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Abstract

Hierarchical clustering methods are important in many data mining and pattern
recognition tasks. In this paper we present an efficient coarse grained parallel algorithm
for Single Link Clustering; a standard inter-cluster linkage metric. Our approach is
to first describe algorithms for the Prefix Larger Integer Set and the Closest Larger
Ancestor problems and then to show how these can be applied to solve the Single Link
Clustering problem. In an extensive performance analysis on a Linux-based cluster an
implementation of these algorithms has shows proven to scale well, exhibiting near lin-
ear relative speedup on up to twenty-four processors.

Keywords: Single Link Clustering, Closest Larger Ancestor, Parallel Graph Algo-
rithms, Coarse Grained Multicomputer, Hierarchical Agglomerative Clustering.

1 Introduction

Clustering is one of the key processes in data mining. Clustering is the process of grouping
data points into classes or clusters so that objects within a cluster have high similarity in
comparison to one another, but are very dissimilar to objects in other clusters [11].

Hierarchical agglomerative clustering methods are important in many data mining and
pattern recognition tasks. They typically start by creating a set of singleton clusters, one
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for each data point in the input and proceeds iteratively by merging the most appropriate
cluster(s) until the stopping criterion is achieved. The appropriateness of a cluster(s) for
merging depends on the (dis)similarity of cluster elements. An important example of dis-
similarity between two points is the Euclidian distance between them. To merge subsets of
points, the distance between individual points has to be generalized to the distance between
subsets. Such a derived proximity measure is called a linkage metric. The type of the link-
age metric used significantly affects hierarchical algorithms, since it reflects the particular
concept of closeness and connectivity.

Major inter-cluster linkage metrics [16, 17] include single link, average link, and complete
link. The pair-wise dissimilarity measures can be described as: d(C1, C2) = ⊕{d(x, y)|x
∈ C1, y ∈ C2}, where ⊕ is minimum (single link), average (average link), or maximum
(complete link), C1, C2 represent two clusters, and d is the distance function. The output
of these hierarchical agglomerative clustering methods is a cluster hierarchy or, a tree of
clusters, also known as a dendrogram (see Figure 1). A dendrogram can easily be broken
at selected links to obtain clusters of desired cardinality or radius.

Many sequential single link clustering algorithms are known [9, 10, 15, 18, 19, 20].
However, since both the data size and computational costs are large, parallel algorithms are
also of great interest. Parallel SLC algorithms have been described for a number of SIMD
architectures including hypercubes [13, 14], shuffle-exchange networks [12], and linear arrays
[1]. For the CREW-PRAM, Dahlhaus [4] described an algorithm to compute a single link
clustering from a minimum spanning tree. Given a minimum spanning tree with n data
points, this algorithm takes O(log n) time using O(n) processors to compute the single link
dendrogram, i.e. a cluster tree for its single link clustering.
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Figure 1: (a) Single link clustering of a set of points. (b) The corresponding dendrogram.

In this paper we present an efficient coarse grained parallel algorithm for the Single
Link Clustering (SLC) problem. Our parallel computational model is the Coarse Grained
Multicomputer (CGM) model [5]. It is comprised of a set of p processors P0, P1, P2, ...Pp−1

with O(N/p) local memory per processor and an arbitrary communication network, where
N refers to the problem size. All algorithms consists of alternating local computation and
global communication rounds.

Our algorithm follows the basic approach described by Dahlhaus [4] in his PRAM algo-
rithm in which the proximity matrix representing the Euclidean distances between points
in the input data set is transformed into a weighted complete graph from which a Mini-
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mum Spanning Tree (MST) is constructed. This MST is then transformed into a Modified
Psuedo Minimum Spanning Tree (MPMST) from which the dendrogram hierarchy can eas-
ily be constructed. The key step is the construction of the MPMST, which is based on
solving the Closest Larger Ancestor (CLA) problem.

In the Closest Larger Ancestor problem we have a tree T of n vertices, evenly distributed
over a p processors CGM. Each vertex v in T is associated with an integer weight wv. We
want to find out for each vertex v in T , the ancestor u of v that is closest to v and wu > wv.

In this paper we first describe an algorithm for solving the Closest Larger Ancestor
problem in O(n2

p ) time, using log2 p communication rounds, and O(n2

p ) storage space per
processor. We then show how this algorithm can be used as a key component in a Single
Link Clustering algorithm that runs in time O(n2

p ), using log2 p communication rounds, and

O(n2

p ) storage space per processor. Although the parallel Closest Larger Ancestor algorithm
is not optimal, it is practical to implement and fits well in the Single Link Cluster algorithm
without increasing the overall complexity.

In the final section of this paper we describe a systematic evaluated our parallel single
link clustering algorithm on a CGM cluster with 24 dual processor nodes. We investigate
the performance of our algorithms in terms of running time, relative speedup, efficiency and
scalability. Our single link clustering algorithm exhibits near linear speedup when given at
least 250,000 data points per processor. For example, it scales near perfectly for large data
sets of 64 million points on up to 24 processors. The parallel Closest Larger Ancestor and
Single Link Clustering algorithms described in this paper are, to our knowledge, the first
efficient coarse-grained parallel algorithms given for these problems.

2 Closest Larger Ancestors

Before tackling on the Closest Larger Ancestors problem we first study a simpler, but related
problem.

2.1 Computing Closest Larger Predecessors (CLP)

The Closest larger predecessor problem is defined as follows: Given a list of n integers
x1, x2, · · · , xn, find for each integer xi, another integer xj such that j < i, xj > xi and j is
as large as possible.

For example, if the integer list is {19, 25, 17, 6, 9}, then 19 and 25 do not have closest
larger predecessors; the CLP for 17 is 25, and the CLPs for both 6 and 9 is 17.

We need to define some operations to help us solving the CLP problem. Given an integer
set S and an integer m, we define the integer set S>m to be S>m = {x|x ∈ S && x > m}.

We can now define a new operation, called the “Larger Integer Set” (LIS) operation
over an integer set and an integer. We use the “⊗” symbol to represent the LIS operation.

Definition 1 Given a set of integers S and an integer m. The LIS operation is defined as
S ⊗m = S>m ∪ {m}.
Definition 2 Given a set of integer S, define Smax to be the maximum element in S; also
define Smin to be the minimum element in S. That is Smax = x|x ∈ S && ∀y ∈ S, x ≥ y
and Smin = x|x ∈ S && ∀y ∈ S, x ≤ y.

For example, if S = {35, 19, 8, 6} and m = 10, then S>m = {35, 19} and S ⊗ m =
{35, 19, 10}. Also, Smax = 35 and Smin = 6.
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Theorem 1 Given a list of n integers x1, · · · , xn, let R be the integer set R = ((· · · ({x1}⊗
x2) ⊗ · · ·) ⊗ xn). If the “closest larger predecessor” of xn is xi then xi ∈ R>xn and xi =
(R>xn)min.

Proof. Assume xi /∈ R>xn , then there must be another integer xj (can be xn) after xi

such that xj > xi (this is the only reason why xi will disappear from R>xn). However,
this implies that xi cannot be the “closest larger predecessor” of xn and contradict to our
assumption. Therefore, xi ∈ R>xn .

Now assume xi 6= (R>xn)min, then there must be another integer xk ∈ R>xn such
that xk < xi. Observe that ∀xm ∈ R>xn , xm > xn. Therefore we know that xk should
come before xi, since otherwise the “closest larger predecessor” of xn would be xk instead
of xi. However xi comes after xk implies that xk will be excluded from R>xn . This is a
contradiction, and therefore, xi = (R>xn)min. 2

We now extend the “LIS” operation to two integer sets:

Definition 3 Given two integer sets U and V , we define the integer set U>V to be U>V =
U>Vmax.

Definition 4 Given two integer sets U and V , we define the LIS operation over U and V
to be U ⊗ V = U>V ∪ V

This is a “proper” extension since we have S⊗{m} = S⊗m and now the “LIS” operation
is associative.

Lemma 1 S ⊗ {m} = S ⊗m.

Proof. We have {m}max = m, so S>{m} = S>({m}max) = S>m. Therefore, S ⊗ {m} =
S>{m} ∪ {m} = S>m ∪ {m} = S ⊗m. 2

If a and b are integers, and S is a set of integers. For convenience, we also define:

• a⊗ b = {a} ⊗ {b}; and
• a⊗ S = {a} ⊗ S.

To prove that the LIS operation is associative, we need the following definition:

Definition 5 Let U , V , and W be three integer sets, define U>V W = {x|x ∈ U && x >
Vmax && x > Wmax}, i.e. U>V W = U>V ∩ U>W .

Lemma 2 The LIS operation is associative.

Proof. We have (U ⊗V )⊗W = (U>V ∪V )⊗W = U>V W ∪V>W ∪W , and U ⊗ (V ⊗W ) =
U ⊗ (V>W ∪W ) = U>V W ∪ V>W ∪W . Therefore the ⊗ operation is associative. 2

Theorem 2 Given n integers x1, x2, · · · , xn, let R = x1 ⊗ x2 ⊗ · · · ⊗ xn. If xi, xj ∈ R and
i < j then xi > xj.

Proof. Let Rj = x1 ⊗ x2 ⊗ · · · ⊗ xj . From the definition of the “LIS” operation, if
xi, xj ∈ R, it must be xi, xj ∈ Rj and xi ∈ Rj−1. If xi <= xj , then xi /∈ (Rj−1)>xj and
therefore, xi /∈ Rj . This is a contradiction, so xi > xj . 2
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Lemma 3 The “LIS” operation over two integer sets U and V can be completed in O(log |U |+
|V |) time.

Proof. If we implement the integer sets as ordered lists using arrays of enough capacity
and enforce the union (U ∪ V ) operation to append all the integers from V to U without
disturbing the original orders, then by Theorem 2 the integers in the ordered lists will
appear in reversely sorted order. That means Vmax will be the first integer in the ordered
list in V , and this can be obtained in O(1) time. In O(log |U |) time, we can determine the
first integer in U that is smaller than Vmax. It then takes O(|V |) time to copy all integers
over. 2

2.2 CGM Computing Prefix LIS in Trees

We now describe a CGM algorithm to find the prefix LIS in a tree. Figure 2 shows an
example of LIS in a tree.

{6}

{17) {7}

{17}{19}

{6,2}

{17,12}{17,2}{17,8}

{17,12} {17,8,2} {17,12,8} {17,12,9} {19,3}

{19,13}{17,12,8,5}5

17191228

17 72

6

13

12 2 8 9 3

Figure 2: LIS in a Tree

Algorithm 1 CGM prefix LIS in Tree.
Input: A tree T of n vertices, evenly distributed over p processors. Each vertex v in T is

associated with an integer weight wv. The root of T is r.
Output: For each vertex v in T , the ordered set Sv = r ⊗ . . .⊗ v.
(1) If p = 1, solve the problem sequentially.
(2) Find the centroid c of T [2].
(3) Broadcast c to every processor.
(4) Each vertex checks its parent, if the parent is c, temporarily set the vertex’s parent to

itself. This effectively partitions T into a set of subtrees T0, T1, . . . , Tk where k is the
number of children c has.

(5) Group all the vertices of the same subtree into adjacent processors. This can be done
by finding the connected components of the (partitioned) tree, and sort the vertices by
component ID [7].

(6) Partition the CGM into a set of sub-CGM, according to the partitioning of T . Recur-
sively solve the CGM prefix LIS in Tree problem for each sub-tree using the sub-CGM.
Let the result for each vertex v be Sv.
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(7) The processor containing c broadcasts Sc and the component ID of c.
(8) Each vertex v that is not in the same sub-tree as c update Sv to Sc ⊗ Sv.

— End of Algorithm —

Theorem 3 Algorithm 1 solves the CGM prefix LIS in Tree problem using O(n2

p ) local

computation, log2 p communication rounds and O(n2

p ) storage space per processor.

Proof. The correctness of the algorithm comes immediately from the fact that the LIS
operation is associative (Lemma 2).

Let T (n, p), C(n, p), and S(n, p) be the running time, number of communication rounds,
and storage requirement of Algorithm 1, respectively. Step 1 is the terminating condition of
the recursive calls. Here we have T (n

p , 1) = O(n
p log n), C(n

p , 1) = 0, and S(n
p , 1) = O(n2

p2 ),
respectively. Step 6 is the recursive calls, and we have T (n, p) = O(T (n

2 , p
2)), C(n, p) =

O(C(n
2 , p

2)), and S(n, p) = O(S(n
2 , p

2)). All other steps have upper bounds of T (n, p) =
O(n2

p ), C(n, p) = O(log p), and S(n, p) = O(n2

p ). (Note that the actual bounds for each
individual step are different, but the above is the maximum of them). Solving the recurrence,
we have T (n, p) = O(n2

p ), C(n, p) = O(log2 p), and S(n, p) = O(n2

p ), respectively. 2

2.3 Computing Closest Larger Ancestors

We are now finally ready to describe a CGM algorithm for calculating the “closest larger
ancestor” values in trees. Figure 3 shows the “CLA” values for each vertex in the tree
shown in Figure 2.

null

null null

nullnull

6

171717

17 8 12 12 19

198

6

17

1719

12 2 8 9 3

135

1228

2 7

Figure 3: CLA values in a Tree

Algorithm 2 CGM Closest Larger Ancestors.
Input: A tree T of n vertices, evenly distributed over p processors. Each vertex v in T is

associated with an integer weight wv.
Output: For each vertex v in T , the ancestor u of v that is closest to v and wu > wv.
(1) Apply Algorithm 1 to find out Sv.
(2) Once Sv is computed, each vertex can compute the closest larger ancestor by calculating

((Sv)>wv)min.
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(or root if null).
— End of Algorithm —

Theorem 4 Algorithm 2 solves the Closest Larger Ancestor problem in O(n2

p ) time, using

log2 p communication rounds, and O(n2

p ) storage space per processor.

Proof. The correctness of the algorithm is obvious from Theorem 1 and 3. Step 1 takes
O(n2

p ) time, using log2 p communication rounds and O(n2

p ) storage space per processor.

Step 2 takes O(n2

p2 ) time, with no communication and O(n2

p2 ) storage space per processor.
Summing up the values and we have the declared bounds. 2

3 Single Link Clustering

In this section we sketch a CGM single link clustering algorithm. Single link clustering is
one of the most widely studied hierarchical clustering techniques and it is closely related
to finding the Euclidean Minimum Spanning Tree (MST) of a set of points [17]. Based on
solving the Closest Larger Ancestor (CLA) problem, we are able to transform an MST to
an Modified Psuedo Minimum Spanning Tree (MPMST) in parallel on CGM. Following the
basic approach described by Dahlhaus [4] in his CREW-PRAM algorithm, the MPMST can
easily be transformed to a single link clustering dendrogram. For a detailed description of
this algorithm suitable for implementation see [8].

Algorithm 3 CGM Single Link Clustering.
Input: Each processor stores a copy of the set S of n input data points in d dimensional

Euclidean space and the distance function D(i, j) which defines the distance be-
tween all points i and j ∈ S.

Output: A tree H which is the single link clustering dendrogram corresponding to S.
(1) From S and D(i, j) construct the proximity matrix A and the corresponding complete

weighted graph G.
(2) Compute the Minimum Spanning Tree T of G using the MST algorithm given in [7].
(3) Transform the MST T into a Modified Psuedo Minimum Spanning Tree (MPMST) T ′

by redirecting each vertices parent link to its closest larger ancestor as computed by
Algorithm 2.

(4) From the Modified Psuedo Minimum Spanning Tree (MPMST) T ′ compute H, the
single link clustering dendrogram, following the algorithm given in [4].

— End of Algorithm —

Theorem 5 Algorithm 3 solves the CGM Single Link Cluster problem using O(n2

p ) local

computation, log2 p communication rounds and O(n2

p ) storage space per processor.

Proof. The correctness of the algorithm follows immediately from Theorem T-CLA and
Theorem 1 and 2 of [4]. Step 1 takes O(n2

p ) time, using O(1) communication rounds and

O(n2

p ) storage space per processor. Step 2 takes O(n2

p ) time, using log2 p communication

rounds and O(n2

p ) storage space per processor. Step 3 takes O(n2

p ) time, using log2 p com-

munication rounds and O(n2

p ) storage space per processor. Step 4 takes O(n2

p ) time, using

O(1) communication rounds and O(n2

p ) storage space per processor. Summing up the values
and we have the declared bounds. 2
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4 Experimental Evaluation

In this section we discuss the performance of our CGM single link clustering algorithm
under a variety of test scenarios. Our experimental platform is a coarse grained distributed
memory cluster with 24 1.8GHZ Intel Xeon(x86) processors each with 1GB of memory. All
of the nodes are connected through a 100MB/100Base-Tx (Fast Ethernet) switch and use
Message Passing Interface(MPI)version 6.5.9 for communication.

We report results for our experiments on a variety of synthetic data sets and show
the parallel performance including running time and relative speedup as the number of
processors is increased, as well as the scalability of the algorithms in terms of the size of the
input data sets. In the following experiments all computational time and communication
time are measured using wall clock times in seconds. All parallel times are measured as the
wall clock time between the start of the first process and the termination of the last process.
All times include the time to evenly distribute or route the data among processors.

The implementation of these algorithms was based on CGMlib/CGMgraph libraries
[3], although these libraries required significant extensions for defining and manipulating
weighted graphs classes. In total approximately 6000 lines of C++ code were used to
add implementations of the following algorithms to the library: Sequential and Parallel
Minimum Spanning Tree, Parallel Rooted Direct Tree, Find Centroid of a Tree, CGM
Prefix LIS, Closest Larger Ancestor, CGM Dendrogram Generation, and CGM Single Link
Clustering.

4.1 Parallel Performance

Throughout these experiments, as we increased the number of processors we observed two
countervailing trends. Increasing processors while holding total data size constant, leads
to less data per processor and therefore better relative speedup because of reduced local
computational time. On the other hand, increasing the number of processors increases the
total time for CGM barrier synchronization and communication time, even when total data
size communicated is held constant, and therefore tends to reduce relative speedup. The
slight super linear effects observed in some of these experiments, for example at 8 processors
in Figure 4, result from the segmentation of the data group and the CGM partition better
fitting within processor boundaries, and therefore reducing the penalties to move data
between adjacent processors.

Figures 4a, 5a, 6a and 7a show the parallel running time observed for data sets
of N = 4M, 16M, 36M and 64M, as a function of the number of processors used, where
N = n2 and n is the number of data points. Figure 4b, 5b, 6b and 7b present the
corresponding relative speedup respectively. Also shown are the optimal curves, calculated
as Toptimal = Tp=1/p. Note that the actual performance tracks the optimal curve closely
and it becomes better when the data set is increased.

5 Relative Speedup

Speedup is one of the key metrics for evaluation of parallel database systems [6] as it
indicates the degree to which adding processors decreases the running time. Therefore I
want to talk about this important parallel performance evaluation metric in a separate
section. Since we do not have a sequential implementation available to get the sequential
running time, we use relative speedup. The relative speedup for p processors is defined as
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Figure 4: (a) Running Time for N = 4M and (b) the corresponding relative speedup.
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Figure 5: (a) Running Time for N = 16M and (b) the corresponding relative speedup.

Sp = T1
Tp

, where T1 is the running time of the parallel program using one processor where
all communication overhead have been removed from the program, and Tp is the running
time using p processors. Figure 4b, 5b, 6b and 7b show the relative speedup for different
data size.

As is typically the case, relative speedup improves as we increase the size of the input
since better data and task parallelism could be achieved. As we can see, when we increase
the data size from N = 4M to N = 64M , the relative speedup curve gets more closely to
the linear optimal speedup curve. For 24 processors at N = 64M , our method achieves a
speedup of 22.45%. At 16+ processors, the speedup has a relatively mild decrease which
suggests that even higher processor counts are likely to provide acceptable speedup.

6 Scalability with Data Size

In this section, we analyze the effect on performance as we increase the size of the input set.
Figure 8 depicts the running time for data sets ranging in size from n = 2000 (N = 4M)
data points to n = 8000 (N = 64M) data points. The results reported are on 16 processors
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Figure 6: (a) Running Time for N = 32M and (b) the corresponding relative speedup.
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Figure 7: (a) Running Time for N = 64M and (b) the corresponding relative speedup.

and closely resembles the expected shape. On small sets, there is a modest super-linear
increase in run-time. Between 36M and 64M , the result is almost linear in shape.

7 Conclusion

In this paper we have investigated the problem of computing the Prefix Larger Integer Set
(LIS), the Closest Larger Ancestor (CLA), and Single Linkage Clustering (SLC) on coarse
grained distributed memory parallel machines. An implementation of these algorithms on
for a Linux cluster has demonstrated that they perform well in practice.
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