Multi-GPU Computing for Achieving Speedup in Real-time Aggregate Risk Analysis

A. K. Bahl
Center for Security, Theory and Algorithmic Research
International Institute of Information Technology
Hyderabad, India
aman.kumar@research.iiit.ac.in

Abstract—Stochastic simulation techniques employed for
portfolio risk analysis, often referred to as Aggregate Risk
Analysis, can benefit from exploiting state-of-the-art high-
performance computing platforms. In this paper, we propose
parallel methods to speedup aggregate risk analysis for sup-
porting real-time pricing. To achieve this an algorithm for
analysing aggregate risk is proposed and implemented in C
and OpenMP for multi-core CPUs and in C and CUDA for
many-core GPUs. An evaluation of the performance of the
algorithm indicates that GPUs offer a feasible alternative
solution over traditional high-performance computing systems.
An aggregate simulation on a multi-GPU of 1 million trials with
1000 catastrophic events per trial on a typical exposure set and
contract structure is performed in less than 5 seconds. The key
result is that the multi-GPU implementation of the algorithm
presented in this paper is approximately 77x times faster than
the traditional counterpart and can be used in real-time pricing
scenarios.

Keywords-GPU computing; high-performance computing;
aggregate risk analysis; catastrophe event risk; real-time pric-
ing

I. INTRODUCTION

Large-scale simulations in the risk analytics [1], [2]
domain which are both data and computationally intensive
can benefit from exploiting advances in high-performance
computing. While a large number of financial engineering
applications, for example [3], [4], [5] are benefitting from
the advancement of high-performance computing, there are
relatively fewer insurance and reinsurance applications ex-
ploiting parallelism. In this paper, we explore parallel meth-
ods and their implementations for aggregate risk analysis
[6], [71, [8], [9] required in portfolio risk management and
real-time pricing.

Aggregate risk analysis is a form of Monte Carlo simula-
tion performed on a portfolio of risks that a reinsurer holds
rather than on individual risks. A portfolio may comprise
thousands or even thousands of contracts that cover risks
associated with catastrophic events such as earthquakes,
hurricanes and floods. Generally, contracts have an ‘eXcess
of Loss” (XL) [10], [11], [12] structure and may provide
coverage for (a) single event occurrences up to a specified
limit with an optional retention by the insured, or (b)
multiple event occurrences up to a specified aggregate limit
and with an optional retention by the insured, or (c) a

O. Baltzer, A. Rau-Chaplin, B. Varghese and A. Whiteway

Faculty of Computer Science
Dalhousie University
Halifax, Canada

{obaltzer, arc, varghese}@cs.dal.ca, aaron.whiteway@dal.ca

combination of both features. Each trial in the aggregate
risk analysis simulation represents a view of the occurrence
of catastrophic events and the order in which they occur
within a predetermined period, (i.e., a contractual year) and
how they will interact with complex treaty terms to pro-
duce an aggregated loss. A pre-simulated Year Event Table
(YET) containing between several thousand and millions of
alternative views of a single contractual year is used as
input; this provides actuaries and decision makers with a
consistent lens through which to view results. The output of
aggregate analysis is a Year Loss Table (YLT). From a YLT,
a reinsurer can derive important portfolio risk metrics such
as the Probable Maximum Loss (PML) [13], [14], [15] and
the Tail Value at Risk (TVAR) [16], [17] which are used for
both internal risk management and reporting to regulators
and rating agencies.

In this paper, firstly, a sequential aggregate risk analysis
algorithm is implemented in C on a CPU, followed by
parallel implementations using C and OpenMP on multi-
core CPU and using C and CUDA on many-core GPU
platforms. The algorithms ingest large data for aggregating
risks, and therefore, challenges such as efficiently organising
input data in limited memory, and defining the granularity
at which parallelism can be applied to the problem for
achieving speedup are considered. Optimisations, such as
chunking, loop unrolling, reducing the precision of variables
used and the usage of kernel registries over shared and
global memories of the GPU are performed to improve
the speedup achieved on the GPU. A maximum speedup
of 77x is achieved for the parallel implementation on the
multi-GPU. The results indicate the feasibility of employing
aggregate risk analysis on multi-GPUs for real-time pricing
scenarios. The implementations presented in this paper are
cost effective high-performance computing solutions over
traditional clusters and full-blown supercomputers. The GPU
implementations takes full advantage of the high levels of
parallelism, some advantage of fast shared memory access,
and relatively little advantage of the fast numerical perfor-
mance all offered by the machine architecture of GPUs.

The remainder of this paper is organised as follows.
Section II presents the aggregate risk analysis algorithm, its
inputs and outputs. Section III considers the implementations

of the algorithm on a multi-core CPU and a many-core GPU.
Section I'V highlights the results obtained from an analysis of
the performance of the algorithm. Section V compares and
contrasts the algorithms and the results obtained from the
experiments. Section VI concludes the paper by considering
future work.

II. AGGREGATE RISK ANALYSIS

There are three inputs to the procedure that aggregates
risk. The first input is a database of pre-simulated oc-
currences of events from a catalog of stochastic events,
which is referred to as the Year Event Table (Y ET). A
possible sequence of catastrophe event occurrences for any
given year comprises a record in the YET is a ‘trial’
(T3). The sequence of events is defined by a set of tuples
containing the ID of an event and the time-stamp of its
occurrence in a trial T; = {(Ej1,ti1),--., (Bik, tik)}
which is ordered by ascending time-stamp values. A typ-
ical YET may comprise thousands to millions of trials,
and each trial may have approximately between 800 to
1500 ‘event time-stamp’ pairs, based on a global event
catalog covering multiple perils. The Y ET is represented
as YET = {TL = {(Ei71,ti71), ceey (Ei,lwtv’,,k)}}, where
1=1,2,...and k=1,2,...,800 — 1500.

The second input is collections of specific events and
their corresponding losses with respect to an exposure set
referred to as the Event Loss Tables (ELT). An event may
be part of multiple ELTs and associated with a different
loss in each ELT. For example, one ELT may contain
losses derived from one exposure set while another ELT
may contain the same events but different losses derived
from a different exposure set. Each ELT is characterised
by its own metadata including information about currency
exchange rates and terms that are applied at the level
of each individual event loss. Each record in an ELT is
denoted as event loss FL; = {FE;,1;}, and the financial
terms associated with the ELT are represented as a tuple
T = (Z4,Is, .. .). A typical aggregate analysis may comprise
10,000 ELTs, each containing 10,000-30,000 event losses
with exceptions even up to 2,000,000 event losses. The

ELTs are represented as ELT = { EL;i ={E; L}, }

I=(T,1,...)

with ¢ =1,2,...,10,000 — 30, 000.

The third input are the Layers, denoted as L, which cover
a collection of ELTs under a set of layer terms. A single layer
L; is composed of two attributes. Firstly, the set of ELTs £ =
{ELTy,ELT:,...,ELT;}, and secondly, the Layer Terms,
denoted as 7 = (Toeccrs Tocer, Taggr, Taggr)- A typical
layer covers approximately 3 to 30 individual ELTs. L =

E={FELT\,ELT,,...,ELT}},

{ T = (TOCCR7 TOCCL7 7j4ggRa TAggL)
...,3— 30 is a representation of the Layer.

The principal algorithm (line no. 1-32 shown in Algorithm
1) for aggregate analysis consists of two stages. In the first

}, with j = 1,2,

stage, data is loaded into local memory what is referred to
as the preprocessing stage in this paper. In this stage Y E'T,
ELT and L, are loaded into memory.

In the second stage, the four step simulation executed for
each Layer and for each trial in the YET is performed as
shown below and the resulting Year Loss Table (Y LT) is
produced.

Algorithm 1 Aggregate Risk Analysis

1: procedure AGGREGATERISKANALYSIS(Y ET, ELT,
L)

2 for all « € L do

3 for all b € YET do

4: for all c€ (EL € a) do

5 for all d € (Et €b) do

6 xg < FE € din El € f, where f €

ELT and (EL € f)=c¢

7 end for
8: for all d € (Ft € b) do
9: ly, < ApplyFinancialTerms(T)
10: end for
11 for all d € (Et €b) do
12: log, < log, + sy
13: end for
14: end for
15: for all d € (Et € b) do
16: log, = min(max(log,
TOccRa 0)7 TOCCL)
17: end for
18: for all d € (Et €b) do
d
19: log, < > log,
20: end for =
21: for all d € (Et € b) do
22: log, = min(maz(log,
7j4gng 0)7 nggL)
23: end for
24: for all d € (Et €b) do
25: log, < logy, —log, ,
26: end for
27: for all d € (Et €b) do
28: lr <lr+log,
29: end for
30: end for
31 end for

32: end procedure

Line no. 4-7 shows the first step in which each event
of a trial its corresponding event loss in the set of ELTs
associated with the Layer is determined.

Line no. 8-10 shows the second step in which a set of
financial terms is applied to each event loss pair extracted
from an ELT. In other words, contractual financial terms to

the benefit of the layer are applied in this step. For this
the losses for a specific event’s net of financial terms Z are
accumulated across all ELTs into a single event loss shown
in line no. 11-13.

Line no. 15-20 shows the third step in which the event
loss for each event occurrence in the trial, combined across
all ELTs associated with the layer, is subject to occurrence
terms (i) Occurrence Retention, denoted as 7o..r, Which is
the retention or deductible of the insured for an individual
occurrence loss, and (ii) Occurrence Limit, denoted as
Tocer, Which is the limit or coverage the insurer will pay
for occurrence losses in excess of the retention. Occurrence
terms are applicable to individual event occurrences indepen-
dent of any other occurrences in the trial. The occurrence
terms capture specific contractual properties of ’eXcess of
Loss’ treaties as they apply to individual event occurrences
only. The event losses net of occurrence terms are then
accumulated into a single aggregate loss for the given trial.

Line no. 21-29 shows the fourth step in which the ag-
gregate terms (i) Aggregate Retention, denoted as Taggr,
which is the retention or deductible of the insured for an
annual cumulative loss, and (ii) Aggregate Limit, denoted
as Taggr, which is the limit or coverage the insurer will
pay for annual cumulative losses in excess of the aggregate
retention. Aggregate terms are applied to the trial’s aggregate
loss for a layer. Unlike occurrence terms, aggregate terms
are applied to the cumulative sum of occurrence losses
within a trial and thus the result depends on the sequence of
prior events in the trial. This behaviour captures contractual
properties as they apply to multiple event occurrences. The
aggregate loss net of the aggregate terms is referred to as
the trial loss or the year loss and stored in a Year Loss Table
(YLT) as the result of the aggregate analysis.

The algorithm will provide an aggregate loss value for
each trial denoted as Ir in line no. 28. Financial functions
or filters are then applied on the aggregate loss values.

III. EXPERIMENTAL STUDIES

The experimental studies investigate the sequential and
parallel implementation of the aggregate risk analysis on
three hardware platforms. Firstly, a multi-core CPU is
employed whose specifications are a 3.40 GHz quad-core
Intel(R) Core (TM) i7-2600 processor with 16.0 GB of
RAM. The processor had 256 KB L2 cache per core, SMB
L3 cache and maximum memory bandwidth of 21 GB/sec.
Both sequential and parallel versions of the aggregate risk
analysis algorithm were implemented on this platform. The
sequential version was implemented in C++, while the
parallel version was implemented in C++ and OpenMP. Both
versions were compiled using the GNU Compiler Collection
g++ 4.4 using the “-O3” and “-m64” flags.

Secondly, a NVIDIA Tesla C2075 GPU, consisting of 448
processor cores (organised as 14 streaming multi-processors
each with 32 symmetric multi-processors), each with a

frequency of 1.15 GHz, a global memory of 5.375 GB and a
memory bandwidth of 144 GB/sec was employed in the GPU
implementations of the aggregate risk analysis algorithm.
The peak double precision floating point performance is
515 Gflops whereas the peak single precision floating point
performance is 1.03 Tflops.

Thirdly, a multiple GPU platform comprising 4 NVIDIA
Tesla M2090 GPUs, and each GPU consists 512 processor
cores (organised as 14 streaming multi-processors each with
32 symmetric multi-processors) and 5.375 GB of global
memory with a memory bandwidth of 177 GB/sec is em-
ployed for implementing the fastest aggregate risk analysis
algorithm reported in this paper. The peak double precision
floating point performance is 665 Gflops whereas the peak
single precision floating point performance is 1.33 Tflops.
CUDA is employed for the basic GPU implementation of
the aggregate risk analysis algorithm and the optimised
implementations.

Five variations of the algorithm are implemented, they
are: (i) a classic sequential implementation, (ii) a parallel
implementation for multi-cores CPUs, (iii) a parallel GPU
implementation, (iv) an optimised parallel implementation
on the GPU, and (v) an optimised parallel implementation
on a multi-GPU.

In all implementations a single thread is employed per
trial, T;4. The key design decision from a performance
perspective is the selection of a data structure for repre-
senting Event Loss Tables (ELTs). ELTs are essentially dic-
tionaries consisting of key-value pairs and the fundamental
requirement is to support fast random key lookup. The ELTs
corresponding to a layer were implemented as direct access
tables. A direct access table is a highly sparse representation
of a ELT, one that provides very fast lookup performance
at the cost of high memory usage. For example, consider
an event catalogue of 2 million events and a ELT consisting
of 20K events for which non-zero losses were obtained. To
represent the ELT using a direct access table, an array of
2 million loss are generated in memory of which 20K are
non-zero loss values and the remaining 1.98 million events
are zero. So if a layer has 15 ELTSs, then 15 X 2 million
= 30 million event-loss pairs are generated in memory.

A direct access table was employed in all implementations
over any alternate compact representation for the following
reasons. A search operation is required to find an event-
loss pair in a compact representation. If sequential search
is adopted, then O(n) memory accesses are required to
find an event-loss pair. Even if sorting is performed in
a pre-processing phase to facilitate a binary search, then
O(log(n)) memory accesses are required to find an event-
loss pair. If a constant-time space-efficient hashing scheme,
such as cuckoo hashing [18] is adopted then only a constant
number of memory accesses may be required but this comes
at considerable implementation and run-time performance
complexity. This overhead is particularly high on GPUs with

their complex memory hierarchies consisting of both global
and shared memories. Compact representations therefore
place a very high cost on the time taken for accessing an
event-loss pair. Essentially the aggregate analysis process is
memory access bound. For example, to perform aggregate
analysis on a YET of 1 million trials (each trial comprising
1000 events) and for a layer covering 15 ELTs, there are
1000 x 1 million x15 = 15 billion events, which requiring
random access to 15 billion loss values. Direct access tables,
although wasteful of memory space, allow for the fewest
memory accesses as each lookup in an ELT requires only
one memory access per search operation.

Two data structure implementations of the 15 ELTs were
considered. In the first implementation, each ELT is consid-
ered as an independent table; therefore, in a read cycle, each
thread independently looks up its events from the ELTs. All
threads within a block access the same ELT. By contrast,
in the second implementation, the 15 ELTs are combined
as a single table. Consequently, the threads then use the
shared memory to load entire rows of the combined ELTs
at a time. The second implementation has comparatively
poorer performance than the first because for the threads to
collectively load from the combined ELT each thread must
first write which event it needs. This results in additional
memory overheads.

The data structures in the basic sequential and parallel
implementations are: (i) a vector consisting of all I}
that contains approximately 800M-1500M integer values
requiring 3.2GB-6GB memory, (ii) a vector of 1M integer
values indicating trial boundaries to support the above vector
requiring 4MB memory, (iii) a structure consisting of all
El; that contains approximately 100M-300M integer and
double pairs requiring 1.2GB-3.6GB, (iv) a vector to support
the above vector by providing ELT boundaries containing
approximately 10K integer values requiring 40KB, and (v)
a number of smaller vectors for representing Z and 7.

In the basic implementation on the multi-core CPU plat-
form the entire data required for the algorithm is processed
in memory. The GPU implementation of the basic algorithm
uses the GPU’s global memory to store all of the required
data structures. The basic parallel implementation on the
GPU requires high memory transactions and leads to in-
efficient performance on the GPU platform. To surmount
this challenge shared memory can be utilised over global
memory.

The optimised implementation on the GPU builds on the
parallel implementation and considers the following:

i. Chunking, which refers to processing a block of events
of fixed size (or chunk size) for the efficient use of
shared memory. The four steps (lines 4-29 in the basic
algorithm, i.e., events in a trial and both financial and
layer terms computations) of the algorithm are chun-
ked. In addition, the financial terms, Z, and the layer
terms, 7, are stored in the streaming multi-processor’s

constant memory. In the basic implementation, I,
and lo;, are represented in the global memory and
therefore, in each step while applying the financial and
layer terms the global memory has to be accessed and
updated adding considerable overhead. This overhead
is minimised in the optimised implementation by (a)
chunking the financial and layer term computations,
and (b) chunking the memory read operations (line no.
4-7) for reading events in a trial from the SimGrid,
represented by FEt;4. Chunking reduces the number
of global memory update and global read operations.
Moreover, the benefits of data striding can also be used
to improve speedup.

ii. Loop unrolling, which refers to the replication of blocks
of code included within for loops by the compiler to
reduce the number of iterations performed by the for
loop. The for loops provided in lines 5 and 8 are
unrolled using the pragma directive, thereby reducing
the number of instructions that need to be executed by
the GPU.

iii. Reducing precision of variables, whereby the double
variables are changed to float variables. Read operations
are faster using float variables as they are only half the
size of a double variable. Furthermore, the performance
of single precision operations tend to be approximately
twice as fast as double precision operations on GPUs.

iv. Migrating data from both shared and global memory to
the kernel registry. The kernel registry has the lowest
latency compared to all other memory.

The optimised aggregate risk analysis algorithm was also
implemented on a multi-GPU platform. This implementation
was achieved by decomposing the aggregate analysis work-
load among the four available GPUs. For this a thread on
the CPU invokes and manages a GPU. The CPU thread calls
a method which takes as input all the inputs required by the
kernel (the three inputs are presented in Section II) and the
pre-allocated arrays for storing the outputs generated by the
kernel. The CPU threads are invoked in a parallel manner
thereby contributing to the speedup achieved on the multiple
GPU platform.

IV. PERFORMANCE ANALYSIS

The results obtained from the three platforms, namely
the multi-core CPU, many-core GPU and multiple GPUs
are presented in this section. The classic sequential im-
plementation is considered on the CPU, and the parallel
implementation are considered on the multiple cores of the
CPU, the many-core GPU and the multiple GPU.

A. Results from the multi-core CPU

The size of an aggregate analysis problem is determined
by four key parameters of the input, namely (i) number of
Events in a Trial, | E't|,,, which affects computations in line
no. 5-29 of the algorithm, (ii) number of Trials, |T'|, which

375 4

Time (sec)
[
&

©
&

135

75 T T
1 2 3 4 5 6 7 8
No. of Cores

(a) No. of cores vs execution time

125 4

124.5

124

Time (sec)

123.5

123
2048 4096 6144 8192 10240
No. of Threads

(b) Total No. of threads vs execution time

Figure 1: Performance of the parallel implementation of the
aggregate analysis algorithm on a multi-core CPU

affects the loop in line no. 3 of the algorithm, (iii) average
number of ELTs per Layer, |ELT|,,, which affects line no.
4 of the algorithm, and (iv) number of Layers, |L|, which
affects the loop in line no. 2 of the algorithm.

In the experiments for the sequential implementation it
was observed that there is a linear increase on running time
of executing the sequential version of the basic aggregate
analysis algorithm on a CPU using a single core when the
number of the number of events in a trial, number of trials,
average number of ELTs per layer and number of layers is
increased. For a typical aggregate analysis problem compris-
ing 1 million trials and each trial comprising 1000 events the
sequential algorithm takes 337.47 seconds, with over 65%
of the time for look-up of Loss Sets in the direct access
table, and with only over 31% of the time for the numerical
computations. This indicates that in addition to improving
the speed of the numerical computations, techniques to lower
the time for look-up can provide significant speedup in the
parallel implementations.

Figure 1 illustrates the performance of the basic aggregate
analysis algorithm on a multi-core CPU. In Figure la, a
single thread is run on each core and the number of cores

is varied from 1 to 8. Each thread performs aggregate
analysis for a single trial and threading is implemented by
introducing OpenMP directives into the C++ source. Limited
speedup is observed. For two cores we achieve a speedup
of 1.5x, for four cores the speedup is 2.2x, and for 8 cores
it is only 2.6x. As we increase the number of cores we
do not equally increase the bandwidth to memory which is
the limiting factor. The algorithm spends most of its time
performing random access reads into the ELT data structures.
Since these accesses exhibit no locality of reference they
are not aided by the processors cache hierarchy. A num-
ber of approaches were attempted, including the chunking
method described later for GPUs, but were not successful in
achieving a high speedup on our multi-core CPU. However
a moderate reduction in absolute time by running many
threads on each core was achieved.

Figure 1b illustrates the performance of the basic aggre-
gate analysis engine when all 8 cores are used and each
core is allocated many threads. As the number of threads
are increased an improvement in the performance is noted.
With 256 threads per core (i.e. 2048 in total) the overall
runtime drops from 135 seconds to 125 seconds. Beyond
this point we observe diminishing returns as illustrated in
Figure 1la.

B. Results from the many-core GPU

In the GPU implementations, CUDA provides an ab-
straction over the streaming multi-processors, referred to
as a CUDA block. When implementing the basic aggregate
analysis algorithm on a GPU we need to select the number
of threads executed per CUDA block. For example, consider
1 million threads are used to represent the simulation of 1
million trials on the GPU, and 256 threads are executed on
a streaming multi-processor. There will be % ~ 3906
blocks in total which will have to be executed on 14
streaming multi-processors. Each streaming multi-processor
will therefore have to execute % ~ 279 blocks. Since the
threads on the same streaming multi-processor share fixed
size allocations of shared and constant memory there is a
real trade-off to be made. If we have a smaller number of
threads, each thread can have a larger amount of shared and
constant memory, but with a small number of threads we
have less opportunity to hide the latency of accessing the
global memory.

Figure 2 shows the time taken for executing the parallel
version of the basic implementation on the GPU when the
number of threads per CUDA block are varied between
128 and 640. At least 128 treads per block are required
to efficiently use the available hardware. An improved
performance is observed with 256 threads per block but
beyond that point the performance improvements diminish
greatly.

The optimised implementation of the aggregate risk anal-
ysis algorithm on the GPU platform aims to utilise shared

40 4

[}

©

&
Y

Time (sec)
w
o

@
o
@

38

128 256 512 640

384
No. of Threads per Block

Figure 2: Graphs plotted for number of threads vs the time
taken for executing the parallel implementation on many-
core GPU

and constant memory as much as possible by processing
“chunks”, blocks of events of fixed size (referred to as chunk
size), to improve the utilisation of the faster shared memories
that exist on each streaming multi-processor. Further to op-
timise the implementation, loops are unrolled, the precision
of variables are reduced by changing the double variables
to float variables, and data from both shared and global
memory are migrated to the kernel registry. The optimised
algorithm has a significantly reduced runtime from 38.47
seconds down to 20.63 seconds, representing approximately
a 1.9x improvement.

C. Results from the multiple GPU

Figure 3 illustrates the performance of the optimised
aggregate analysis algorithm on multiple GPUs. A CPU
thread is used to employ an available GPU for executing
the aggregate analysis problem which is decomposed. In
the experiments performed the aggregate analysis algorithm
is executed using one, two, three and four GPUs. A much
higher speedup is achieved on the multi-GPU over single
GPU; the time taken for look-up of Loss Sets in the direct
access table drops from 20.1 seconds to 4.25 seconds and the
time for all Financial-Term and Layer-Term computations
drop from 0.11 seconds to 0.02 seconds. The results from
the multiple GPU show approximately 100% efficiency.
The best average time obtained for executing the optimised
algorithm on four GPUs is 4.35 seconds which is around 5x
times faster than the time taken on the many-core GPU and
4x times faster than the time taken by the implementation
executing on a single GPU of the multi-GPU machine.

Figure 4 shows the performance of the optimised aggre-
gate analysis algorithm on four GPUs when the number
of threads per block is varied from 16 to 64. Experiments
could not be pursued beyond 64 threads per block due to
the limitation on the block size the shared memory can use.
The best performance of 4.349 seconds is achieved when the
number of threads per block is 32; this is so as the block

~&-Average total

Average total time in seconds
©

0
1 2 3 4
Number of GPUs

Figure 3: Graphs plotted for number of GPUs vs the time
taken for executing the optimised parallel implementation
on multiple GPUs

4.440

——0n4 GPUs
4.420
4.400

4.380

4.360

Average total time in seconds

4.340

4.320

16 32 48 64
Number of threads per block

Figure 4: Graphs plotted for the number of threads per block
size for four GPUs vs the time taken for executing the
optimised parallel implementation on multiple GPUs

size is the same as the WARP size of the GPU whereby an
entire block of threads can be swapped when high latency
operations occur. Increasing the number of threads per block
does not improve the performance owing to shared memory
overflow.

V. DISCUSSION

Figure 5 and Figure 6 summarises the results obtained
from all the experiments of (a) a classic sequential imple-
mentation on the CPU, (b) a parallel implementation on the
multi-core CPU, (c) a parallel implementation on the many-
core GPU, (d) an optimised parallel implementation on the
many-core GPU, and (e) an optimised parallel implementa-
tion on the multi-GPU.

Figure 5 shows the decrease in the total time taken
for executing the aggregate analysis problem for 1 Layer,
15 Loss Sets and 1 million Trials with 1000 catastrophic
Events per Trial from 337.47 seconds for a classic sequen-
tial implementation on the CPU to just 4.35 seconds for

350 337.47 me
u Average total time in
sec: e

seconds for th
re; is| lysis

300 Algori

250

200

150

1
100
50 38.49
20.63
: R

Classic Sequential on Parallel on Multi-core ~Parallel on Many-core

Time in seconds

Optimised Parallel on Optimised Parallel on

23.5
CPU CPU GPU Many-core GPU Multi-GPU

Figure 5: Bar graphs plotted for the average total time for
executing (a) the sequential implementation on the CPU,
(b) the parallel implementation on the multi-core CPU, (c)
the parallel implementation on the many-core GPU, (d) the
optimised parallel implementation on the many-core GPU,
(e) and the optimised parallel implementation on the multi-
GPU

an optimised parallel implementation on four GPUs. The
parallel implementation on the multi-core CPU takes 123.5
seconds which is approximately 1/3™ the time taken for the
classic sequential implementation. This speedup is due to
the use of multiple cores of the CPU, and there are memory
limitations to achieve any further speedup. The time taken
for executing the parallel implementation on the many-core
GPU is reduced further by approximately 1/3" to 38.49
seconds over the multi-core CPU. This speedup is achieved
due to the GPU architecture which offers lots of cycles
for independent parallelism, fast memory access and fast
numerical computations. The time taken for executing the
optimised parallel implementation on the many-core GPU
is reduced further by approximately half to 20.63 seconds
over the many-core GPU. The speedup achieved in this case
is attributed to four optimisations in the form of (i) chunking,
(ii) loop unrolling, (iii) reducing the precision of variables
and (iv) migrating data to kernel registry. The optimised
parallel implementation on the multiple GPU takes 4.35
seconds which is approximately only 1/75" the time taken
by the CPU; the speedup in this case is achieved due to
optimisations and the use of multiple GPUs.

Figure 6 shows the percentage of time taken for (a)
fetching Events from memory, (b) look-up of Loss Sets
in direct access table, (¢) Financial-Term computations, (d)
Layer-Term computations, and (e) both Financial-Term and
Layer-Term computations. The best time taken for fetching
Events from memory in the sequential implementation on
the CPU is over 10 seconds, in the parallel implementation
on the multi-core CPU is nearly 6 seconds, in the parallel
implementation on the many-core GPU is nearly 4 seconds,
in the optimised implementation on the many-core GPU is

less than 0.5 seconds and on the multi-GPU is less than 0.1
seconds. Precisely the most optimised implementation on the
multi-GPU has an improvement of 100 times for the time
taken in fetching Events from memory over the sequential
implementation on the CPU.

The majority of the total time taken for executing the
aggregate analysis problem is for the look-up of Loss Sets
in the direct access table. While the classic sequential
implementation requires 222.61 seconds for the look-up,
the optimised implementation on the multi-GPU only re-
quires 4.25 seconds, which is an improvement of 50 times.
However, there is scope for improvement to bring down the
time. Surprisingly, on the multi-GPU 97.54% of the total
time (4.33 seconds) is for look-up. This calls for exploring
optimised techniques for look-up in the direct access table
to further reduce the overall time taken for executing the
aggregate analysis problem.

The numerical computations, including both the
Financial-Term and Layer-Term computations take 104.67
seconds for the sequential implementation on the CPU
and only 1/10" that time for the parallel implementation
on the CPU. The most optimised implementation takes
merely 0.02 seconds on the multi-GPU platform which
is approximately 5000 times faster than the sequential
implementation on the GPU. The cutting edge technology
offered by GPU architectures for numerical computations
is fully harnessed to significantly lower the computational
time in the aggregate analysis algoritm.

To summarise, the results obtained by profiling of time
indicates that the optimised implementation on the multi-
GPU platform is a potential best solution for real-time
aggregate risk analysis; the implementation is 77x faster than
the sequential implementation.

VI. CONCLUSION AND FUTURE WORK

In short, this paper has presented the aggregate risk analy-
sis algorithm, and its sequential and parallel implementations
on multi-core CPUs and many-core GPUs. Large data is
provided as input for aggregating risks across the Layers, and
therefore, challenges such as efficiently organising input data
in limited memory available, and defining the granularity
at which parallelism can be applied to the aggregate risk
analysis problem for achieving speedup is considered. While
the implementation of the algorithm on the multi-core CPU
provides a speedup of nearly 3x times over the sequential
implementation, the basic GPU implementation provides
a speedup of approximately 9x times over the sequential
implementation on the CPU. The most optimised implemen-
tation provides a speedup of 16x times on the GPU and a
speed up of 77x on a multi-GPU over the CPU. It is notable
that the acceleration has been achieved on relatively low
cost and low maintenance hardware compared to large-scale
clusters which are usually employed. These results confirm

90

80

60

50

40

30

20

86.78

65.96
62.36

31.02

26.19

10.70

7.58 8.23

4.83
3.02

=

0.65

20.58

26.94

97.43 97.54
™ Percentage of time
for fetching Events
from memory

I Percentage of time
for look-up of Loss
Sets in the direct
access table

= Percentage of time
for Financial-Term
computations

HPercentage of time
for Layer-Term
computations

OPercentage of time
for all (Financial-
Term and Layer-
Term) computations

2.04

1.95
I

039 015 0.53 0.46 005 0.50

Classic Sequential on CPU Parallel on Multi-core CPU

Parallel on Many-core GPU

Optimised Parallel on Many-core GPU Optimised Parallel on Multi-GPU

Figure 6: Bar graphs plotted for the percentages of (a) time for fetching Events from memory, (b) time for look-up of Loss
Sets in the direct access table, (c) time for Financial-Term computations, (d) time for Layer-Term computations, and (e)
time for all (Financial-Term and Layer-Term) computations

the

feasibility of achieving high-performing aggregate risk

analysis using large data for real-time pricing.

Future work will aim to investigate the use of compressed
representations of data in memory, to optimise the GPU and
CPU computations for a hybrid implementation, to evaluate
the most optimised GPU implementation for handling larger
data than what was employed in the research reported in

this

paper, and to incorporate secondary uncertainty in the

computations.

(1]

(2]

(3]

(4]

(]

(6]

REFERENCES

T. S. Coleman and B. Litterman, Quantitative Risk Manage-
ment, + Website: A Practical Guide to Financial Risk. Wiley,
2012.

G. Connor, L. R. Goldberg, and R. A. Korajczyk, Portfolio
Risk Analysis. Princeton University Press, 2010.

M. B. Giles and C. Reisinger, “Stochastic finite differences
and multilevel monte carlo for a class of spdes in finance,”
SIAM Journal of Financial Mathematics, vol. 3, no. 1, pp.
572-592, 2012.

K. Smimou and R. K. Thulasiram, “A simple parallel al-
gorithm for large-scale portfolio problems,” Journal of Risk
Finance, vol. 11, no. 5, pp. 481-495, 2010.

A. J. Lindeman, “Opportunities for shared memory paral-
lelism in financial modelling,” in Proceedings of the IEEE
Workshop on High Performance Computational Finance,
2010.

G. G. Meyers, F. L. Klinker, and D. A. Lalonde, “The aggre-
gation and correlation of reinsurance exposure,” in Casualty
Actuarial Society Forum, 2010, pp. 69-152.

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

W. Dong, H. Shah, and F. Wong, “A rational approach
to pricing of catastrophe insurance,” Journal of Risk and
Uncertainty, vol. 12, no. 2-3, pp. 201-218, 1996.

R. M. Berens, “Reinsurance contracts with a multi-year
aggregate limit,” in Casualty Actuarial Society Forum, 1997,
pp. 289-308.

R. R. Anderson and W. Dong, “Pricing catastrophe rein-
surance with reinstatement provisions using a catastrophe
model,” in Casualty Actuarial Society Forum, 1998, pp. 303—
322.

D. Cummins, C. Lewis, and R. Phillips, “Pricing excess-of-
loss reinsurance contracts against catastrophic loss,” in The
Financing of Catastrophe Risk, K. A. Froot, Ed. University
of Chicago Press, 1999, pp. 93-148.

Y.-S. Lee, “The mathematics of excess of loss coverages
and retrospective rating - a graphical approach,” in Casualty
Actuarial Society Forum, 1988, pp. 49-77.

R. S. Miccolis, “On the theory of increased limits and excess
of loss pricing,” in Casualty Actuarial Society Forum, 1977,
pp. 27-59.

G. Woo, “Natural catastrophe probable maximum loss,”
British Actuarial Journal, vol. 8, 2002.

M. E. Wilkinson, “Estimating probable maximum loss with
order statistics,” in Casualty Actuarial Society Forum, 1982,
pp. 195-209.

E. Kremer, “On the probable maximum loss,” Blatter der
DGVFM, vol. 19, no. 3.

[16] A. A. Gaivoronski and G. Pflug, “Value-at-risk in portfolio
optimization: Properties and computational approach,” Jour-
nal of Risk, vol. 7, no. 2, pp. 1-31.

[17] P. Glasserman, P. Heidelberger, and P. Shahabuddin, “Portfo-
lio value-at-risk with heavy-tailed risk factors,” Mathematical
Finance, vol. 12, no. 3, pp. 239-269.

[18] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of
Algorithms, vol. 51, no. 2, pp. 122-144, May 2004.

