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Abstract
Space-filling curves, particularly Hilbert curves, have

proven to be a powerful paradigm for maintaining spatial

groupings of multi-dimensional data in a variety of applica-

tion areas including database systems,data structures and

distributed information systems. One significant limitation

in the standard definition of Hilbert curves is the require-

ment that the grid size (i.e. the cardinality) in each dimen-

sion be the same. In the real world, not all dimensions are

of equal size and the work-around of padding all dimen-

sions to the size of the largest dimension wastes memory

and disk space, while increasing the time spent manipulat-

ing and communicating these “inflated” values.

In this paper we define a new compact Hilbert index

which, maintains all the advantages of the standard Hilbert

curve and permits dimension cardinalities of varying sizes.

This index can be used in any application that would have

previously relied on Hilbert curves but, in the case of un-

equal side lengths, provides a more memory efficient repre-

sentation. This is particularly important in distributed ap-

plications (Parallel, P2P and Grid), in which not only is

memory space saved but communication volume reduced.

1. Introduction

At the heart of many data intensive applications is the

need to store, manipulate and analyze large repositories

of multi-dimensional data. Such multi-dimensional data

comes in many forms [1–3,5,9,18,19,21,23,25,26,32,35]

including spectral elements in a parallel high resolution at-

mospherical global circulation model [11], tissue micro-

array data in a co-operative Grid-based oncology system

[34] or business oriented OLAP data [10].

A common challenge in all of these applications is how

best to group and order the multi-dimensional data to pro-

mote efficient processing. For one dimensional data, sort-

ing is an obvious approach as it groups data items that are

close together in the key dimension. For example, if we

have time-stamped transaction for a bank account, we may

first sort them by time in order to then efficiently compute

hourly, daily and monthly balances.

With multi-dimensional data the appropriate grouping

strategy is often less obvious. We may of course pick an or-

dering of the dimensions, say dim1, dim2, . . ., dimd, and

sort by it, but such an approach favours some dimensions

over others. Data items that are close in dim1 are likely to

be closely grouped, while items that share values in dim2,

. . ., dimd, but not dim1, may be very far apart. If, for ex-

ample, our data items represent points in 3D space which

ordering is better: x, y, z or z, x, y or one of the other four

possible orderings? Note that none of these orderings of the

dimensions captures the natural idea of locality, that is that

points that are close together in Euclidian space (and there-

fore more likely to interact in any physical simulation) are

grouped closely together in the resulting linear ordering.

A powerful and widely used paradigm for grouping

multi-dimensional data is the use of space-filling curves

[6, 8, 15, 17, 27, 31]. Space-filling curves are continuous

self-similar functions that map between a one-dimensional

interval and a multi-dimensional set. By convention, they

are generally defined as continuous mappings from the

unit interval to the unit n-dimensional hypercube. Origi-

nally formulated by Giuseppe Peano in 1890 [31] they have

since found applications in a variety of fields, including

mathematics [7], image processing [21], image compres-

sion [26], bandwidth reduction [30], cryptology [24], al-

gorithms [32], scientific computing [18], parallel comput-

ing [19], geographic information systems [1] and database

systems [5,20,23]. Such curves are good at maintaining lo-

cality in a linear ordering of multi-dimensional data. Points

that are close together in the original space with respect to

Euclidean distance, tend to be close together in the linear or-

dering defined by the curve. Of the space-filling curves, the

Hilbert curve (see Figure 1) has been shown to have particu-

larly strong locality preserving properties [27] and, as such,

has been the focus of considerable research, with numerous

algorithms constructed to compute it [4, 8, 17, 22, 28].

More formally, consider an n-dimensional lattice with
2m points per dimensions,

P = B
m × · · ·Bm

| {z }

n times

,
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where B
m = {0, 1}m. A standard Hilbert index is a func-

tion
H : P→ B

nm,

which maps each point to its index (interpreting x ∈ B
mn

as an integer in Z2mn ) on the Hilbert curve as it passes

through the lattice.

Hilbert curves have been extensively used to maintain

spatial groupings of multi-dimensional data in a wide va-

riety of applications. In database systems they are used

to map multi-dimensional data to linearly ordered external

memory (i.e. disk drives) [16]. In data structures they are

used to order multi-dimensional data to promote query ef-

ficiency [20]. And in distributed information systems they

are used to partition multi-dimensional data in such a way

that points that are close in Euclidian space are likely to be

allocated to the same or neighbouring processors. The idea

of using space-filling curves for partitioning has been key

to applications in parallel [10], P2P [33] and grid comput-

ing [34] settings.

One limitation in the definition of Hilbert curves is

the requirement that the grid size (i.e. the cardinality) in

each dimension be the same (i.e. 2m). In many appli-

cations involving points in 3D space, this is a relatively

harmless assumption but in information system applications

where one dimension may represent product id (cardinal-

ity 1, 000, 000) while another represents gender (cardinality

2) it can be extremely wasteful. The obvious solution of

padding all dimensions to the cardinality of the largest di-

mension wastes memory and disk space and increases pro-

cessing time and communication volume when manipulat-

ing and communicating these “inflated” values.
In this paper we define a new compact Hilbert index

which, while maintaining all of the advantages of the stan-
dard Hilbert curve, permits dimension cardinalities of vary-
ing size. More formally, consider an n-dimensional space

P
′ = B

m0 × · · · × B
mn−1 ,

where mi ∈ Z+ is the precision of the ith dimension (there
is an obvious injection U : P

′ → P that upsamples p ∈ P
′

by prepending zeroes to each component until they have
length m). Storing an element in P

′ requires M =
∑

i mi

bits. However, a Hilbert index must be calculated with re-
spect to a hypercube of precision m = maxi{mi} and re-
quires nm ≥ M bits of storage. Our compact Hilbert index
preserves completely the ordering of H on P

′, but requires
only M bits to represent. Formally, it is a mapping

H′ : P
′ → B

M , (1)

such that for all p1,p2 ∈ P
′,

H(U(p1)) < H(U(p2))⇐⇒ H′(p1) < H′(p2). (2)

Note that the compact Hilbert index can be used in any

application that would have previously relied on Hilbert

curves but, in the case of unequal side lengths, provides

a more memory efficient representation. This advantage

is particularly important in distributed applications (paral-

lel, P2P and grid computing), in which not only is memory

space saved but communication volume is reduced.

To explore the performance of compact Hilbert indices

we performed a series of experiments with both synthetic

and real multi-dimensional data. In both cases, in addi-

tion to significant space savings, the use of compact Hilbert

curves reduced the time required to order data in Hilbert

order. For example, for a four dimensional data-set ex-

tracted from a large Apache web log, compact Hilbert in-

dices achieved a data size reduction of 2.2 and sorting based

on these indices was 4.3 times faster than the dynamic com-

parison routine implemented in Moore’s library [28].

The remainder of this paper is organized as follows. In

Section 2 we review the definition of and algorithms for

computing Hilbert curves while emphasizing a geometric

perspective. In Section 3 we define the notion of compact

Hilbert indices and derive an algorithm for calculating the

mapping. In Section 4 we explore the performance of com-

pact Hilbert indices, in particular demonstrating much im-

proved sorting times as compared to competing techniques.

2. A Geometric Approach to Hilbert Curves

In this section we describe the standard Hilbert curve

from a geometric point of view and give an algorithm for

finding the index on the Hilbert curve of a given point in the

lattice. While motivated and derived geometrically, the re-

sulting algorithm a variant of the de facto standard method

presented by Butz [8] and implemented by Moore [28]. Our

geometric approach highlights the source of redundancy in

standard Hilbert indices and facilitates the development of

compact Hilbert indices in the following section.

Consider the traditional recursive geometric construction

of the two-dimensional Hilbert curve. The curve is initially

defined on a 2× 2 lattice with a ⊓ shape as shown in Figure

1. Given an order k curve defined on a 2k × 2k lattice we

define the curve on a 2k+1 × 2k+1 lattice as follows

1. Place a copy of the curve, rotated 90◦ counter clock-

wise, in the lower right cell.

2. Place a copy of the curve, rotated 90◦ clockwise, in

the lower left cell.

3. Place a copy of the curve in each of the upper cells.

4. Connect these four disjoint curves.

The first four iterations of this method are shown in Fig-

ure 1.

Figure 1. First four iterations of the 2D Hilbert

curve, standard view.
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The basic unit of the Hilbert curve is the familiar ⊓
shape, which may be uniquely parameterized by consider-

ing the entry and exit points into the square lattice of points

being walked through. Using the same approach as that

taken in [4], Figure 2 illustrates the Hilbert curve where the

line segments of Figure 1 have been replaced by arcs. As

noted in [4] this presentation conveys more information as

it indicates at some level the order in which points are vis-

ited in a given cell. The arcs show that the curve enters each

cell at a given vertex, visits all the points in the cell and exits

through another vertex before entering the next cell.

Figure 2. First four iterations of the 2D Hilbert
curve, arc view.

Many algorithms for calculating Hilbert indices are

based on a geometric analysis of how the curve decom-

poses into transformed smaller versions of itself. Nulty [29]

presents a generic algorithm describing this approach with

his function SpaceKey: 1. find the cell containing the point

of interest; 2. update the key (index) value appropriately; 3.

transform as necessary; and 4. continue until sufficient pre-

cision has been attained. This generic framework motivates

our algorithmic approach.

Find the cell containing the point of interest Finding

the cell amounts to determining whether the point lies in

the upper or lower half-plane with respect to each dimen-

sion. Assuming we are working on an order m curve, a

point is represented as p = [p0, p1] ∈ B
m × B

m. Deter-

mining in which half-plane the point lies with respect to the

ith coordinate is equivalent to determining the truth value

of pi < 2m−1, which is equal to the (m − 1)th bit of pi,

bit(pi, m − 1).

Update the key Given the orientation at the current res-

olution (uniquely defined by the entry e and exit f of the

curve through the lattice), we determine the order in which

each of the cells will be visited. Knowing that all points in

a cell are visited before moving on to the next, the index of

the cell of interest tells us whether the point of interest is

visited in the first quarter of the curve, or the second and so

on. Thus we may determine two bits of the Hilbert index h.

Transform as necessary Knowing the index i of the cell

in which the point of interest lies, we may determine the

entry and exit points of the Hilbert curve through this cell.

In order to proceed, we zoom in on the cell containing the

point and transform (rotate and reflect) it to the canonical

orientation (entry in lower left, exit in lower right). This

can be done by taking the composition of the transforms

associated with our current orientation and that of the block

we are zooming in on.

Continue until sufficient precision has been attained

Zooming in on the cell containing our point of interest, we

are now inspecting an order m − 1 Hilbert curve through a

sub-cell of our original space. We repeat this procedure for

each of the remaining m − 1 levels of precision, each time

calculating a further 2 bits of the Hilbert index. At the end

of the process, we have a 2m bit Hilbert index, isolating a

single point on the length 22m curve through the B
m × B

m

lattice.

2.1. Generalizing to Higher Dimensions

The described approach yields an algorithm for the cal-

culation of two-dimensional Hilbert indices. In order to

generalize it to higher dimensions, we need to identify the

properties of the Hilbert curve we wish to generalize. The

first observation relates to the order of the curve through

cells. In two dimensions, successive cells are immediate

neighbors along exactly one dimension. Given a 2 bit la-

beling for each of the cells, this means that in labels of suc-

cessive sub-cells exactly one bit will change. This is simply

a Gray Code [13] over 2 bit integers. In n dimensions, we

have 2n cells each labeled with an n-bit string and we may

use the n-bit Gray Code to impose an ordering on the cells.

A Gray Code may be interpreted as a Hamiltonian cir-

cuit through the vertices of a hypercube in n dimensions.

This implies that the first (entry) and last (exit) points are

also immediate neighbors. Thus, we may determine the ori-

entation of a given cell i by considering the entry e(i) into

the cell and the dimension 0 ≤ d(i) < n along which the

exit point is its neighbor. Having chosen the Gray Code or-

der as the ordering through the cells, consistent orientations

of each cell have to be determined such that the exit vertex

of a cell is immediately adjacent to the entry vertex of the

next cell. In [14], a closed form is derived for e(i), f(i) and

d(i). An order 2 three-dimensional Hilbert curve and the

associated arc representation may be found in Figure 3.

Figure 3. Standard and arc views of the order

2 three-dimensional Hilbert curve.

A full analysis of the rotations and reflections involved

in the calculation of the Hilbert index shows that they may

all be expressed very naturally in base 2 arithmetic. In fact,

reflection may be viewed as the exclusive-or (⊻) operation
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and rotation as a bitwise rotation (�) operation. These sim-

plifications lead directly to the formulation of Algorithm 1.

For full details, including proofs and inverse algorithms, re-

fer to [14].

Algorithm 1 HILBERTINDEX(n, m,p)
Calculates the Hilbert index of a point.

Input: n, m ∈ Z+ and a point p ∈ P.

Output: h ∈ B
nm, the Hilbert index of the point p ∈ P.

1: (h, e, d)← (0, 0, 0)
2: for i = m− 1 to 0 do

3: l← [bit(pn−1, i) · · · bit(p0, i)][2] // Get cell label

4: t← (l ⊻ e) � d // Transform to canonical orientation

5: w = gc−1(t) // Determine cell index in gc order

6: h← (h ⊳ n) ∨ w // Add n bits to Hilbert index

7: e← e ⊻ (e(w) 	 d) // Compose transforms

8: d← d + d(w) + 1 mod n
9: end for

Algorithm 1 is clearly visible as falling under the

SpaceKey framework of [29]. In contrast, Butz’s algorithm

merges the transformation (line 4) and composition (line

7) into a compound operation and moves the inverse Gray

Code operation (line 5) outside of the loop, leading to a

more terse implementation with less intermediate variables.

However, having each of the SpaceKey steps separated out

facilitates the development of compact Hilbert indices.

3. Compact Hilbert Indices

As discussed in Section 1 it is desirable to have a map-

ping that preserves the relative ordering of the Hilbert curve

but does not require additional space to represent. A simple

method to construct such a mapping is to walk through all

the points in P
′, calculate their Hilbert indices and sort them

based on these values. Then, assign to each point p its rank

in this sorted list as an index. Trivially, this index has the

same ordering as the Hilbert ordering over P
′ and it requires

only M =
∑

i mi bits to represent. However, in order to

generate the index in this manner we must first enumerate

the entire space, a prohibitive cost. The key to calculating

this index directly, referred to as the compact Hilbert index,

lies in an observation of how bits from the point p travel

through Algorithm 1 and contribute to the Hilbert index.

3.1. An Observation

We inspect line 3 of Algorithm 1 which calculates the
location l of the point p as

l = [bit(pn−1, i) · · · bit(p0, i)][2] .

Due to the varying precisions of each coordinate we know

that for any point p ∈ P
′, bit(pj , i) = 0 when i ≥ mj . Thus

at any given iteration i, some subset of the n bits of l may

be fixed and known to be zero. These bits do not provide

any information to the calculation, yet they are still used

to calculate a full n bits of the index h. Following these

redundant bits through lines 4-5 shows how we can discard

them while still preserving the ordering of the points in P
′

as visited by the Hilbert curve over P.
Let Ai = {j : mj > i, 0 ≤ j < n} be the set of “active”

dimensions at iteration i. Consider the calculation of t, the
transformed location, on line 4 of Algorithm 1:

t = (l ⊻ e) � d.

Since every inactive bit of l is zero valued, then the bits of
l ⊻ e at these positions will simply take on the value of the
corresponding bits of e. Thus the only bits of l ⊻ e whose
values are “free” are those in Ai. The rotation operator only
shuffles the bits of l ⊻ e in a simple manner. Let Fi be the
set of free bits of t at iteration i; that is, those bits whose
values are affected by l and in turn p. It is easy to see that

Fi = {j : j + d mod n ∈ Ai}

= {j : m(j+d mod n) > i, 0 ≤ j < n}.

Since |Fi| = |Ai|, then we see that both l and t may only

be one of 2|Fi| unique values. Additionally, we know that

the Gray Code, and hence its inverse, is a bijective operator

over B
n (see [14] for a proof). Thus the final value w may

also only be one of 2|Fi| distinct values.
Let r be the rank of w with respect to all possible values

w may take on at a given iteration i of the algorithm. Then
r is a |Fi|-bit integer and satisfies

r1 < r2 ⇐⇒ w1 < w2. (3)

Instead of appending w to our partially calculated index
h, we may append the rank r. By Equation 3 we see that
for any p1,p2 ∈ P

′, the following holds with respect to
modified indices, h1 and h2, constructed from rank values:

h1 < h2 ⇐⇒ H(U(p1)) < H(U(p2))

Additionally, we see that the modified indices have a bit
length of

m−1X

i=0

|Fi| =

m−1X

i=1

|{j : mj > i, 0 ≤ j < n}|

=

n−1X

j=0

|{i : mj > i, 0 ≤ i < m}| =

n−1X

j=0

mj = M.

Thus such an index satisfies Equations 1 and 2, as desired.

It remains only to show how to calculate the rank r of a

value w given F . We first consider an example.

Example 3.1 (Gray Code Rank) We consider the values
of t, w and r for n = 6, (e � d) = [001000][2] and 3

free bits. In the following table the free bits of t have been
underlined while the ranks r have been calculated by in-
spection over the set of all w values.

t 8 10 12 14
w 15 12 8 11
r 3 2 0 1

[t][2] 001000 001010 001100 001110

[w][2] 001111 001100 001000 001011

[r][2] 011 010 000 001

t 20 26 28 30
w 16 19 23 20
r 4 5 7 6

[t][2] 011000 011010 011100 011110

[w][2] 010000 010011 010111 010100

[r][2] 100 101 111 110

As can be seen, the rank r of w can be constructed by ex-

tracting the free bits f ∈ F from the Gray Code index w.

We formalize this in Lemma 3.4 and Theorem 3.5, first stat-

ing without proof a few necessary lemmas.

Proceedings of the First International Conference
on Complex, Intelligent and Software Intensive Systems (CISIS'07)
0-7695-2823-6/07 $20.00  © 2007



Lemma 3.2 (Gray Code, Theorem 2.1 of [14]) Consider

a non-negative integer w ∈ B
m. Let t = gc(w).

Then it follows that t = w ⊻ (w ⊲ 1), or equivalently,

bit(t, j) = bit(w, j) + bit(w, j + 1) mod 2.

Lemma 3.3 (Gray Code Inverse, Theorem 2.2 of [14])
Consider a non-negative integer t ∈ B

m. Let w = gc−1(t).
Then it follows that

bit(w, j) =

m−1X

k=j

bit(t, k).

Lemma 3.4 (Principal Bits) Given e, d and i, let

F = {j : m(j+d mod n) > i, 0 ≤ j < n}.

Let T be the set of 2k distinct values that may differ from

(e � d) only at the k = |F| bits j ∈ F . Consider a 6=
b ∈ T . Let l be the index of the most significant bit of a
and b that does not match; in other words, l = max{k :
bit(a, k) 6= bit(b, k)}. It follows that l ∈ F .

Proof. Define a mask µ as the n-bit integer such that

bit(µ, j) =


0, j 6∈ F ,
1, j ∈ F .

The mask µ is created such that only bits in free positions
are one valued. Since t ∈ T may only differ from (e � d)
at the bits j ∈ F , we may rewrite

T = {t : t ∧ µ = (e � d) ∧ µ, t ∈ B
n}.

By Lemma 3.3 it follows that

bit(a, l) =
X

l≤k<n

bit(gc(a), k) mod 2.

Knowing bit(a, k) = bit(b, k) for k > l, Lemma 3.2 im-
plies bit(gc(a), k) = bit(gc(b), k) for j > l. Thus:

bit(a, l)
+

bit(b, l)
=

X

l≤k<n

`
bit(gc(a), k) + bit(gc(b), k)

´
mod 2

= bit(gc(a), l) + bit(gc(b), l).

Suppose l 6∈ F . Then it follows that bit(gc(a), l) =
bit(gc(b), l) = bit(e � d, l) and therefore bit(a, l) =
bit(b, l), a contradiction. Hence, l ∈ F . �

Theorem 3.5 (Gray Code Rank) Let F , T and µ be as in
Lemma 3.4. Define the Gray Code Rank as

gcr(w) = [bit(w, fk−1), . . . , bit(w, f0)][2] ,

where F = {f0 < · · · < fk−1} and w = gc−1(t) for some
t ∈ T . Then for all t1, t2 ∈ T it follows that

gc−1(t1) < gc−1(t2)⇐⇒ gcr(gc−1(t1)) < gcr(gc−1(t2)).

Proof. Lemma 3.4 states that the most significant differ-

ing bit between gc−1(t1) and gc−1(t2) must be a free bit.

In other words, the only bits necessary to compare the rel-

ative order of these two values are precisely the bits of in-

dex f ∈ F . Thus, if we remove the constrained bits from

gc−1(t1) and gc−1(t2) keeping only the free bits, we are

left with two |F| bit values which preserve the ordering of

gc−1(t1) and gc−1(t2). This corresponds exactly to the val-

ues gcr(gc−1(t1)) and gcr(gc−1(t2)). �
The results of this section and particularly Theorem 3.5

give us the last tools required to create an algorithm to com-

pute compact Hilbert indices. Using Algorithm 1 as a start-

ing point, Algorithms 2, 3 and 4 allow the computation of

the mapping H ′.

Algorithm 2 EXTRACTMASK(n, m0, . . . , mn−1, i, d)
Extracts a mask µ indicating which bits of t are free at iteration i of the

COMPHILBERTINDEX algorithm.

Input: n, m0, . . . , mn−1 ∈ Z+, i ∈ Zm and d ∈ Zn.

Output: µ.

1: µ← 0
2: for j = n− 1 to 0 do

3: µ← µ ⊳ 1
4: if m(j+d mod n) > i then

5: µ← µ ∨ 1
6: end if

7: end for

Algorithm 3 GRAYCODERANK(n, µ, w)
Returns the Gray Code rank of w with respect to µ.

Input: n ∈ Z+, µ, w ∈ B
n.

Output: w.

1: r ← 0
2: for j = n− 1 to 0 do

3: if bit(µ, j) = 1 then

4: r ← (r ⊳ 1) ∨ bit(w, j)
5: end if

6: end for

Algorithm 4 COMPHILBERTINDEX(n, m0, . . . , mn−1,p)
Calculates the compact Hilbert index of a point.

Input: n, m0, . . . , mn−1 ∈ Z+ and p ∈ P
′.

Output: hc ∈ B
M .

1: (hc, e, d)← (0, 0, 0)
2: m← maxi{mi}
3: for i = m− 1 to 0 do

4: µ← EXTRACTMASK(n, m0, . . . , mn−1, i, d)
5: l← [bit(pn−1, i) · · · bit(p0, i)][2]
6: t← (l ⊻ e) � d
7: w ← gc−1(t)
8: r ← GRAYCODERANK(n, µ, w)
9: hc ← (hc ⊳ ‖µ‖) ∨ r

10: e← e ⊻ (e(w) 	 d)
11: d← d + d(w) + 1 mod n
12: end for

Inspection shows that each of EXTRACTMASK and

GRAYCODERANK have O(n) time complexity. Similarly,

Lemma 3.3 shows that calculating gc−1(t) requires at most

O(n) (in fact, it is O(log n)). Given that each of e(w), d(w)
and � may be implemented in at most O(n) complexity, we

see that both Algorithms 1 and 4 have a net complexity of

O(nm). Specifically, this shows that compact Hilbert in-

dices are at most a constant factor more expensive to com-

pute than regular Hilbert indices.
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4. Experimental Results

To quantify the performance of our algorithms we imple-

mented routines for mapping to and from both regular and

compact Hilbert indices. The algorithms are written in C++

and seamlessly handle arbitrary precision1. Our Hilbert

curve algorithms were then compared to Moore’s [28] de

facto standard implementation of Butz’s [8] algorithms for

various precisions and dimensions (up to nm ≤ 64, the

maximum supported by Moore’s code) on both artificial and

real data. The running times of our compact Hilbert indices

were then compared to those of regular Hilbert indices over

these same and larger data-sets. Finally, we examine the ef-

fect of using compact Hilbert indices in applications where

regular Hilbert indices are currently used. All experiments

were performed on a commodity Dual Intel Xeon 3.06GHz

based computer with 2GB of memory. All quoted times are

wall times.

4.1. Data-sets

The WEBLOG data-set consists of the log files of an

Apache web server, taken over a 139 day period from Au-

gust to September of 2004. A four-dimensional data-set

was extracted from the over 154 million rows of log data,

as summarized in Table 1.

Table 1. Summary of the WEBLOG data-set.
i Quantity Cardinality Precision (mi)

0 IP address 834,406 20

1 day of access 139 8

2 hour of access 24 5

3 HTTP return code 16 4

Dimensionality n = 4
Maximum precision m = 20
Size of Hilbert index nm = 80
Size of compact Hilbert index M = 37
Hilbert index expansion factor nm/M = 2.2
Number of data points N = 7, 709, 286

4.2. Performance

In order to characterize the performance of our al-

gorithms we compared them against Moore’s code over

randomly generated data-sets and varying parameters for

N, m, n and M . For the purposes of compact Hilbert in-

dices, precisions mi were chosen in a monotonically de-

creasing fashion such that M = nm/2. Figure 4 shows

the basic results. The jump visible at n = 32 in Figure

4(a) is due to the code switching to multiple precision rep-

resentations of n-bit intermediate variables. In general, our

regular Hilbert curve implementation slightly outperforms

that of Moore. When n ≤ 32 the overhead associated with

compact Hilbert indices is as much as 2.5 times or 150%.

However, as both n and m increase this reduces to a more

reasonable 40%. Although the compact Hilbert indices take

slightly longer to compute, they are smaller than full Hilbert

1Source available at http://cs.dal.ca/˜chamilto/hilbert/.

indices allowing data points to be replaced with compact

Hilbert indices in-place.
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Figure 4. Performance comparison over ran-
domly created data-sets. (a) Time to calcu-

late N Hilbert indices with m = 4 as n varies.
(b) Time to calculate N Hilbert indices with

n = 4 as m varies.

4.3. Sorting by Hilbert Index

As discussed in Section 1, Hilbert curves are often used

to order or partition multi-dimensional data. Thus it be-

comes necessary to sort points by their Hilbert indices. The

simplest approach is to simply calculate the Hilbert index

for each point, and use this value in sorting. However, of-

ten these indices are larger than the points they represent

resulting in an increased storage cost. Given the large na-

ture of the data-sets being sorted, it is often critical that the

sort be in-place. Moore’s solution to this problem was to

create a dynamic comparison routine which simultaneously

calculates the Hilbert index of both points being compared.

It calculates the indices only to the precision required to de-

termine the relative order of the two points. This approach

has the benefit that the Hilbert indices are never explicitly

stored, but suffers from the problem that they are recalcu-
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lated at every comparison.

Dynamic Hilbert Sorting Suppose a comparison re-

quires examining the first b bits of the Hilbert indices of

two points in order to distinguish them. Since each bit

costs O(1) to calculate, this incurs a cost of O(b). Fill et al

[12] explored the average bit-cost per comparison assuming

quick-sort is being used. They derive an expected O(log N)
bits per comparison, which implies a total bit complexity of

O(N log2 N). Thus, using a quick-sort based algorithm we

can expect a total dynamic Hilbert index sorting run-time

of O(N log2 N). Although this particular analysis is valid

only for the quick-sort algorithm, it is thought this bound

holds for the general problem of sorting2.

Compact Hilbert Sorting As a competing approach we

consider sorting using compact Hilbert indices. Since com-

pact Hilbert indices are the same size as the data from which

they are calculated, we first replace the data points with

their associated compact Hilbert indices at a net cost of

O(Nnm). We then sort these elements before converting

back to the original data points. The net cost of this sort is

O(N(log N + nm)). As long as nm < log2 N , such an

approach can be expected to be asymptotically faster than

dynamic Hilbert sorting.

Figure 5a shows the results of sorting the WEBLOG data-

set using both dynamic Hilbert indices and compact Hilbert

indices. As predicted, compact Hilbert sorting proved to be

much more efficient. As shown in Figure 5b, for as little as

100K data items a speedup of 2 was observed. By 1M data

items that speedup had grown to a factor of 3.4. Speedup

continued to increase beyond this point until reaching a fac-

tor of 4.3 on the whole data set. Note that in distributed ap-

plications that order and partition data using Hilbert curves,

such as [10, 33, 34], the benefits of using compact Hilbert

curves would be even more pronounced. The use of com-

pact Hilbert curves would not only result in the memory and

computation savings illustrated in Figure 5 but would also

reduce the size of the data to be communicated and there-

fore increase the overall communication speed.

5. Conclusion

Due their wide variety of uses and simple elegance,

space-filling curves have been researched continuously

since their discovery, finding many applications Motivated

by the lack of intuition in the near-ubiquitous Butz [8] al-

gorithms for Hilbert curves as implemented by Moore [28],

we have reconstructed these algorithms from a geometric

point of view. Based on this formulation we have then de-

scribed a compact Hilbert curve which captures the ordering

2Under the constraint that in order to compare a bit, we must first have

compared all bits more significant than it; if we have random bit access a

radix sort can generally do better. Hilbert indices are calculated incremen-

tally, precluding random bit access.
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Figure 5. Comparing dynamic Hilbert sort-

ing and compact Hilbert sorting using the
WEBLOG data-set. The compact curve in-

cludes the cost of converting both to and
from compact Hilbert indices. (a) Wall times.

(b) Relative speed-up.

properties of the regular Hilbert curve but without the asso-

ciated inefficiency in representation for spaces with unequal

side lengths. Finally, we developed algorithms for dealing

with compact Hilbert indices and demonstrated their per-

formance and utility in real-world applications. Although

these compact Hilbert indices are somewhat more computa-

tionally expensive to derive, they result in significant space

savings and, in the critical operation of sorting by Hilbert

indices, they result in a considerable time saving. For ex-

ample, for a typical four dimensional web log data set, com-

pact Hilbert indices achieved a data size reduction of 2.2
and a sorting speedup of 4.3 over the widely used dynamic

Hilbert sort method. It is our hope that the compact Hilbert

indices introduced in this paper will find uses in information

systems and other applications in which multi-dimensional

spaces have dimensions of unequal cardinalities.
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