
Implementing OLAP Query Fragment Aggregation and Recombination for the
OLAP Enabled Grid

Michael Lawrence1, Frank Dehne2, and Andrew Rau-Chaplin3

1University of British Columbia 2Carleton University 3 Dalhousie University
Dept. of Computer Science School of Computer Science Faculty of Computer Science

Vancouver, BC, Canada Ottawa, ON, Canada Halifax, NS Canada
mklawren@cs.ubc.ca frank@dehne.net arc@cs.dal.ca

Abstract

In this paper we propose a new query processing method
for the OLAP Enabled Grid, which blends sophisticated
cache extraction techniques and data grid scheduling to ef-
ficiently satisfy OLAP queries in a distributed fashion. The
heart of our approach is our query Fragment Aggregation
and Recombination (FAR) strategy that partitions OLAP
queries into subqueries which can be effectively answered
by retrieving and aggregating multiple fragments of cached
data from nearby grid sources, or as a last resort, more re-
mote backend data warehouses. We have implemented and
experimentally evaluated our query processing method and
found that our strategy reduces query time between 50%
and 60% for practical user cache sizes and network param-
eters.

1 Introduction

Many enterprises are generating massive amounts of data
on a day-to-day basis measuring various facets of their op-
erations. In an On-Line Analytical Processing (OLAP) en-
vironment, users pose queries on this data whose answers
are used to drive the decision making process. They are in-
terested in identifying and analyzing the trends and anoma-
lies hidden within the data. Typically, OLAP queries make
heavy use of aggregation, and may take a long time to
compute due to the large amounts of data which must be
scanned.

It is natural for the data of an enterprise to be stored at
the location where it is generated. Many enterprises oper-
ate in a highly distributed fashion, and hence the locations
holding the actual data may be distributed at distant sites

1-4244-0910-1/07/$20.00 c©2007 IEEE.

from one another. For example consider the international
manufacturing and sales enterprise shown in Figure 1, with
its operational sites distributed at different locations all over
the world. Each site records data in which the members of
the enterprise wish to identify trends and anomalies using
OLAP techniques. One of the regional offices is exposed
showing that it contains one database server, six user agents
with local caches and a site broker on its local area network.
Individuals in this enterprise may use OLAP techniques to
gain information about the quantity of sales of an item dur-
ing a particular time period, organized by geographical re-
gion, or perhaps about the rate and types of manufacturing
defects produced over time.

Office

Regional

Office

U

B

Single Site

Research Lab

Facility

Manufacturing

Centre

Distribution

Head

Office

Data Centre

Office

Regional

Regional

Office

U

U

U

U

U

DB

Regional

Figure 1. A distributed enterprise.

The standard approach to OLAP for such an enterprise
would be to construct a single, centralized data warehouse
at the data centre, by extracting and integrating all of the en-
terprise’s data in that location. This data warehouse would
then be the sole site which computes analytical queries for
the entire enterprise. Although simple, this approach suffers
from significant scalability problems in terms of the num-
ber of users, sites and amount of data that can be effectively
managed.

Recently there has been growing interest in the design
of grid based OLAP applications [1, 12, 13]. In [1], a grid
application for performing data mining and OLAP tasks on
heterogeneous health care data was described. The focus
here was primarily on the application and data integration
issues, rather than efficiency issues. In [13] the focus was on
the challenging problem of constructing OLAP datacubes in
a grid environment. Although query processing was briefly
addressed the proposed approach is quite simplistic. It did
not make use of cached results which is the key to effi-
ciency in the grid OLAP setting because of the high net-
work latency and relatively low bandwidth between widely
geographically dispersed grid entities. In [12] the authors
sketched a model for the OLAP Enabled Grid. The idea
was to take advantage of the hierarchal structure of a typi-
cal enterprise grid and use collaborative caching to reduce
the need to collect data from distant sites.

Our work here focuses on the query fragmentation as-
pect, giving new details and algorithms which are experi-
mentally evaluated. We introduce a new query processing
scheme for OLAP in a grid that carefully blends sophisti-
cated cache extraction techniques and data grid scheduling
to efficiently satisfy queries in a distributed fashion. The
heart of our approach is the query Fragment Aggregation
and Recombination (FAR) strategy that partitions OLAP
queries into subqueries which can be effectively answered
by retrieving and aggregating fragments of cached data
from nearby sources, or as a last resort, more remote back-
end data warehouses. Tier 1 of our query processing algo-
rithm makes efficient use of many cooperating user caches
on the same site as the query initiator. Those subqueries
that can not be resolved locally are then passed on to Tier
2 processing which schedules them over remote servers on
distant sites, based on data grid scheduling mechanisms.

In order to evaluate the FAR query processing method in
the grid context we have implemented the principle compo-
nents of our grid application, namely the cache index search
of the Site Brokers, as well as the cache admission con-
troller and subsystem responsible for fetching cached frag-
ments on the users. We have benchmarked this implemen-
tation with a focus on evaluating the benefit of our query
processing approach that aggregates and recombines bits of
cached OLAP data in order to answer as much of a query
locally as possible. Our experiments show that our FAR
approach results in a significant reduction in query cost as
opposed to directly sending queries to the backend. For
caches of from 50 to 250MB in size we observe a reduc-
tion in query time of 50% and 60% and a corresponding
reduction in non-local traffic.

2 Background

A typical data warehouse stores its information accord-
ing to a star schema having a central fact table with d fea-
ture attributes (dimensions), and some number of measure
attributes. For example, a simple fact table might consist of
3 feature attributes (A,B,C) and a single measure attribute
(SALES). In addition to the fact table, there are often di-
mension tables which give further details about the dimen-
sions. These details often define a hierarchy on the values of
a dimension. For example, time forms a hierarchy on week,
month, and year.

A common type of query in OLAP data warehousing is
the range-aggregate query, performed using the SELECT
and GROUP BY clauses in the Standard Query Language
(SQL). In such queries, the user requests aggregated mea-
sure values for sets of records which are grouped by their
values for a particularly interesting subset of the feature di-
mensions. Our techniques in this paper apply to the com-
monly used non-holistic set of aggregation functions, where
the correct answer can be formed by an aggregation of ag-
gregates.

Aggregate queries in OLAP are categorized by the di-
mensions they choose to group by, and the aggregated table
resulting from such queries are called views. For example,
starting from the fact table (A,B,C) if we group results by
A and B, aggregating each unique (A,B) pair over all values
of C, we get a new view, namely (A,B). In the case that a
query contains selection ranges on one or more of the di-
mensions, its results represent a view fragment. If a data
warehouse has d dimensions, and the number of elements
in dimension i’s hierarchy is Hi (where non-hierarchal di-
mensions D have the size 2 hierarchy D → “all”), then the
total number of possible views is

∏d
i=1(Hi) .

Harinarayan et. al. introduced the data cube lattice in [7],
expressing the relationship between views as a partial order
(directed acyclic graph). Each view is a node, and there is
a path from a view v to a view w in the lattice if queries
on w can be answered also using v. This occurs when w
groups on a subset of v’s dimensions, each at the same or
lower levels of their respective hierarchies. For data ware-
houses with dimension hierarchies the data cube takes the
form of a general partial order, however without dimension
hierarchies it is a hypercube. More precisely, a view v can
be represented as a tuple of d values (v1, v2 . . . , vd), where
vi is the level of dimension i’s hierarchy that v groups on.
The partial order amongst views as defined by the lattice is
v � w iff vi �i wi, where �i is the partial order defined by
dimension i’s hierarchy. The complete data cube lattice for
a fact table having feature dimensions (A,B,C) is shown in
Figure 2.

To represent queries and fragments, we follow the
approach of [9] and associate with each vi an inter-

val representing the range of values selected by a query
or contained by a fragment. Hence for a view v =
(v1, v2, . . . vd), a query on v is of the form q =
((q1, v1), (q2, v2), . . . (qd, vd)), where qi is a [min,max] in-
terval representing the selection range on attribute vi. A
fragment of a view v (resulting from a query on v) can be
aggregated to produce fragments on descendants of v so
long as it contains the entire range of values for those di-
mensions which are aggregated out. Figure 2 also shows
view fragments having 3, 2, and 1 dimension and the rela-
tionship between those view fragments.

Fragments of C

ABC

AB AC BC

A B C

of AC

Fragment

Fragment

of ABC

all

C

A

C

B

C

A

Figure 2. The data cube lattice and 3, 2, and 1
dimensional view fragments.

3 The OLAP Enabled Grid

Query processing in our application, the OLAP Enabled
Grid [10, 12], proceeds based on the observation that the
structure of an enterprise grid is typically hierarchal: there
are a number of sites in the organization, each having a
number of computational entities. Each site is a location
where the enterprise has operations, and it is the case that
transmission within a site is much faster than transmission
between sites (e.g. LAN vs. WAN transmission). The enti-
ties at a site are attached computers (sequential or parallel)
which are able to participate in the OLAP process, for ex-
ample a user’s workstation or a database server. The details
of one of the sites (a regional office) of the example enter-
prise from the introduction are exposed in Figure 1, reveal-
ing the various entities attached to a site.

Each entity has a role according to the functionality it
offers for query processing in the OLAP Enabled Grid. We
categorize entities into four different roles based on their
participation.

1. Database Server - A machine which manages an oper-
ational database in the enterprise. The data maintained
by different Database Servers is independent.

2. Compute/Storage Server - A machine which offers
storage space and processing power to the grid.

3. Site Broker - Responsible for the organization and co-
ordination of resources within that site.

4. User Agent - The workstation of a user performing
OLAP operations on the data managed by the Database
Servers. Each User Agent maintains a cache for stor-
ing results of previously answered queries.

In the OLAP Enabled Grid, a Compute/Storage Server
on a site is used to implement the functionality of an OLAP
Server on the data maintained by one or more of that site’s
Database Servers. In order to provide high scalability, we
have multiple redundant OLAP Servers per Database Server
(depending on the availability of Compute/Storage Servers
on the site). We refer to the collection of redundant OLAP
Servers for a particular Database Server’s data as a Grid
OLAP Service for that data. All of the Grid OLAP Services
use a common data warehouse schema, and the data of the
enterprise is partitioned horizontally (by dimension value)
across the Grid OLAP Services. For a detailed overview
of the system components and their corresponding layers of
the Open Grid Services Architecture [6], see [10]. In the
following section we describe how the Site Broker, User
Agents, and OLAP Servers participate together in order to
process queries in the OLAP Enabled Grid.

4 Query Processing Algorithms

This section describes our two-tiered query processing
strategy and the algorithms for partitioning a query and an-
swering subqueries from cached data. Tier 1 of the query
processing uses the User Agents’ caches on the local site
in a cooperative manner to answer as much of the query as
possible, due to the fact that transmission within a site is
much quicker than between sites. Tier 2 sends subqueries
for the missing fragments to other sites which may contain
data for these fragments (we use the bounding box approach
as in [12] to determine this), where they are answered using
a grid scheduling approach. The entire process is outlined
in Algorithm 1. Tier 1 is performed in Steps 1 to 9 of the al-
gorithm, while Tier 2 is performed in Steps 10 to 18. Note
that many of the steps in the algorithm are asynchronous
due to the fact that they are performed on different entities.

4.1 Tier 1: Local Cache Extraction

The first tier in the query answering process consists
of extracting cached query results relevant to the incom-
ing query. In order to identify fragments on views higher
up in the lattice which can be aggregated, the Site Broker
implements an aggregate aware index on the collection of

Algorithm 1 Two-Tiered Query Answering Overview
1: User Agent U sends query q to its local Site Broker B.
2: B performs the FAR cache search to find a set of cached

fragments F for q.
3: B formulates subqueries for the remaining parts of q.
4: B sends the fragmentation plan back to U .
5: for all cached fragments f in F on a User Agent U ′ do
6: Send a request for f to U ′.
7: U ′ performs any necessary aggregation and returns

f .
8: U checks if f should replace other fragments in its

cache.
9: end for

10: for all sub-queries q′ in the fragmentation plan do
11: for all Grid OLAP Services G to which q′ should be

sent do
12: U sends q′ to the broker B′ at G’s site.
13: for all OLAP Servers S for G do
14: B′ checks to see how quickly S can answer q′.
15: end for
16: B′ sends q′ to the OLAP Server Smin which can

answer it the quickest.
17: Smin answers q′ and sends the result back to U .
18: end for
19: end for
20: for all Fragments f received from remote OLAP

Servers do
21: U checks if f should replace other fragments in its

cache.
22: end for
23: U notifies B of any cache updates.
24: U combines the retrieved fragments into the overall

query result.

locally cached data. The index consists of the data cube lat-
tice structure, with an R-Tree for each view indexing cached
fragments of that view.

In order to identify a set of locally cached fragments to
answer subparts of the query, our index lookup (Step 2 of
Algorithm 1) consists of a variation of a breadth first search
up the lattice. It begins at the view over which the origi-
nal query was posed, and identifies fragments at this view
which overlap in part with the query. The parts of the query
which can be answered from these overlapping fragments
are subtracted, and the search proceeds recursively up the
lattice with the set of subqueries for which no overlapping
cached fragments have yet been found. We do not formu-
late subqueries for fragments at higher levels in the lattice
than the original query, since these fragments are less ag-
gregated, containing more data and hence taking longer to
transfer from the remote servers. Our cache search is sim-
ilar to an aggregate aware caching proposal by Deshpande

and Naughton [5], except theirs is based on a discrete parti-
tioning of views and query results into equal sized chunks,
where as ours uses rectangle geometry to identify fragments
and partition a query.

When the search terminates at the view containing all
of the dimensions in the fact table, it has identified a set
of cached fragments which are stored on User Agents on
the local site, and a set of subqueries which must be an-
swered using the backend OLAP Servers in Tier 2. We re-
fer to this as the fragmentation plan, which is returned to
the User Agent from the Site Broker following the cache
index lookup.

In order to implement the FAR cache search as described
above, we need an algorithm which computes a set of sub-
queries Q given a query q and a set of intersecting view
fragments F . Geometrically, this is the difference between
q and the union of all fragments in F . An example is shown
in Figure 3. Figure 3(a) shows a query q on a two dimen-
sional view and two intersecting fragments f1 and f2, and
subfigures (b) and (c) show possible solutions. Algorithm
2 gives our iterative algorithm over the dimensions of the
query which subtracts a single fragment from a query and
gives the set of subqueries. For each dimension, there are
3 cases (Steps 4, 16, and 21) which determine the range on
that dimension of the query which will be used in further
iterations (qI), and the queries which are added to the cu-
mulative solution (qL, qR). The solution (b) of Figure 3 is
found if the horizontal dimension is visited first in the loop
of Step 3 of the Algorithm 2, and the solution (c) of the
figure if the vertical dimension is visited first. By conven-
tion we use half-open intervals to avoid overlap of the end-
points in the algorithm. An algorithm which computes the
desired set Q given the set F is given in Algorithm 3. This
algorithm also determines which fragments in F are actu-
ally necessary, since there may be fragments in F which
are completely contained in the union of other fragments
in F . The overall FAR cache search algorithm is based on
breadth-first search and is given as Algorithm 4. An ex-
tensive complexity analysis is withheld here due to space
limitations, but we believe that the size of the fragmenta-
tion plan returned by a Site Broker on Step 4 of Algorithm
1 is proportional to the product of the number of dimen-
sions and the number of cached fragments which intersect
with the query.

In the following section we describe Tier 2 query pro-
cessing, which occurs in Steps 10 to 18 of Algorithm 1.
Of key importance is our scheduling mechanism over the
redundant OLAP Servers of a Grid OLAP Service, which
occurs in Steps 13 to 17 of the algorithm. Following this,
an empirical evaluation aimed at validating the performance
of our local cache extraction method (FAR) under practical
conditions is found in Section 5.

f

q

2f

1

(a) Input problem

3

1

q
5

q

q
2

q
4

q

q

(b) Solution 1

3

1q

q
2

q
4

q
5

q

q

(c) Solution 2

Figure 3. Subquery formulation.

Algorithm 2 Compute Query Fragment Diff
Input: Query q = ((q1, v1), (q2, v2), . . . (qd, vd)), Frag-

ment f = ((f1, v1), (f2, v2), . . . (fd, vd)) such that
f ∩ q 6= ∅

Output: Set Q of non-intersecting subqueries of q such
that q =

⋃
q′∈Q q′∪(f∩q) and no query in Q intersects

with f .
1: Q← ∅
2: qI ← q
3: for all i such that vi 6= all do
4: if qi contains fi then
5: if min(qi) < min(fi) then
6: qL ← qI

7: ith range in qL← (min(qi),min(fi))
8: Q← Q ∪ {qL}
9: end if

10: if max(qi) > max(fi) then
11: qR ← qI

12: ith range in qR ← (max(fi),max(qi))
13: Q← Q ∪ {qR}
14: end if
15: Replace ith range in qI with fi

16: else if max(qi) > max(fi) then
17: qR ← qI

18: min of ith range in qR ←max(fi)
19: Q← Q ∪ {qR}
20: ith range in qI ← (min(qi),max(fi))
21: else if min(qi) < min(fi) then
22: qL ← qI

23: max of ith range in qL←min(fi)
24: Q← Q ∪ {qL}
25: ith range in qI ← (min(fi),max(qi))
26: end if
27: end for

4.2 Tier 2: Query Scheduling

Once the User Agent has received a fragmentation plan
for its query from the Site Broker, it begins issuing requests
for subqueries to the Grid OLAP Services on the various
sites. The Site Brokers at each site also implement the Grid

Algorithm 3 Compute Subqueries
Input: Query q = ((q1, v1), (q2, v2), . . . (qd, vd)) Set of in-

tersecting fragments F
Output: Set F ′ ⊆ F such that q ∩

⋃
f ′∈F ′ f ′ = q ∩⋃

f∈F f . Set Q of non-intersecting subqueries of q such
that q =

⋃
q′∈Q q′ ∪

⋃
f ′∈F ′(f ′ ∩ q) and no query in Q

intersects with a fragment in F ′.
1: Q← {q}
2: F ′ ← ∅
3: for all f ∈ F do
4: Q′ ← ∅
5: for all q′ ∈ Q do
6: if f intersects q′ then
7: Q′ ← Q′ ∪

Compute Query Fragment Diff(q′, f)
8: F ′ ← F ′ ∪ {f ∩ q′}
9: end if

10: end for
11: Q← Q′

12: end for

Algorithm 4 FAR Cache Search
Input: Query q = ((I1, v1), (I2, v2), . . . , (Id, vd))
Output: Set of fragments F of q which are cached, and a

set of sub-queries Q of q which need to be answered by
the OLAP servers.

1: F ← all cached fragments intersecting q as found by
searching the R-Tree of view (v1, v2, . . . vd)

2: F,Q← Compute Subqueries(q, F)
3: Queue← Parents((v1, v2, . . . vd))
4: while Queue 6= ∅ and Q 6= ∅ do
5: v ← Queue.dequeue()
6: for q′ ∈ Q do
7: Re-write q′ over view v
8: F ′ ← all cached fragments intersecting q′ as

found by searching the R-Tree of view v
9: F ′, Q′ ← Compute Subqueries(q′, F ′)

10: if Q′ = ∅ then
11: F ← F ∪ F ′

12: Q← Q\{q′}
13: end if
14: for v′ parent of v do
15: if v′ /∈ Queue then
16: Queue.enqueue(v′)
17: end if
18: end for
19: end for
20: end while

OLAP Services, by choosing which of the redundant OLAP
Servers for that Grid OLAP Service to send each particular
incoming query to. Our approach is similar to previous grid

schedulers [14,15], except using a cost modeling specific to
range aggregate OLAP queries. The query is scheduled on
the OLAP Server which estimates it can answer it and return
the results to the user the quickest. This depends on both
the CPU and network interface load on the various servers,
their processing speed, disk bandwidth and load, as well
as materialized indexes and views on the data as explained
below.

We express the time to answer a query q on a particular
OLAP Server S and return the results to the user as

t(q, S) = tc(q, S) + tn(q, S)

where tc is the computation time and tn is the network
transfer time back to the user who requested it. When a
Site Broker receives a query q for a particular Grid OLAP
Service, it polls each OLAP Server S for that Grid OLAP
Service, asking S to compute tc(q, S) and tn(q, S).

In the OLAP-Enabled Grid, we use R-Trees to index the
data stored on each block of external memory, which is or-
dered on disk according to a multidimensional space-filling
curve as in [2–4]. In those studies, we have observed that
the time to answer a query is proportional to the amount of
data which must be read from disk, which in turn depends
on the selection ranges of the query and the materialized
view which will be used to answer it. tc(q, S) can then be
expressed as a function of the amount of data d(q, S) to be
read from disk and the available bandwidth and load on S’s
disk system, as in

tc(q, S) =
d(q, S)

disk bandwidth(S)

d(q, S) itself depends on the materialized view of S which
q will be answered on. In the OLAP-Enabled Grid, S main-
tains a reference a(v) to the smallest materialized ancestor
of each view v in the lattice, and upon receiving a query
q, it translates q over a(view(q)). It can then use statis-
tics about the selectivity of the dimensions in a(view(q)) to
approximate the amount of data to be read to answer q on
a(view(q)), and estimate the time this would take by check-
ing the current load and available bandwidth of its disk sys-
tem.

The estimation of tn(q, S) is relatively straightforward.
If S is on a different site from the user, it depends on both
the available bandwidth of the link from S to the gateway
of the site and on the available bandwidth across the link to
the user’s site. Information of this nature can be obtained
for example by using the Network Weather Service [17].
tn(q, S) is the estimated size of the query result divided by
the minimum of these two values. If S is on the same site as
the user, then tn(q, S) is the estimated size of the query re-
sult divided by the available bandwidth from S to the user.
The available bandwidth depends on various factors includ-
ing the load on S’s network interface, and on the load and
speed of the links.

5 Experimental Analysis

Our prototype implementation is a parallel program writ-
ten in the Python scripting language, with communication
between the entities (Site Broker, User Agents and OLAP
Servers) being achieved with Message Passing Interface
(MPI) bindings for Python. We use simulated data and data
warehouse servers, which respond based on parameters for
an estimated processing time and network bandwidth (both
local and remote).

A diagram illustrating the software architecture of our
implementation is shown in Figure 4. Each class is rep-
resented as a white rectangle, with classes which are pro-
grams being represented by a gray rectangle. Entities are
connected to MPI in the figure, and files are shown as white
rectangles with the corner folded in. All classes related
to the manipulation of the data cube and its properties are
grouped into the Cube Manager. The Cube Manager acts on
a single data cube lattice and schema which is constructed
by the XSDParser. The Cube Manager provides information
about View instances and their organization into a Lattice
instance. The relevant information about views for our im-
plementation are their size, dimensions, ranges of those di-
mensions, and the mapping between ranges for dimensions
organized into a hierarchy. Access to these properties and
functions allows for manipulation of Query and Fragment
instances over the lattice as required to perform the cache
search, indexing, and aggregation/grouping of OLAP data.
The number of records in each view is estimated using the
technique of [16] which is based on dimension cardinalities
and the number of records in the fact table.

StarSchema

Table

HierarchyMap

Range

Dimension

Query Fragment

AggregationSim

Logger

Cache

Object

Cache

Query

Stream

File

CacheIndex Logger

FragList

User Agents

Lattice

File

XSD

File

XSDParser

View

Lattice

Query Generator

Cube Manager

Graph

OLAPServersSiteBroker

Logger

AggregationSim

MPI

Files

Hierarchy

Figure 4. Software design.

The entities communicate asynchronously, the behaviour
of each being determined by an event loop. For example,
the event loop of the Site Broker waits until it has a message.
If the message is a query, it performs the FAR search, pro-

duces the fragmentation plan and sends it back. The User
Agents and OLAP Servers have AggregationSim objects,
which simulate the aggregation of data from disk, produc-
ing a stream of data. Additionally, the User Agents use a
Cache instance representing a collection of CacheObjects
which are dynamically added to or removed from the Cache
during the run, and can be requested by other users. Each of
the entities has a logger which records time stamped events
during the simulation, and our experimental data is gathered
by analyzing these logs.

5.1 Experiments

For all our tests, we use a lattice with 5 feature dimen-
sions and a single measure dimension sales. One of the
dimensions (time) has a 5-level non-linear hierarchy, while
another two dimensions have 2 and 3 level linear hierarchies
respectively. The total number of rows in the fact table is 10
million, resulting in a lattice with 288 views totaling 35 GB
in size.

We use two different types of query distributions in the
experiments. The uniform distribution spreads queries uni-
formly amongst views and their selection ranges amongst
dimension values. This is a difficult query load for caching
as there is no relationship between queries whatsoever. The
hot region distribution used in [8, 11] represents a more re-
alistic scenario where a subset of the aggregates are of par-
ticularly high interest to the users. In the hot region dis-
tribution a large percentage of the queries are distributed
amongst a small set of views (the “hot region”). We also
distribute the selection ranges according to a hot region on
their values.

Each User Agent is configured with a specified cache
size, a disk bandwidth, a query stream, and optionally a list
of fragments with which to initially fill the cache. Each
OLAP Server is configured with a disk bandwidth, a net-
work bandwidth to the local site, a fragment of the fact table
which specifies the partition of the overall data maintained
by that OLAP Server, and a list of materialized views at that
OLAP Server.

To measure the benefit of our cache extraction strategy,
we use the Detailed Cost Savings Ratio (DCSR) [9]

DCSR =

∑
q(timenocache(q)− timecache(q))∑

q timenocache(q)

which measures the reduction in overall query time
achieved by the cache as a percentage of query time with-
out a cache. In order to achieve this we also implemented a
version of the system with no caching components.

The first set of tests aims to determine the cache search
strategies’ ability to make effective use of increasing cache
space. We perform 5 independent runs using 5 different
hot region distributions on a site with 10 User Agents. For

each run, each User Agent initiates 10 queries over 2 hours,
and has a set of fragments used to initially warm its cache
which are generated from the same hot region distribution.
The size of each User Agent’s cache is varied from 50 MB
to 500 MB, so that the Site Broker indexes 500 MB of frag-
ments at the minimum and 5000 MB of fragments at the
maximum, or between 1.4% and 14% of the size of the en-
tire data cube lattice. We simulate a total of 5 Grid OLAP
Services (1 local and 4 remote), each having a small set of
randomly chosen materialized views and a disk bandwidth
of 80 MB/s. The DCSR of FAR as a function of cache space
per user is shown in Figure 5. Note that our FAR cache ex-
traction strategy allows a significant query time reduction
of 50% to 60% for caches between 50 and 250 MB in size.
For larger cache sizes the benefits of the FAR approach be-
gins to wane due to the increased cost of the cache search
and number of separate requests which must be made for
each query. The nature of this degradation in performance
is examined in the experiments that follow.

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400 450 500

D
C

S
R

 (
%

)

cache size per user (MB)

Figure 5. Cost savings of caching as cache
size per user is increased.

In order to better explore the apparent diminishing re-
turns FAR exhibits for large caches, we have further broken
down average query time into the three components queue
time, search time and backend time. Queue time is the time
that the query waits in the input queue of the Site Broker for
its fragmentation plan to be produced. Search time is the
time it takes for the Site Broker to perform the FAR cache
extraction. Backend time is the length of the time period
from when the User Agent receives the fragmentation plan
from the Site Broker to when it has received the last sub-
query result. The average query time for the FAR approach
broken down into these three components as cache size is
increased is shown in Figure 6. For the 50 MB caches, the
queueing time of queries is insignificant, as the Site Broker
is able to keep up with the number of requests it receives.
There is a large reduction in time at the backend from the
50 MB to the 100 MB caches, coupled with only a small in-

crease in search time and a minor increase in queueing time
(about 1/2 second on average), causing the overall query
time to be lower. As the caches increase in size from 100
MB however, the decrease in backend time does not make
up for the increase in cache search time and the resulting
increase in queue time. There is a substantial increase in
query time from 350 to 400 MB, where the cache search
time makes a large jump of roughly 2.5 seconds causing the
Site Broker to be taxed and consequently fail to service its
queue in a timely manner. For the experiments using the
uniform query distribution (not shown due to space limita-
tions), the cache search time does not increase as drastically
with cache size, enabling a much higher cost savings with
larger caches. It is important to note that the increase in
cache search time and the resulting increase in queue time
for the hot region queries is largely an artifact of our im-
plementation. Python, although extremely fast to imple-
ment in, is too slow to effectively implement the FAR cache
search process. We estimate that the cache search time and
corresponding queue time would be reduced by a factor of
50 to 100 in a well optimized C based implementation.

 0

 5

 10

 15

 20

 25

 30

 35

 40

50 100 150 200 250 300 350 400 450 500

T
im

e
 (

se
c)

cache size (MB)

Queue
Search

Backend

Figure 6. Average query time vs cache size,
by queue time, search time and backend
time. Hot region queries.

6 Conclusion

We have presented a new query processing scheme for
the OLAP Enabled Grid that blends sophisticated cache ex-
traction techniques and data grid scheduling to efficiently
satisfy queries in a distributed fashion. The heart of our
approach is our Fragment Aggregation and Recombination
(FAR) method that partitions OLAP queries into subqueries
which can be effectively answered by retrieving and aggre-
gating fragments of cached data from nearby sources, or as
a last resort, the backend data warehouses. We have imple-
mented and experimentally evaluated our query processing

method and found that our strategy reduces query time be-
tween 50% and 60% for practical sizes of users caches and
realistic network parameters. Given that our prototype im-
plementation performs well, the natural next step is to ex-
plore an optimized and scalable implementation using an ef-
ficient compiled language like C and a standard grid toolkit
such as Globus.

References

[1] P. Brezany, A. M. Tjoa, M. Rusnak, J. Brezanyova, and
I. Janciak. Knowledge grid support for treatment of trau-
matic brain injury victims. In Proc. ICCSA’03, 2003.

[2] Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin. Parallel
ROLAP data cube construction on shared-nothing multipro-
cessors. Distr. and Par. Databases, 15:219–236, 2004.

[3] F. Dehne, T. Eavis, and A. Rau-Chaplin. Parallel multi-
dimensional ROLAP indexing. In Proc. CCGrid’03, pages
86–93. IEEE, 2003.

[4] F. Dehne, T. Eavis, and A. Rau-Chaplin. The cgmCUBE
project. Distr. and Par. Databases, 19(1):29–62, 2006.

[5] P. Deshpande and J. F. Naughton. Aggregate aware caching
for multi-dimensional queries. In Proc. EDBT’00, 2000.

[6] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of
the Grid: Enabling scalable virtual organizations. J. of High
Performance Comp. Applications, 15(3):200–222, 2001.

[7] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Imple-
menting data cubes efficiently. In Proc. SIGMOD’96, 1996.

[8] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L. Tan.
An adaptive peer-to-peer network for distributed caching of
olap results. In Proc. SIGMOD’02, 2002.

[9] Y. Kotidis and N. Roussopoulos. A case for dynamic view
management. ACM Trans. Database Syst., 26(4):388–423,
2001.

[10] M. Lawrence. An Architecture and Caching Strategies for
Grid-Enabled OLAP. Master’s thesis, Dalhousie University,
September 2006.

[11] M. Lawrence. Multiobjective genetic algorithms for mate-
rialized view selection in olap data warehouses. In Proc.
GECCO’06, 2006.

[12] M. Lawrence and A. Rau-Chaplin. The OLAP-enabled grid:
Model and query processing algorithms. In Proc. HPCS’06,
2006.

[13] T. Niemi, M. Niinimaki, J. Nummenmaa, and P. Thanisch.
Applying grid technologies to XML based OLAP cube con-
struction. In Proc. DMDW’03, 2003.

[14] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri.
Scheduling high performance data mining tasks on a data
grid environment. In Proc. Euro-Par’02, 2002.

[15] S. Park and J. Kim. Chameleon: a resource scheduler in
a data grid environment. In Proc. CCGrid’03. IEEE, May
2003.

[16] A. Shukla, P. Deshpande, J. F. Naughton, and K. Ramasamy.
Storage estimation for multidimensional aggregates in the
presence of hierarchies. In The VLDB Journal, pages 522–
531, 1996.

[17] R. Wolski, N. T. Spring, and J. Hayes. The network weather
service: a distributed resource performance forecasting ser-
vice for metacomputing. Future Gener. Comput. Syst., 15(5-
6):757–768, 1999.

