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Abstract—In this paper we explore the design of an analytical
framework for quantifying financial loss in the aftermath of
catastrophic events. The idea is to aggregate the thousands
of exposure databases received by a single reinsurer into a
giant loosely structured exposure portfolio and then use Big
Data analysis technology, originally developed in the context
of web-scale analytics, to rapidly perform natural but ad-
hoc loss analysis immediately after an event. As in many
situational analysis problems, the challenge here is to work
with both categorical and geospatial data, deal with partial
data often at varying levels of aggregation, integrate data from
many sources, and provide an analysis framework in which
analyses can be rapidly performed in the hours, days, and
weeks immediately after an event.
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I. INTRODUCTION

Property catastrophe insurance and reinsurance companies
are financial institutions that provide for the equitable trans-
fer of the risk due to catastrophic events in exchange for a
premium. In the hours, days, and weeks immediately after
an event, these insurers face an acute situational analysis and
management challenge. They want to immediately start to
flow funds to their affected clients. These insurers need fast
estimates of likely losses so they can reserve the necessary
capital, and communicate their potentially changed financial
situations to regulators, rating agencies, and stockholders.

In 2013 two-hundred and ninety-six global natural disas-
ters (including earthquakes, floods, and hurricanes) caused a
total economic loss of $192 billion dollars (USD) [1]. Of this
total economic loss, $45 billion dollars was insured meaning
that the financial resources required to help effect rapid
recovery were available and being held in reserve by the
insurance and reinsurance companies who had underwritten
the risk. Immediately after an event, these insurers want
to immediately start to flow funds to their affected clients
however, the situation on the ground after a natural disaster
is often unclear. The extent of the affected area, the intensity
of the hazard, and its impact on the value and usability of
buildings are all unknown. Eventually, when initial claims
have been filed, the buildings repaired or replaced, and the
insurance for lost use or business interruption covered, the

total loss will be know. Until then, insurers and reinsurers
need systems to help them estimate their losses.

Exposure data, in the context of property catastrophe
insurance, refers to data that describes what is being insured
and under what terms. Broadly, it consists of three types
of data: 1) Location data such as latitude/longitude, street
address, country, etc. 2) Physical data such as building
type, construction, age, etc. and 3) Contractual data such
as coverage value, limits, deductibles, and other financial
terms defining the risk transfer contract.

Primary insurance companies collect exposure data from
their clients (home owners and businesses), place it in
exposure databases, and pass it on to reinsurance companies.
Thousands of these exposure databases are collected by
reinsurance companies (from their clients - the primary
insurers) and are used in the pricing process. The reinsurers
typically take each individual database and run it through
a pricing model to produce an expected loss table (ELT)
and then archive it. The individual exposure databases are
currently considered to be too big and granular to be of
much further use in the reinsurer’s analytical pipeline.

In this paper we explore the design of an analytical
framework for quantifying financial loss in the aftermath of
catastrophic events. The idea is to aggregate the thousands
of exposure databases received by a single reinsurer into a
giant, loosely structured exposure portfolio, and then to use
Big Data analysis technology, originally developed in the
context of web-scale analytics, to rapidly evaluate natural,
but ad-hoc, loss analysis immediately after an event. As
in many situational analysis problems, the challenge here
is to work with both categorical and geospatial data, deal
with partial data often at varying levels of aggregation,
integrate data from many sources, and provide an analysis
framework that in which natural but ad-hoc analysis can be
rapidly performed in the hours, days, and weeks immediately
following an event.

II. SCENARIOS

To help illustrate the challenges of post-event analytics
and to build up a set of use cases and a definition of
core framework operations, this section explores scenarios



built around three recent events. While governments, non-
governmental agencies, insurers, and reinsurers are all in-
volved in post-event exposure analysis, to keep our scope
manageable we will focus on analysis from a reinsurer’s
perspective.

A. Tohuku Earthquake, Tsunami, and Radiation Disaster

On March 11, 2011 a magnitude 9.0 earthquake occurred
just off of the coast of Japan. The earthquake also caused
a subsequent tsunami whose total run-up height measured
38.9 meters, approximately the size of a 12-story building.
The combination of the earthquake and tsunami severely
damaged a number of the reactors in the Fukushima I Dai-
ichi nuclear power plant, which caused a nuclear incident,
leaking radiation into the surrounding environment. This
earthquake was the fourth largest earthquake in recorded
history, the largest in Japanl, and resulted in 15,854 deaths
and 3,203 missing persons’ in Japan [2].

After a catastrophic event, reinsurance companies need
to calculate their loss information. To do this they need to
determine the boundary of the region impacted, determine a
map of hazard intensities within that region, estimate mean
damage ratios (MDR) maps for the impacted by building
type, and estimate losses by taking into account financial
terms under a variety of assumptions.

For an event like the Tohuku event, reinsurers would
overlay a variety of hazard maps, such as shakemaps for
earthquake intensity, inundation maps for tsunami intensity,
and wind-borne debris maps for the radiation fallout, to
determine the affected area. Overlaying these maps provides
a picture of the affected event area and hazard intensities
sustained within it.

After constructing this affected region, reinsurers would
then need to identify the impacted exposure. In areas like the
US, where detailed high quality exposure data is typically
available, this might be as simple as performing a geospatial
query in the exposure portfolio to identify locations with
lat/longs within the boundary. In a case like the Tohuku
event which involves Japanese exposure, the specific ex-
posure would likely be unknown. In this case, aggregated
exposure collected at a district or even prefecture level
would need to be spatially disaggregated using data such as
daytime or nighttime population numbers to produce detailed
representative lat/long based exposure.

Finally, by combining the identified exposure, the MDR
maps for the event, vulnerability curves by exposure type,
and a financial terms simulator, an ad-hoc event specific loss
model can be constructed and used. This model will provide
loss estimate summaries, a breakdown of losses by a set of
filterable fields, and a mapping of losses over the area. The
reinsurer can then use this information to drive the early
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loss settlement processes, as well as to provide information
to regulators, rating agencies, and other interested parties.

B. 2011 Thailand Flood Disaster

While the Tohuku Earthquake was an event that rapidly
unfolded, the 2011 Thailand Floods is an example of a
slow event that unfolds over months in which the issue is
unknown risk hidden in the exposure data.

In 2011 heavy rains throughout Thailand, the remnants
of tropical depressions Haima and Nock-Ten, and an active
monsoon season caused severe flooding across the country
[3]. Although Thailand has a history of flooding, this was
the most expensive event resulting in approximately $45.7
billion USD in economic losses. The biggest contributor to
these losses was the manufacturing sector, contributing ap-
proximately $32 billion [4]. Many companies in Thailand’s
manufacturing industry are hard drive manufacturers. The
impact of flooding was so extreme that it interrupted the
global supply chain of hard drives, driving up world prices
substantially [5].

Before 2011, the average reinsurer would have told you
that they had little financial exposure to Thailand floods.
Thailand’s manufacturers were largely insured by Japanese
primary insurers who provided reinsurers with only aggre-
gated exposure data. It was only when the early claims
started trickling in that the reinsurers realized they might
have a problem. But how big was the magnitude of the
problem? Answering this requires an ad-hoc analysis pro-
cess that combines aggregate exposure data with publicly
available industry and economic data.

The first task was to estimate the commercial exposure,
and generate a detailed representative exposure set. Given
knowledge of the aggregate exposure and the average value
of a disk manufacturing facility, an estimate on the number
of facilities and their values could be obtained. Then using
a description of the transportation network and estimates of
daytime population (as a proxy for the spatial distribution
of commercial activity) detailed representative exposure sets
could be generated.

The second task was to create a crude aggregate loss
model from the early claims data, industrial building vul-
nerability curves, and flood inundation maps. These models
could be used for reserving the capital required to payout
future claims. In addition, based on the detailed exposure
data, spatial accumulation modeling could be performed to
identify potential loss hotspots. Spatial accumulation mod-
eling identifies the largest exposure accumulations within
circles of a given radius. This helps companies model circles
of maximum potential loss, which is particularly important
if the event may spread.

C. Hurricane Sandy

On the evening of October 29, 2012 Hurricane Sandy, a
post-tropical cyclone, made landfall near Brigantine, New



Jersey. Although a minimal hurricane as measured by the
Saffir-Simpson scale, the storm covered a massive area and
caused high storm surge over large parts of the coastline. The
highest inundations were located in New York, New Jersey,
and Connecticut, with the above ground storm surge ranging
between 2-9 ft with an average of 4.5 ft in New York [6].
Although this was a low intensity event, the huge size of
the affected area and the high value of the exposure in the
affected region caused damages of approximately $50 billion
USD, resulting in Sandy being the second most expensive
hurricane in US history [7].

In the case of Hurricane Sandy, post event analysis
was greatly helped by the rich and detailed nature of the
available exposure data. When you know exactly what is
being impacted (the exposure) you can concentrate your
analysis on getting a more detailed and closer to real-time
view of the evolving event. One interesting opportunity that
became apparent during Hurricane Sandy was the potential
for building real-time event intensity and impact maps from
information gleaned from social media data. Social media is
a new form of data we can look at for pre, peri, and post-
event analysis. The idea is to supplement physical intensity
measures with observed intensity measures using Geotagged
Tweets, Instagrams, and Facebook posts as data sources.
The goal is to try and build up new high quality, real-time
hazard maps from on-the-ground observations. To do this
we can use time-based analysis to measure the intensity
of the tides and the landfall, and also use text analytics to
help build these new observed hazard maps. While this is
a much more speculative form of post-event analysis than
those previously discussed, in an increasingly networked
world it has significant potential to provide detailed real-
time data for post-event situation analysis and management.

III. THE EXPOSURE ANALYSIS FRAMEWORK

In this section we describe our approach to designing of
a framework that can make better use of existing exposure
data to provide new ways of storing and analyzing this data.
The framework provides a way of storing many types data,
operating on this data, and analyzing the results from these
operations all on a high-performance platform that can scale
to handle very large exposure portfolios.

A. The Data Life Cycle

Currently, exposure data is often only used as input into
pricing models. After being used for pricing, the exposure
data is not used again. This process is shown in Figure 1.

With the Exposure Analysis Framework we hope to
change this life cycle and ensure that we can tap into this
rich data source. To do this we still use the exposure data
for pricing, but after generation we move the data into a
data warehouse where we can perform analytical operations
on it. Not only can we import exposure data, but we can
also store client, claims, event, and historical data inside
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Figure 1. The current data life cycle for exposure data.

this warehouse. By importing this other data we can perform
many new types of cross analysis, and visualize an exposure
portfolio and risk in ways that were not possible previously.
Figure 2 shows the proposed data life cycle.
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B. Operations

The analytical framework is designed around five fun-
damental types of operations, namely: Aggregation, Dis-
aggregation, Geospatial, Loss Modeling, and Spatial Accu-
mulation. These operations are central to exposure analysis
and were identified through discussions between industry
partners.

1) Aggregation Operations: The framework supports
both standard and specialized aggregation operations. All
aggregation operations group the data by some specified
key or compound key and then perform some meaningful
calculations on the data in order to reduce it to some gen-
eralized data value. Typical aggregation operations include
minimum, maximum, average, total, and count operations.



Specialized aggregation operations perform actuarial and
insurance-specific financial calculations.

2) Disaggregation Operations: Disaggregation opera-
tions take aggregated industry data and transform it into
meaningful, finer-detailed exposure data. These operations
are particularly useful when you have aggregated data and
want to run it through a model. Since aggregated data is
a coarse grained representation of data and models require
data with finer details, disaggregation is used to transform
this coarse data into finer detail. The disaggregation process
is shown in Figure 3.
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Figure 3. A graphical representation of how a disaggregation operation
works.

The idea for the disaggregation is to transform this coarse,
high-level data into geographical point-based exposure data.
Disaggregation operations can transform data by in a variety
of ways including distributing the data randomly within a
specified region, or distributing the data based on population
density.

3) Geospatial Operations: Geospatial operations provide
a set of tools that can execute geographical queries and
handle region data. With these operations you can perform
point location queries in polygonal subdivisions, geocoding
operations, and geometric operations on points and poly-
gons. These operations also provide regional comparison
tools, which provide a way to “redistrict” the regional bound-
aries of older, aggregated exposure data into newer regions
in order for the data to be correctly represented in newer
models. This process is shown in Figure 4. Redistricting is
performed by disaggregating the data, placing the data points
onto the old regional boundary map, either by assuming an
even spread of points or by weighting the point data based
on population, then modifying the boundaries to reflect the
new changes.
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Figure 4. A graphical representation of how a boundary transformation

operation works.

4) Loss Model Operations: Post-event loss modeling
operations come in two flavors: single-event footprint loss
models, and aggregate loss models.

Footprint loss models are used to compute the losses for
a given single event. Event data is collected from a hazard
map, which is used to calculate a mean damage ratio (MDR)
for the event regions. Exposure data is then overlaid on top
of the event regions and total losses are calculated by taking
the total value of the exposure in the region and multiplying
it by the MDR to find the total losses in the area. The result
is a table of losses that can be filtered using a variety of
keys.

Aggregate loss models are similar to footprint models,
except instead of one event you have multiple events. The
process still follows the same structure as the footprint
model, however multiple hazard maps are used for each
of the events. These models are used to illustrate the total
combined losses of events and can also be filtered using a
variety of keys.

5) Spatial Accumulation Operations: Spatial accumula-
tion operations provide a method for identify regions of
largest risk. These operations allow you to find a list of
the largest non-overlapping risk or exposure concentrations
within query circles of a given radius. Such circles represent
exposure or risk accumulations and can provide companies
with insight into the spatial distribution and/or clustering of
their risks.

IV. THE EXSIGHT FRAMEWORK - V0.1

Our current implementation of the Exposure Analysis
Framework, called the eXsight Framework, is built on the



Java platform and has a MongoDB backend. MongoDB
provides a robust suite of NoSQL operations that manage
data handling and calculations for the framework.

A. Components

All of the framework’s operations are implemented in
Java classes and communicate with a MongoDB backend
to manage data, execute operations, and handle results.

MongoDB is a versatile and scalable NoSQL database
system that provides an alternative method of data storage
to common SQL data stores [8]. Unlike regular SQL servers,
where data is stored in a structured data schema, MongoDB
stores data as a collection of documents containing various
fields represented by a JSON-like structure[9]. Because of
these differences in structure, traditional SQL tools and
techniques will not work, and thus MongoDB provides a
suite of robust tools and query engines that provides the
same functionality that works with this new structure.

The eXsight framework utilizes MongoDB’s geospa-
tial indexes and query engine, Aggregation Pipeline, and
MapReduce Framework to perform the various operations,
while also utilizing the built-in NoSQL database functional-
ity to handle data management [9].
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Figure 5. Deployment diagram depicting the recommended hardware
architecture for the framework.

MongoDB can easily scale vertically by adding in more
servers and horizontally with the use of sharding. Sharding
is a form of horizontal scaling that allows data to be stored
across multiple machines. As you can see in Figure 5, a
sharded MongoDB backend consists of multiple servers. A
sharded production database consists of two or more routing
servers, exactly three configuration servers, and two or more
shard servers.

The routing servers act as a middleman between the
cluster and the application. They pass queries and operations

on to the correct shards return the results to the client
application. The configuration servers run are responsible for
storing the cluster’s metadata. This metadata keeps track of a
map of the entire dataset, and knows which shard contains
what data. This mapping is used to direct operations and
queries from the routing servers to the appropriate shards.
The shard servers are used to store a subset of the total
data based on the type of data partition that is in use.
MongoDB shards the data at the collection level based on a
specified shard key which is present in every document in
the collection [9].

Sharding is a crucial part of improving the performance
and efficiency of the framework, however the current proto-
type framework only implements a single MongoDB back-
end instance. We will be extending on this in a future release.

To utilize the framework, a user will need to set up the
MongoDB backend and call the framework’s API methods to
import data, perform operations, and handle results. The user
can import data into the MongoDB backend and perform a
selection of aggregation and geospatial operations by calling
the appropriate methods.

B. Data Handling

The framework implements a generic data importer that
lets the user define the overall schema of the data. The
importer provides a way of ingesting exposure data without
knowing its structure. To do this the user must describe their
data either in Java objects or in an XML input file. The
importer class takes as a parameter a configuration object,
which is an instance of the class that defines the data schema.
This schema has a list of provided data sources such as files,
SQL tables, or NoSQL collections. Inside of each source
you would describe the data through providing its location,
datatype, and name. This is done for each element in order to
build up a schema that the importer can parse to understand
how to handle the data.

The framework also implements a way of exporting the
results of operations by providing the user with different
methods of handling and consuming results. The exporter
allows the user to retrieve a Java string or list of the results,
export data to a MongoDB collection, or even return the raw
data.

C. Operations

In this section we describe how the core aggregation and
geospatial operations are implemented using MongoDB’s
Aggregation Pipeline and geospatial indicies.

1) Aggregation Operations: MongoDB’s Aggregation
Pipeline is used to perform simpler aggregation functions.
The pipeline works in a similar fashion to the UNIX pipe
operator. The entire collection is passed through multiple
operators to eventually reduce the collection to a single
document containing the results [9].



2) Geospatial Operations: The eXsight Framework im-
plements a set of operations that can execute geographical
queries, and populate or correct administrative region data.

Users can find the administrative regions of a given
point by providing a lat/long coordinate. For example, the
point [28.418749, -81.581211], if queried, will return United
States, Florida, and Orlando County as the country, state,
and county of the point. This is done by using MongoDB’s
geospatial capabilities [9] to search through a collection of
polygons representing a region and testing whether or not
the given coordinate lies within the region.

The framework also allows users to geocode their data.
Geocoding is used to map a set of points to their named
region. The framework’s geocoding operation takes this
region query and runs through the entire exposure collection
to populate the regional data for a given exposure point. This
provides users with the ability to populate missing or correct
inaccurate data.

V. RELATED WORK

Currently Risk Management Solutions (RMS) offers
a similar product to our framework called RMS(one).
RMS(one) is a suite of tools on top of a high-performance
backend which is accessible by a user interface and located
in the cloud.

RMS(one) lets users ask advanced questions about their
risk portfolio by visualizing model results and business
metrics, automating and managing data importation, and
viewing and managing user specified risk models. This is
all through an intuitive interface running on top of a high-
performance backend called the RMS Analytic Operating
System (AOS)[10]. A portion of the RMS(one) backend
utilizes MongoDB as a data store, managing and storing
all of the client’s data using MongoDB’s flexible data
model[11].

Our Exposure Analysis Framework has some similarities
and differences to the RMS(one) product. Like RMS(one)
the framework provides a suite of tools to help answer
questions around a client’s portfolio. We also utilize Mon-
goDB as a main backend, however the current specification
for our framework does not utilize cloud-hosting platforms.
Unlike RMS(one), the framework does not have a user
interface. Instead we provide an API that clients can build
and application around to fit their needs.

Although both RMS(one) and the Exposure Analysis
Framework has similarities, each has a few key differences
which can allow both products to co-exist in the current
market.

VI. FUTURE WORK

We are currently working to refine the design and imple-
mentation of the remaining core operations. Planned future
work on the eXsight framework includes implementing the
missing operations and optimization of operations. Since

our goal is to have the framework operating on a sharded
MongoDB cluster, we will also be migrating from a single
MongoDB instance to a multi-node MongoDB backend.

We also plan a trial with industry partners to explore the
practical applicability of the framework and to identify any
critical new operations or functionality, input formats that
need to be accepted, or output formats and data visualization
options that need to be implemented.

REFERENCES

[1] AON Benfield, Annual Global Climate and Catastrophe
Report, Impact Forecasting 2013. [Online]. Available:
http://thoughtleadership.aonbenfield.com/Documents/201401
13_ab_if_annual_climate_catastrophe_report.pdf [Accessed:
13 Apr. 2014].

[2] P. Dunbar et al., “Tohoku Earthquake And Tsunami Data
Available From The National Oceanic And Atmospheric Ad-
ministration/National Geophysical Data Center,” Geomatics,
Natural Hazards and Risk, vol. 2, no. 4, Nov. 2011, pp. 305-
323. [Online]. Available: Taylor and Francis Group2, doi:
10.1080/19475705.2011.632443 [Accessed: 30 Mar. 2014].

[3] Thai Meteorological Department, “Rainfall and severe flood-
ing over Thailand in 2011,” Nov. 2, 2011. [Online]. Avail-
able: http://www.tmd.go.th/en/event/flood_in_2011.pdf. [Last
accessed: 31 Mar. 2014].

[4] “The World Bank Supports Thailand’s Post-Floods Recovery
Effort,” The World Bank, Dec. 13, 2011. [Online]. Available:
http://www.worldbank.org/en/news/feature/2011/12/13/world-

bank-supports-thailands-post-floods-recovery-effort. [Last
accessed: 31 Mar. 2014].

[5] “Hard Drive Prices Rise Due To Thai Floods,”
InformationWeek, Jan. 9, 2012. [Online]. Available:

http://www.informationweek.com/data-protection/hard-drive-
prices-rise-due-to-thai-floods/d/d-id/1102133. [Last accessed:
31 Mar. 2014].

[6] E. Blake et al, “Tropical Cyclone Report
Hurricane  Sandy (AL182012) 22 29  October
2012, Feb. 12, 2013. [Online]. Available:

http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf.
[Last accessed: 31 Mar. 2014].

[7]1 D. Porter, “Hurricane Sandy Was Second-Costliest In U.S.
History, Report Shows,” Feb. 12, 2013. [Online]. Available:
http://www.huffingtonpost.com/2013/02/12/hurricane-sandy-
second-costliest_n_2669686.html. [Last accessed: 31 Mar.

2014].
[8] MongoDB Overview website:
https://www.mongodb.com/mongodb-overview [Last

accessed: 25 Mar. 2014].

[9] MongoDB Reference website: http://docs.mongodb.org [Last
accessed: 20 May. 2014].

[10] RMS(one) Information website: http://www.rms.com/rms-
one/rms-one#cloud [Last accessed: 1 April 2014].

[11] “RMS Revolutionizes Risk Management for Insurance Indus-
try with Secure Platform Built on MongoDB,” MongoDB,
January 15, 2014. [Online]. [Last accessed: 1 April 2014].



