
A Cluster Architecture for Parallel Data Warehousing

Frank Dehne
Carleton University

Ottawa, Canada
frank@dehne.net

http://www.dehne.net

Todd Eavis
Dalhousie University

Halifax, Canada
eavis@cs.dal.ca

Andrew Rau-Chaplin
Dalhousie University

Halifax, Canada
arc@cs.dal.ca

http://www.cs.dal.ca/˜arc/

Abstract

We describe the parallel, cluster-based implementation
of an algorithm for the computation of a database oper-
ator known as the datacube. Though a number of effi-
cient sequential algorithms have recently been proposed
for this problem, very little research effort has been ex-
pended upon cost-effective parallelization techniques. Our
approach builds directly upon the existing sequential pro-
posals and is designed to be both load balanced and com-
munication efficient. We also provide experimental results
that demonstrate the viability of our technique under a va-
riety of test conditions. Ultimately, we show that parallel
performance relative to the underlying sequential algorithm
(speedup) is near optimal.

1. Introduction

Over the past five years, we have seen tremendous
growth in the data warehousing market. Despite the sophis-
tication and maturity of conventional database technologies,
however, the ever-increasing size of corporate databases,
coupled with the emergence of the new global Internet
“database”, suggests that new computing models may soon
be required to fully support many crucial data management
tasks. In particular, the exploitation of parallel algorithms
and architectures holds considerable promise, given their
inherent capacity for both concurrent computation and data
access.

In our current research, we focus on the datacube [1, 3,
8, 10, 13, 16, 18], a database operator that can be used to
pre-compute multiple views of selected data by aggregating
values across all possible attribute combinations (a group-
by in database terminology). The resulting data structures
can then be used to dramatically accelerate visualization
and query tasks associated with large information sets.

In the sequential setting, a significant amount of
datacube-related work has already been carried out. The

primary focus of that research has been upon algorithms
that reduce computuation by sharing sort costs [1, 16], that
minimize external memory sorting by partitioning the data
into memory-size segments [3, 13], and that represent the
views themselves as multi-dimensional arrays [8, 18]. By
contrast, relatively little research effort has been focused
upon parallel computation. In [7], the authors propose an
algorithm that computes each possible view across all pro-
cessors. While that technique does provide better perfor-
mance than the purely sequential alternatives, it can also
produce excessive inter-node communication, particularly
in high dimension spaces.

In this paper, we describe the implementation of an al-
gorithm that is both load balanced and communication effi-
cient. As described in [5], our approach is to distribute view
subsets to individual nodes, where efficient sequential algo-
rithms can be used to independently calculate their assigned
workload. In terms of the architecture, we have chosen to
target the emerging Beowulf cluster model for the initial
implemetation. Though the theoretical work was designed
with a shared memory architecture in mind, the cluster plat-
form is extremely attractive in terms of both price and ac-
cessiblity. As the technology matures, the opportunities for
such research should only increase.

We also present experimental results that demonstrate
the viability of our approach. Our evaluation explores the
impact of parameters such as the number of processors, the
size of the input set, and the total number of views. In short,
we demonstrate that our algorithm produces running times
that are near optimal with respect to those of the underlying
sequential approach.

The paper is organized as follows. Section 2 provides an
overview of the data warehousing model, as well as the dat-
acube operator. Section 3 describes the issues relevant to a
parallel implementation. We discuss the details of that im-
plementation in Section 4, with experimental results high-
lighted in Section 5. Section 6 identifies a number of new
problem areas relating to the current datacube algorithms,
as well as the more general field of data warehousing for



Data MiningAnalysisQuery Reports

Olap ServerOlap Server

Meta Data Repository

Monitoring
Administration

Operational Databases

Data Warehouse

Data Marts

External Sources

Extract
Clean

Transform
Load

Refresh

Output

Front−End Tools

Olap Engines

Data Storage

Data Cleaning
and

Integration

Figure 1. The basic OLAP model. Our current
emphasis is on the third level — the OLAP
Engine.

cluster architectures. Section 7 concludes the paper and of-
fers a few final observations.

2 Background

Data warehouses can be described as decision support
systems in that they allow users to assess the evolution of an
organization in terms of a number of key data attributes or
dimensions. Typically, these attributes are extracted from
various operational sources (relational or otherwise), then
cleaned and normalized before being loaded into a rela-
tional store. By exploiting multi-dimensional views of the
underlying data warehouse, users can “drill down” or “roll
up” on hierarchies, “slice and dice” particular attributes, or
perform various statistical operations such as ranking and
forecasting. This approach is referred to as Online Ana-
lytical Processing or OLAP. Figure 1 illustrates the basic
model.

2.1 The Datacube

Because the views in a data warehouse are multi-
dimensional in nature, it is often convenient to consider
the data as being housed in an n-dimensional cube (see
Figure 2).This datacube consists of a core or base cuboid,
surrounded by a collection of sub-cubes/cuboids that rep-
resent the aggregation of the base cuboid along one or
more dimensions [8]. (We refer to the dimension to be ag-

gregated as the measure attribute, while the remaining di-
mensions are known as the feature attributes). In total, a
d-dimensional data warehouse is associated with 2d such
cuboids. Though these cuboids can be constructed “on the
fly”, in practice they are normally pre-computed so as to
improve the efficiency of user queries.

Since the datacube suggests a multi-dimensional inter-
pretation of the data space, a number of OLAP vendors have
chosen to physically model the cube as a multi-dimensional
array. These MOLAP (multi-dimensional OLAP) products
offer rapid response time on OLAP queries since it is pos-
sible to index directly into the datacube structure to retrieve
subsets of aggregated data. Unfortunately, MOLAP solu-
tions have not proven to scale effectively to large, high-
dimensionality data sets. The problem is that as the num-
ber of dimensions grows, the data in the datacube becomes
increasingly sparse. In other words, many of the attribute
combinations represented by the datacube structure do not
contain any aggregated data. As such, a fully materialized
MOLAP array can contain an enormous number of empty
cells, resulting in unacceptable storage requirements [13].
Though compression techniques can be used to alleviate
this problem, doing so destroys the natural indexing that
makes MOLAP so appealing. Consequently, MOLAP is of-
ten a more attractive option when used in conjunction with
the relational data warehouse. IBM’s DB2 OLAP server,
for example, has been integrated with Hyperion’s Essbase
to provide MOLAP efficiency on a subset of the smaller
cuboids, while the DB2 engine can be used to implement
larger, more sparse cuboids within the relational model.
Nevertheless, with data warehouses increasing not only in
number, but in size and complexity as well, the robustness
of the MOLAP approach seems doubtful.

In contrast, relational OLAP (ROLAP) seeks to exploit
the maturity and power of the relational paradigm. Instead
of a multi-dimensional array, the ROLAP datacube is im-
plemented as a collection of up to 2d relational tables, each
representing a particular cuboid. Because the cuboids are
now conventional database tables, they can be processed
and queried with traditional RDBMS techniques (e.g., in-
dexes and joins). Moreover, they are much more efficient
on large data warehouses since only those datacube cells
that actually contain data are housed within the tables. It is
for these reasons that we have chosen to focus our efforts
on the ROLAP model.

2.2 Building the Datacube

As mentioned, a fully materialized datacube consists of
2d individual views. Though we can use conventional SQL
to construct the tables, it is immensely inefficient to do so.
In particular, we would require 2d sorts of the original data
set, a task that is especially expensive given that virtually



Red

White

Blue

By Make & Colour

By Colour

By Make

1993

1990
1991

Chevy
Ford

By Year

By Colour 
& Year

By Make & Year

Figure 2. A typical datacube, in this case de-
scribing the views relevant to an automobile
manufacturer.

all real-world input sets would be far larger than the size of
main memory and would each necessitate an external mem-
ory sorting of considerable expense. As a result, a number
of algorithms have been proposed that attempt to reduce the
time required to build the cube by exploiting the inherent
relationships that exist between various tables. For exam-
ple, a three-dimensional cuboid can be viewed as the par-
ent of three two-dimensional cuboids, each of which con-
tains a distinct combination of two dimensions of the par-
ent. Clearly, it should not be necessary to independently
compute all four views since the parent and one or more of
the children may be able to share some portion of the aggre-
gation workload.

Typically, we represent the collection of cuboids as a lat-
tice [10] of height d + 1. Starting with the base cuboid —
containing the full complement of dimensions — the lattice
branches out by connecting every parent node with the set
of child nodes/views that can be derived from its dimension
list. In general, a parent comtaining k dimensions can be
connected to k views at the next level in the lattice (see Fig-
ure 3).

The algorithms themselves can generally be divided into
top-down and bottom-up approaches. In the former case, we
first compute the parent cuboids and then utilize these ag-
gregated views to efficiently compute the children. Various
techniques have been employed for this purpose, including
those based upon sorting, hashing, and the manipulation of
in-memory arrays [1, 16, 18]. In all cases, the goal is to
generate coarse granularity tables from views that have pre-

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

AA BB CC DD

All

Figure 3. The datacube lattice consists of
all possible attribute combinations. The
“all” node represents the aggregation of all
records.

viously been aggregated at a finer level of granularity.
In contrast, bottom-up computation seeks to first parti-

tion the data set on single attributes [3, 13]. Within each
partition, we recursively aggregate at finer levels of granu-
larity until we reach the point where no more aggregation
is possible/necessary. It appears that bottom-up cube com-
putation may be well suited to large, sparse datacubes. By
starting with the smallest cuboids (i.e., the ones with the
greatest degree of aggregation) and working thereafter with
partition-sized chunks of the data set, it is possible to avoid
a certain number of the large external memory sorts that
are required in a top-down implementation. Despite this
fact, it is quite difficult to rank the approaches for practical
applications since very little comparative testing has been
performed.

3 Our Approach to Parallelizing the Dat-
acube

To date, little work has focused upon the application of
parallel algorithms and data structures to speed up datacube
construction. In our recent research, we have sought to de-
velop load balanced and communication efficient parallel
algorithms that, in turn, exploit the efficiency of the existing
sequential approaches. More specifically, our techniques
for building the datacube partition the original problem into
a set of sub-cube computations which are then distributed



to individual processors. This is in contrast to the technique
described in [7] that calculates each sub-cube across all pro-
cessors. Not only do these mechanisms fail to directly uti-
lize current sequential algorithms, but they can create ex-
cessive inter-node communication. Our algorithms require
very little communication overhead and are applicable to
high dimension spaces.

3.1 Implementation

We have proposed parallel algorithms for both the top-
down and bottom-up paradigms. Our initial implementation
is based upon the sequential Pipesort developed at IBM’s
Almaden Research Center [16]. This is a top-down tech-
nique that attempts to find a set of distinct sort paths within
the lattice such that the cost of computing child views from
their parents is minimized. Ultimately, a subset of the child
views are computed using a linear scan of the parent view,
while the remaining views require a re-sorting of a parent
cuboid.

In parallel, our task is to find a partitioning of the lattice
that balances the cost of sub-cube computation across the p
processors. For this purpose we employ a k-min-max parti-
tioning algorithm. Though the min-max procedure does not
guarantee an optimal split across the network (this is an np-
complete problem), it does guarantee a lower bound on the
size of the largest subset. To further improve the accuracy of
the algorithm, we incorporate a tunable over-sampling fac-
tor into the min-max phase. The over-sampling produces
k � p sub-lattices — where k is the over-sampling factor —
and allows us to group the views into more evenly balanced
subsets. Once these subsets have been established, they can
be distributed to the local nodes where the existing sequen-
tial algorithms are executed.

3.2 The Basic Algorithm

The algorithm itself consists of the following steps:

1. Construct a lattice housing all 2d views.

2. Estimate the size of each of the views in the lattice.

3. To determine the cost of using a given view to directly
compute its children, use its estimated size to calculate
(a) the cost of scanning the view and (b) the cost of
sorting it.

4. Using the bipartite matching technique presented in
[16], reduce the lattice to a spanning tree that identi-
fies the appropriate set of prefix-ordered sort paths.

5. Partition the tree into p sub-trees.

6. Distribute the sub-tree lists to each of the p compute
nodes.

7. On each node, use the sequential Pipesort algorithm to
build the set of local views.

4 A look at the details

In the following section, we provide a detailed descrip-
tion of the implementation. We first describe the code base
and supporting libraries, followed by an overview of each
of the steps listed in Section 3.2.

4.1 The Code Base

Though some initial coding was done in C, we chose to
move to a C++ platform in order to more efficiently support
the growth of the project. With the expansion of the code
base and the involvement of a number of independent de-
velopers, several of whom were in geographically distinct
locations, it made more sense to employ an object-oriented
language that allowed for data protection and class inheri-
tance. One notable exception to the OOP model, however,
was that the more familiar C interface to MPI functions was
used.

4.1.1 The LEDA Libraries

In practice, a meaningful implementation of parallel dat-
acube algorithms tends to be quite labour intensive. Conse-
quently, we chose to employ third-party software libraries
so that we could focus our own efforts more completely
upon the new research. After a review of existing pack-
ages, we selected the LEDA libraries because of the rich
collection of fundamental data structures (including linked
lists, hash tables, arrays, and graphs), the extensive imple-
mentation of supporting algorithms, and the C++ code base
[12]. Though there is a slight learning curve associated with
LEDA, the package has proven to be both efficient and reli-
able.

4.1.2 The OOP framework

Having incorporated the LEDA libraries into our C++ code
base, we were able to implement the lattice structure as a
LEDA graph, thus allowing us to draw upon a large num-
ber of built-in graph support methods. In this case, we have
sub-classed the graph template to permit the construction of
algorithm-specific structures for node and edge objects. As
such, a robust implementation base has been established;
additional algorithms can be “plugged in” to the framework
simply by sub-classing the lattice template and (a) over-
riding or adding methods and (b) defining the new node and
edge objects that should be used as template parameters.

In the current implementation, the base lattice has been
sub-classed so as to augment the graph for the sort-based



optimization. For each view/node, we estimate its construc-
tion cost in two formats: as a linear scan of its parent and
as a complete resorting of its parent. Since these cost as-
sessments depend upon accurate estimates of the sizes of
the views themselves, the inclusion of a view estimator is
required.

4.2 A probabilistic view estimator

A number of inexpensive algorithms have been proposed
for view estimation [17]. The simplest merely entails using
the product of the cardinalities of each dimension to place
an upper bound on the size of each cuboid. A slightly more
sophisticated technique computes a partial datacube on a
ramdomly selected sample of the input set. The result is
then “scaled up” to the appropriate size. Though both ap-
proaches can give reasonable results on small, uniformly
distributed datasets, they are not as reliable on real world
data warehouses.

Consequently, the use of probabilistic estimators that
rely upon a single pass of the dataset have been sug-
gested. As described in [17], our implementation builds
upon the counting algorithm of Flajolet and Martin [6]. Es-
sentially, we concatenate the d dimension fields into bit-
vectors of length L and then hash the vectors into the range
0 : : : 2L � 1. The algorithm then uses a probablistic tech-
nique to count the number of distinct records (or hash val-
ues) that are likely to exist in the input set. To improve
estimation accuracy, we employ a universal hashing func-
tion [4] to compute k hash functions, that in turn allows us
to average the estimates across k counting vectors.

The probabilistic estimator was quite accurate, produc-
ing estimation error in the range of 5–6 % with 256 hash
functions. However, its running time on large problems
was disappointing. In short, the problem is that, despite an
asymptotic bound of O(n � 2d), the constants hidden inside
the inner computing loops are enormous (i.e, greater than
one million!). For the small problems decribed in previous
papers, this is not an issue. In high dimension space, it is
intractable; the running time of the estimator extends into
weeks or even months.

Considerable effort was expended in trying to optimize
the algorithm. All of the more expensive LEDA structures
(strings, arrays, lists, etc.) were replaced with efficient C-
style data types. Despite a factor of 30 improvement in run-
ning time, the algorithm remained far too slow. We also
experimented with the GNU-MP (multi-precision) libraries
in an attempt to capitalize on more efficient operations for
arbitrary length bit strings. Unfortunately, the resulting es-
timation phase was still many times slower than the con-
struction of the views themselves. At this point, it seems
unlikely that the Flajolet and Martin estimator is viable in
high dimension space.

4.3 A simple view estimator

We needed a fast estimator that could be employed
even in high dimension environments. We chose to
use the technique that bounds view size as the prod-
uct of dimension cardinalties. We also improve upon
the basic estimate by exploiting the fact that a child
view can be no bigger than the smallest of its poten-
tial parents. For size = S, we therefore have Schild =
min(Productchild;min(Skfork�ParentSet)). How-
ever, additional optimizations that incorporate intermediate
results are not possible since a parallel implementation pre-
vents us from sequentially passing estimates up and down
the spanning tree. Section 5 discusses the results obtained
using this version of the view estimator.

4.4 Computing the Edge Costs

As previously noted, the values produced by the estima-
tor only represent the sizes of each output view, not the final
edge costs that are actually placed into the lattice. Instead,
the algorithm uses the view estimate to calculate the po-
tential cost of scanning and sorting any given cuboid. An
appropriate metric must be experimentally developed for
every architecture upon which the datacube algorithm is
run. For example, on our own cluster, an in-memory multi-
dimensional sort is represented as (d + 2)=3) � (n logn),
where d is the current level in the lattice. At present, we are
working on a module that will be used to automate this pro-
cess so that appropriate parameters can be provided without
manually testing every architecture.

4.5 Constructing the spanning tree

Once the lattice has been augmented with the appropri-
ate costs, we apply a weighted bipartite matching algorithm
that finds an appropriate set of sort paths within the lattice
(as per [16]). Working bottom-up, matching is performed
on each pair of contiguous levels in order to identify the
most efficient distribution of sort and scan orders that can be
used to join level i to level i � 1. The matching algorithm
itself is provided by LEDA and requires only minor mod-
ification for inclusion in our design (e.g., it must be con-
verted from a maximum weighted matching to a minimum
weighted matching by subtracting each edge cost from the
maximum cost at that level in the tree).

4.6 Min-Max Partitioning

As soon as the bipartite matching algorithm has been ex-
ecuted, we partition the lattice into a set of k sub-trees us-
ing the min-max algorithm proposed by Becker, Schach and
Perl [2]. The original algorithm is modified slightly since



it was actually designed to work on a graph whose costs
were housed in the nodes, rather than the edges. As well,
a false root with zero cost must be added since the algo-
rithm iterates until the root partition is no longer the small-
est sub-tree. The min-max algorithm performs quite nicely
in practice and, in conjunction with the over-sampling fac-
tor mentioned earlier, produces a well balanced collection
of sub-trees (see [5] for a more complete analysis).

Once min-max terminates, the k sub-trees are collected
into p sets by iteratively combining the largest and smallest
trees (with respect to construction cost). Next, each sub-
tree is partitioned into a set of distinct prefix-ordered sort
paths, then packaged and distributed to the individual net-
work nodes. The local processor decompresses the package
into its composite sort paths and performs a pipesort on each
pipeline in its assigned workload. No further communica-
tion with the root node is required from this point onward.

4.7 Local Pipesorts

In short, a pipesort consists of two phases. In the first
round, the root node in the list is sorted in a given multi-
dimensional order. In phase two, we perform a linear pass
through the sorted set, aggregating the most detailed records
into new records that correspond to the granularity level of
each cuboid in the sort path. As the new records are pro-
duced they are written directly to disk. For example, if we
sort the data in the order ABCD, we will subsequently create
the ABCD, ABC, AB, and A views as we traverse the sorted
set.

Though we originally exploited LEDA’s array sorting
mechanism to sort the root node in memory, we have since
re-written the sort using the C library routines so as to maxi-
mize performance. At present, all input sorting is performed
in main memory. In the future, we expect to incorporate ro-
bust external memory sorting algorithms into the project.

5 Experimental Evaluation

In this section, we discuss the performance of our paral-
lel pipesort implementation. We first provide an overview
of the computing platform, as well as a description of the
datasets that were generated for this phase of testing. We
then analyze the algorithm in terms of a number of key pa-
rameters.

5.1 The Platform

The current prototype has been implemented on an in-
expensive cluster architecture. Commonly referred to as a
Beowulf-class cluster, the network consists of 9 Pentium
processors — a root and eight compute nodes — connected
by a full wire-speed Fast Ethernet switch. Each node runs

its own copy of the Linux operating system and all resources
are locally managed. In terms of inter-node communication,
we adopt the message passing model and employ LAM’s
version of MPI (TCP/IP). Due to networking problems with
earlier versions of the Linux kernel — that impacted upon
the efficiency of MPI — the installation relies upon the
2.2.14 kernel to ensure optimal performance.

5.2 Data Generation

In order to effectively test the algorithms, it is necessary
to utilize a wide variety of test sets that reflect the patterns
and idiosyncracies one is likely to encounter in practical
settings. As such, we have designed our own simple data
generator that produces integer-based records (non-integer
records would typically be mapped to integers in an indus-
trial application). In addition to row and dimension counts,
the generator accepts parameters that define the number of
unique values in each dimension, as well as the proportion
of total records that should contain a particular value (i.e.,
the skew). For example, it is possible to specify a dimen-
sion that contains 10 unique values, with 85% of all records
holding just one of those possibilities. We are in the pro-
cess of modifying the generation algorithm to utilize the
zipf power-law function. Here, we express the probability
of encountering a particular value i in a given dimension as
Pi � 1=ia, with the zipf factor a close to unity. As a is
incremented from one, the data set becomes more skewed.
The next version of our datacube application will include
this feature.

5.3 Analysis of Results

We have been evaluating the algorithm on our cluster un-
der a variety of test conditions. Running time, input size,
dimension count and over-sampling factor have all been as-
sessed by varying the relevant parameter and holding all
others constant. As such, four charts have been included
in this paper to illustrate some of the preliminary analysis.
Figure 4 shows the running time of our parallel datacube
construction method as we increase the number of proces-
sors (note: in this test, record count = 100000, dimension
count = 6, sampling factor = 2, and distribution = uniform).
Here, curves for average running time and max running time
(i.e., the slowest single node) almost coincide with the op-
timal curve — Topt = Tsequential=p. This is very promis-
ing. We note that the error in the max curve does increase
with the number of processors. However, we can associate
much of this error with the shortcomings of the estimator
used during this round of testing. As the number of proces-
sors increases, the local workload becomes progressively
smaller and, as such, estimation error becomes more pro-
nounced. Again, we plan to explore the estimator problem



11 22 33 44 55 66 77 88
00

200

400

600

800

1000

1200

1400

max_time

optimal

avg_time

Processors

t/
s

Figure 4. Processor Test

in the coming months.
Figure 5 depicts the running time — using a logarith-

mic scale — as the size of the data set grows from 10,000
records to one million records (note: processor count = 8,
dimension count = 6, sampling factor = 2, and distribution
= uniform). The running time increased in an almost linear
fashion. This is very encouraging for future tests that will
evaluate performance on very large input sets.

Figure 6 illustrates the effect of increasing the number
of dimensions in the problem space. We see that the al-
gorithm’s running time roughly doubles as the dimension
count is incremented by one. In fact, this is exactly as one
would expect given that adding a dimension doubles the
number of views that must be computed.

Finally, in Figure 7, we look at the inpact of adjusting the
over-sampling factor. The use of a sampling factor of two
or more clearly inproves upon the balancing, and hence the
running time, of the algorithm. However, what is perhaps
most interesting is the fact that, despite higher average run-
ning times, sampling factors of either three or four actually
had a slightly lower max time. It is therefore possible that
the improved partitioning may be worth the cost of an extra
sort on each node.

6 Future Work

A number of datacube related problems remain to be ad-
dressed. They include the following:

� In practice, data warehouse designers may wish to gen-
erate some subset of all available views. Cost effective
algorithms for doing this must do more than simply
calculate a partial cube on the selected cuboids; cost
metrics must include intermediate views that would
allow the selected cuboids to be calculated efficently.

00 100 200 300 400 500 600 700 800 900 1000
11

10

100

1000

10000

max_time

avg_time

rows/k

t/
s

Figure 5. Data Test

22 33 44 55 66 77 88 99 10
00

500

1000

1500

2000

2500

3000

3500

4000

4500

dimension

t/
s

Figure 6. Dimension Test

11 22 33 44
00

25

50

75

100

125

150

175

200

225
max_time

avg_time

sample factor

t/
s

Figure 7. Sampling-factor Test



Though a technique based upon a Steiner tree approxi-
mation was proposed in [16], this mechanism is likely
to be too expensive in high dimensions.

� Given the potential advantages of the bottom-up ap-
proaches to datacube construction, it will be interest-
ing to compare our current parallel Pipesort with the
the bottom-up alternative. With the modular approach
that we have taken on the implemenation project, this
comparative analysis should be possible in the near fu-
ture.

� Once the cuboids are generated, there is a need to ad-
dress the problem of querying the data in a parallel en-
vironment. Should query performance be optimized
by balancing many requests in a pipelined fashion, or
should we try to ensure that individual queries are dis-
tributed evenly across all nodes?

� Appropriate indexing mechanisms are required since
simple linear scans of the cuboids, or even single-
dimension b-tree accesses, are far too time-comsuming
for OLAP processing. One promising area of research
with respect to high dimension OLAP concerns the use
of packed r-trees [14, 11]. Long used as an indexing
method for extended spatial objects [9], r-trees are at-
tractive in the current context because they may pro-
vide a means of efficiently indexing the aggregation
points in a multi-dimensional cuboid. Moreover, tech-
niques for efficiently updating the packed trees in bulk
increments suggest that packed r-trees may be used to
improve the refresh rate of existing data warehouses
[15].

7 Conclusions

As data warehouses continue to grow in both size and
complexity, so too will the opportunities for researchers
and algorithm designers who can provide powerful, cost-
effective OLAP solutions. In this paper we have discussed
the implementation of a parallel algorithm for the construc-
tion of a multi-dimensional data model known as the dat-
acube. By exploiting the strengths of existing sequential
algorithms, we can pre-compute all cuboids in a load bal-
anced and communication efficient manner. Our experi-
mental results have demonstrated that the technique is vi-
able, even when implemented in a shared nothing cluster
environment. In addition, we have suggested a number of
opportunities for future work, including a parallel query
model that utilizes packed r-trees. More significantly per-
haps, given the relatively paucity of research currently being
performed in the area of parallel OLAP, we believe that the
ideas we have proposed represent just a fraction of the work
that might lead to improved data warehousing solutions.

References

[1] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta,
J. Naughton, R. Ramakrishnan, and S. Sarawagi. On the
computation of multidimensional aggregates. Proceedings
of the 22nd International VLDB Conference, pages 506–
521, 1996.

[2] R. Becker, S. Schach, and Y. Perl. A shifting algorithm for
min-max tree partitioning. Journal of the ACM, 29:58–67,
1982.

[3] K. Beyer and R. Ramakrishnan. Bottom-up computation of
sparse and iceberg cubes. Proceedings of the 1999 ACM
SIGMOD Conference, pages 359–370, 1999.

[4] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-
gorithms. The MIT Press, 1996.

[5] F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin.
Parallelizing the datacube. International Conference on
Database Theory, 2001.

[6] P. Flajolet and G. Martin. Probabilistic counting algorithms
for database applications. Journal of Computer and System
Sciences, 31(2):182–209, 1985.

[7] S. Goil and A. Choudhary. High performance olap and data
mining on parallel computers. Journal of Data Mining and
Knowledge Discovery, 1(4), 1997.

[8] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing group-
by, cross-tab, and sub-totals. Proceeding of the 12th Inter-
national Conference On Data Engineering, pages 152–159,
1996.

[9] A. Guttman. R-trees: A dynamic index structure for spatial
searching. Proceedings of the 1984 ACM SIGMOD Confer-
ence, pages 47–57, 1984.

[10] V. Harinarayan, A. Rajaraman, and J. Ullman. Implement-
ing data cubes. Proceedings of the 1996 ACM SIGMOD
Conference, pages 205–216, 1996.

[11] I. Kamel and C. Faloutsos. On packing r-trees. Proceedings
of the Second International Conference on Information and
Knowledge Management, pages 490–499, 1993.

[12] Leda. http://www.mpi-sb.mpg.de/LEDA/.
[13] K. Ross and D. Srivastava. Fast computation of sparse data

cubes. Proceedings of the 23rd VLDB Conference, pages
116–125, 1997.

[14] N. Roussopolis and D. Leifker. Direct spatial search on pic-
torial databases using packed r-trees. Proceedings of the
1985 ACM SIGMOD Conference, pages 17–31, 1985.

[15] N. Roussopoulos, Y. Kotidis, and M. Roussopolis. Cube-
tree: Organization of the bulk incremental updates on the
data cube. Proceedings of the 1997 ACM SIGMOD Confer-
ence, pages 89–99, 1997.

[16] S. Sarawagi, R. Agrawal, and A.Gupta. On computing the
data cube. Technical Report RJ10026, IBM Almaden Re-
search Center, San Jose, California, 1996.

[17] A. Shukla, P. Deshpande, J. Naughton, and K. Ramasamy.
Storage estimation for multidimensional aggregates in the
presence of hierarchies. Proceedings of the 22nd VLDB
Conference, pages 522–531, 1996.

[18] Y. Zhao, P. Deshpande, and J. Naughton. An array-based
algorithm for simultaneous multi-dimensional aggregates.
Proceedings of the 1997 ACM SIGMOD Conference, pages
159–170, 1997.


