Discretized PBIL”, Data Analytics, Porto, 2013.

[10] O. A. C. Cortes and A. Rau-Chaplin and D. Wilson and J. Gaiser-Porter,
“On PBIL, DE and PSO for Optimization ofReinsurance Contracts”,
EvoStar, EvoFin, Barcelona, 2014.

[11] Deb. K., “Multi-objective Optimization using Evolutionary Algo-
rithms”, John Wiley and Sons LTDA, 2001.

[12] J. Cai and K. N. Tan and C. Weng and Y. Zhang, “Optimal reinsur-
ance under VaR and CTE risk measures”. Insurance: Mathematics and
Economics, 43, 185-196, 2007.

[13] Q. Zhang and H.i Li, “MOEA/D: A Multiobjective Evolutionary Al-
gorithm Based on Decomposition”, IEEE Transactions on Evolutionary
Computation, vol.11, no.6, pp.712-731, 2007.

[14] A. Nikabadi and M. Ebadzadeh , Particle swarm optimization algorithms
with adaptive Inertia Weight : A survey of the state of the art and a Novel
method, IEEE journal of evolutionary computation , 2008.

[15] M. Clerc, “Standard Particle Swarm Optimisation”, hal-00764996, ver-
sion 1, available in: http://hal.archives-ouvertes.fr/hal-00764996, 2012.

