
Generating Architectural Forms

Andrew Rau- Cbaplin Trevor]. Smedley

Da lhousie University
Faculty of Computer Science

Halijax, Nova Scotia, Canadd

Abstract
We describe a collaborative research effort between the fac-
ulties of Computer Science and Architecture, investigating
a special-purpose visual language to be used to generate
architectural forms. This language forms part of a larger
system intended to automate the process of generating
architecturally designed houses. The rules which can be
specified using the language described here are used to
prune a set of floor plans according to specifications pro-
vided by an architect. They are intended to replace rules
written in Prolog, allowing the architect to directly specify
and understand the rules.

1. Introduction

To converse with an Architect is to participate in a dialog
in which a sketch book is filled with both representational
images of structures and thought diagrams that express
both symbolic and functional relationships. Software engi-
neers also draw to communicate, but their diagrams are
often more structured - seeking to express simpler rela-
tionships, but to have the expression more precise, com-
plete and amenable to machine interpretation. This paper
describes on-going work on a visual language intended CO

facilitate communication between Architects and Software
Engineers involved in the LaHave House Project, as well as
between the S o h a r e Engineers and their machines.

The LaHave House Project [8] is an ongoing research
project of the Virtual House Lab of the Faculties of Archi-
tecture and Computer Science at the Technical University
of Nova Scotia, Canada. The goal of the project is to
explore the potential for an industrial design approach to
architectural design in which Architects design families of
similarly structured objects, rather than individual objects,
thereby amortizing design costs. Currently in North
America architects are involved in the design of only about
5% percent of the total new house market. Whereas cus-
tom architectural design will always have a premier role to
play, we believe that an industrial design approach to
architecture can bring much of the design quality and vari-
ety of custom design to the other 95% of the market, at an
affordable price.

At the heart of the project is the use of a design space
description formalism [I], based on shape grammars, [6,
9, lo], to specify and generate a design library (see Figure
1)

The role of the design engine in LaHave House Project is
to generate a library of “base house designs” which are
then used as a starting point for an end-user driven design
development process. Given a shape grammar, this library
is generated automatically, without human intervention.
This differs from approaches such as co-operative CAD
systems, such as that described in [3], which require
human interaction throughout the design process.

One can think of this generated design library as the digi-
tal analog to the pattern books of the 19th century in that
both contain house organizations, as much as they contain
individual house designs. The generated design library
contains houses that differ radically from each other in
form, organization, size, amenity level, and “style”, but
despite this diversity share an underlying deep structure.

Each base house design or house schema consists of a com-
plete description of the geometry of the house and the lay-
out of each floor (see, for example, Figure 2). The design
of individual spaces in the house, for example the layout of
the kitchen or bathrooms, is not currently generated rather

Shape
rammar

Figure 1 - The Design Engine

1049-2615/97 $10.00 0 1997 IEEE
260

Figure 2 - One generated house from the design library, two views.

pre-designed room arrangements, called tdes, are allocated
from a tile library. Our current tile library consists of over
800 room tiles and 450 wall tiles, while our generated
design library contains approximately a 1,OOO,OOO differ-
ent house designs. Ascertaining the exact size of the design
library is somewhat difficult as some of designs are near
duplicates arrived at by different paths, but we believe that
overall the library strikes a reasonable balance between
variety and needless variation.

Currently, the “production version” of the Design Engine
is written in Prolog and the shape grammars are specified
as Prolog rules. In many ways Prolog has proved ideal for
this application - its declarative nature and the ease with
which generative processes can be expressed, given back-
tracking and unification mechanisms, recommend it
highly. But over the last two years, as we have gained
more experience in writing, maintaining, and extending
shape grammars, we have become less satisfied with Prolog
as a language for expressing generative rules, for the fol-
lowing reasons:

1. The project Architects find it nearly impossible to
work directly with the shape grammars as expressed in
Prolog. This leads to a very indirect iterative three
stage development cycle in which
a) Architects and Software Engineers meet, talk,

and draw pictures, then
b) the Software Engineers go away and try to

encode the ideas captured in their notes and pic-
tures into Prolog rules. Try to debug the rules
(which maybe conceptually ill-formed) without
the help of the Architect and generate typically
several hundred pages of sample output.
The Architects and Software Engineers meet
again, look at the output and try to identify the

c)

ways iin which the rules, as judged by the output,
do and do not capture the ideas discussed in their
last meeting. This leads them back to step a).

Typically ai single cycle takes at least a week to go
through and typically has to be iterated between five
and ten times to get a smallish grammar right. The
Architects find it frustrating not being able to act
directly on the rules. All parties often feel that they
are not progressing, that they somehow lack “trac-
tion”.
The same basic idea or constraints can be expressed in
so many different ways in Prolog that it is often very
difficult to tell if two rules are related to each other or
are likely to interact. This greatly complicates the task
of maintaining or extending grammars.
It is difficult to find good Software Engineers who are
highly proficient in Prolog and have the necessary
communication skills to do this kind of interdiscipli-
nary work.

2.

3.

In finding a replacement for Prolog, we felt the need to
design a special purpose language that, through its con-
structs, captured what we had learned about expressing
generative systems in our context. We briefly considered
using a graphical rewrite language like those found in the
classical Shape Grammar literature, [6, 9, IO], but quickly
realized that our design language was much richer than the
type of 2D language of points, lines and labels that the
phrase ‘Shape Grammar’ originally denoted.

(Our overriding need for a shared language allowing the
(domain experts (Architects) and Software Engineers to
(directly apply their specialized domain expertise has lead
IUS to design our own single purpose visual programming
language. In the remainder of this paper we will first
describe our generative system, and then describe how we

261

represent the rules graphically, giving examples. We con-
clude with a brief summary and pointers to future work.

2. Generating House Designs

Although we are interested in the general question of how
arbitrary shape grammars might be visually expressed, we
are at this stage using a large single shape grammar to drive
our work. In this section we briefly describe the LaHave
House Grammar and discuss some pragmatic issues relat-
ing to the balance between generation and pruning strate-
gies.

2. I

The LaHave House grammar is based on a systematic
approach to house design developed by Brian MacKay-
Lyons, an award-winning Canadian Architect, in over fif-
teen years of custom architectural design practice. Reviews
and discussion of his design work can be found in [2, 51.
The forms generated by the grammar have been inspired
by the vernacular architecture of the LaHave river valley of
Nova Scotia, Canada. Using shape grammars to capture
the design space of a living architect is in many ways dif-
ferent to much of the existing shape grammar work [4, 31.
The goal is not so much to create a grammar that gener-
ates an existing corpus of design, but rather to work with
the Architect to extract from their existing design corpus a
robust set of generation principles.

One feature of the grammar is its tendency to produce
dense cores for services and sparse open spaces for living
in. The grammar is constructed in terms of a set of five ele-
mentary components: Rooms, Tartans, Machines, Bays,
and Totems. The rooms are the principle places for human
action, the tartans provide space for circulation, the
machines (bathrooms, kitchens, laundry, entry etc.) are
the dense service spaces, the Bays provide outlook space
and secondary living space, and the totems (hearths, stair-
cases, cabinetry etc.) provide focus for the rooms.

The grammar makes extensive use of the idea of Served vs.
Servant spaces advanced in [7]. This tends to be a three
level hierarchy in which rooms are served by primary
machines, which may in turn be served by secondary
machines. For example, a dinning room may be served by
a kitchen, which is in turn served by a pantry. Although
we are interested in generating complete functional mod-
ern houses, (i.e. we care where the bathrooms and closets
go), the grammar is driven purely by issues of form. The
function plan is derived only when the form has been
completely generated.

The grammar we are currently working with has a single
longitudinal axis of growth, with a dense machine zone
flanking a body zone, which is in turn surrounded by a bay
zone (see Figure 3). The machine zone tends to be contig-

The LaHave House Grammar

Growth

Figure 3 - Space Zoning

uous and completely filled, particularly in smaller houses,
while the bay zone tends to be more sparsely populated.

2.2 A Hierarchy of Shape Grammars

The LaHave House grammar is expressed as a hierarchical
set of shape grammars (see Figure 4) in which each level of
design schema (example instances are shown on the right)
are generated by combining lower level design schema. At
the lowest level there are atomic elements representing
machines, rooms, bays and end-bumps. The machines,
bays and end-bumps come in a variety of sizes, some of
which contain totems. The rooms also come in a variety of
sizes (tartans beginning classified as narrow rooms) and
may be either “open” (i.e. primarily room) or “dense” (i.e.
mostly occupied by machine). These atomic elements are
combined together by the Tray Generation grammar to
form a set of Tray Schema. A tray is a slice from a floor
plan, as shown in 4(a). The Plan Generation grammar
then combines trays to form valid Plan Schema, such as
4(b). Functional Zoning takes Plans and forms Zoned
Plans in which the public end of the plan is identified, any
double height space is labeled and the “great room” (i.e.
large public open plan area) is identified 4(c). Section
Schema are, like Plan Schema, built from atomic parts.
They describe the primary section of a house (i.e. the
number of floors, widths of each zone, and all of the roof
shapes) 4(d). The Form Generation grammar takes com-
patible plan and section schema and combines them to
create complete 3D forms 4(e). Associated with this step is
a lot of procedural house-keeping in which floor plans are
created from the plan schema, these plans are dimen-
sioned, creating walls to definelenclose the interior spaces,
roofs are added and generally all of the 3D information
required to define a complete form is computed. Finally,
form schema are transformed into completed house
designs (house schema) 4(f) by a series of grammars that
first assigns to each space unit within the form schema a
function (i.e. kitchen, bedroom, entry, study etc.) and
then assigns a room organizations from a library of room

262

Section

I Function I Section A

Schema (e) 0

Figure 4 - Phases of Generation

level designs. Me call these pre-designed room organiza-
tion tiles and the problem of assigning tiles to space units,
in a formally pleasing and functional arrangement, the tile
assignment problem. Note that by the time one reaches
the house schema stage one has a rich representation of a
house, complete with plan, section and 3D form informa-
tion.

2.3 Generation vs. Pruning Rules

There are two obvious approaches to generating valid
schema. The first is to generate all possible combinations
of all input elements, and then prune away all those com-
binations which prove invalid using a system of pruning
rules. The second is to generate only valid schema. The
basic advantage of this the first approach is simplicity. The
generation rules are relatively simple and regular and each
completed production can be validated by a equally simple
and regular set of rules. But there are two primary disad-
vantage to this approach. Firstly, it is unlikely that one has
enough time or space to generate all possible configura-
tions before testing for validity. Secondly, if a generated
schema is invalid for more than one reason, (i.e. it has fea-
tures A, B, and C which are each invalid by themselves)
then it is possible (and as it turns out quite likely) that the
combination of invalid features are jointly consistent

enough to slip past the validation rules.

'The second approach, that of generating only valid
schema, relies an one being able to write the generation
rules so craftily that invalid schema are never generated.
Unfortunately, this approach is impossible to realize for
anything but very trivial classes of productions. There are
just too many design issues to be considered at every
choice point to make this approach workable.

We have found that only by combining these two
approaches can one derive correct, efficient and robust
grammars. Each of the grammars is therefore expressed in
two parts: A set of generation rules that aim to be simple,
but try to exclude combinations that can be easily recog-
nized as being invalid and a set of pruning rules that cap-
ture more subtle invalidation criteria.

3. A Newvisual Language

In approaching the problem of designing visual methods
far expressing the rules involved in the LaHave House
I'roject shape grammars, we decided to initially focus on
the bottom of the hierarchy - the shape grammars used
fiDr Plan Schema, and Zoned Plan Schema. In the current
system Plan Schema and Zoned Plan Schema are gener-
ated and then pruned using rules written in Prolog. Figure

263

%prune any plan without a fat totem, and too few machine zones
pruneqlan (Trays) : ~

not(member(T,Trays),fetch(T,width,main),fetch(T,body-zone,dense)),
flag(num-main-trays,NMT,NMT),
flag(num-l2-mz,NMZ,NX),
NMZ < NMT - 1.

Figure 5 - Prolog Rule (Same as Figure 8c)

5 shows and example of such a rule. We describe here a
language which can be used to express rules for matching
plans. Clearly these matching rules can be used in the def-
inition of both generation rules and pruning rules. In the
remainder we focus on pruning

We first give definitions of plans and their parts, and then
define the rules that can be described using the language
and how they can be 'matched' with plans. We then give
examples of the graphical representations of the rules.

3. I Definitions

Plan. A Plan is a sequence of trays.

Tray. A Tray has a width, height (single or double), bool-
eans for public end and great hall, and a Machine Zone,
Room Zone, and Bay Zone.

Machine Zone, Room Zone, and Bay Zone. Each of
these has a depth and a fill specifier (OPEN, DENSE or
EMPTY).

Rule. A Rule can be an AND Rule, O R Rule, NOT Rule,
Symmetric OR Rule, Neighbour Rule, Quantity Rule, or
Distance Rule. It contains a list of rule parts. A Plan is
matched by a Rule if any contiguous subsequence of trays
matches the Rule.

Rule Part. A Rule, a Tray Specifier or an End Specifier.

AND Rule. A list of Rule Parts, all of which must be
matched in order for the rule to be matched.

OR Rule. A list of Rule Parts, any one of which must be
matched in order for the rule to be matched.

NOT Rule. A Rule Part, which must not be matched in
order for the rule to be matched.

Symmetric OR Rule. A Neighbour Rule which behaves as
a two-element O R Rule. The first element is the Neigh-
bour Rule specified, and the second element is the Neigh-
bour Rule with its list of rule parts reversed. Note that this
rule is not required (it can be expressed using an O R
Rule), but it is a common enough occurrence that it is
worth integrating into the language.

Neighbour Rule. A list of Rule Parts,

(p l , p z , . . ., p ,) , which is matched iff there is a con-

tiguous sequence of trays, (t l , t2, ..., t,) , and a

monotonically increasing sequence of integers,

ij; j = 1 ... 2, such that (t l , ..., til) matches p 1 ;

(t i , + P - ' t iA+,) matches p i for j = 1 ... I , and

(ti,, . . . , t,) matches p , .

Quantity Rule. A single Rule Part, and a boolean expres-

sion in one variable, E(x) . Matched iff there are n trays

which satisfy the Rule Part, and E(n) is TRUE.

Distance Rule. Three Rule Parts: Source; Separator; and
Destination. The Source and Destination can be any Rule
Part, but the Separator must be a Quantity Rule. This rule
is matched iff, for every tray sequence satisfying the Sepa-
rator Rule Part, and every tray sequence satisfying the Des-
tination Rule part, the sequence of trays which separate
them must satisfy the Separator Rule Part. Although it is
possible to build such a rule up from AND, OR, N O T
and Quantity Rules, it is exceedingly complicated, and
rules of this form are common enough to warrant special
inclusion.

Tray Specifier. A tray width specifier (a valid tray width or
the value ANY), a height specifier (SINGLE, DOUBLE or

ANY), a public end specifier (PUBLIC, NOT PUBLIC or
ANY), a great room specifier (GREAT ROOM, NOT

GREAT ROOM, or ANY), a Machine Specifier, a Room
Specifier, and a Bay Specifier. A Tray Specifier is matched
by any tray which matches the width, public end, and
great hall of the specifier (ANY matches with any value),
and whose Machine, Room and Bay Zones satisfy the
Machine Specifier, Room Specifier, and Bay Specifier
respectively.

Machine Specifier, Room Specifier, and Bay Specifier. A
depth specifier (a valid part depth or the value ANY), and a
fill specifier (OPEN, DENSE, EMPTY or ANY). A
Machine, Room or Bay Zone matches a Machine Speci-
fier, Room Specifier, or Bay Specifier (respectively) if their
depths and fills match (again, ANY matches any value).

End Specifier. The value BEGINNING or END. These can

264

$ Any length or width

1 Fixed length or width

Double height space X
- Single height space

0 Private end

Not great hall Q
Figure 6 - Graphical Vocabulary

Any valid fill

Dense machine zone

Dense body zone

Open body zone

* _-

Open bay zone

Matches any tray at all. None of the
widths are specified, all three zones
are designated ‘any valid fill’, and
there are no specifiers for height,
public end, or great hall.

c%-l Matches trays of any width with empty
machine and bay zones, and an open,
public end, double height, great hall,
body zone of any depth.

4 Matches any 12‘ wide tray, with a dense H
Matches 4‘ wide trays, with dense
machine zones and any body or bay
zones.

machine zone of any depth, a dense
body zone of any depth, and a 3‘ deep
open bay zone.

Figure 7 - Example tray specifiers

265

only be used as part of a Neighbour Rule: BEGINNING

can only be used as Rule Part p1 ; END can only be used

as Rule Part p n as defined above. If p1 is BEGINNING,

then p 2 must match a sequence of trays which includes

the first tray in the plan. If pn is END, then p n - must

match a sequence of trays which includes the last tray in
the plan.

3.2 Graphical Depictions

We present here the graphical representations of the rules
defined in the previous section. We start off with the basic
graphical vocabulary, and then present examples of the
rules.

Figure 6 shows the symbols used to give tray specifications.
There is no symbol for open machine zone, empty room
zone, or dense bay zone, as these are illegal. Also, the ANY
specifications for height, public end and great hall are
given by the absence of a symbol. Using this basic vocabu-
lary, we can build up tray specifiers such as those shown in
Figure 7.

Rules arc drawn inside boxes, with annotations indicating
what type of rule it is. For AND rules, the rule parts are
drawn horizontally, separated by a dashed line, as shown in
Figure 8c). O R Rules are done similarly, but vertically
instead of horizontally, as shown in Figure 8d). The verti-
cal organisation is meant to visually suggest a choice, and a
horizontal row to indicate that all the parts are required. A
NOT Rule is shown in Figure 8c).

A Symmetric OR Rule, Figure 8b), looks like an OR Rule

except it uses the symbol f;;Rt, and when creating or
editing such a rule, only the top half can be modified, and
the lower half is generated automatically. A Neighbour
Rule is shown in Figure sa), with the symbol U. When a
neighbour rule is used inside another rule, the box and
symbol are omitted to simplify the diagrams.

A Quantity Rule is shown on the right in Figure 8c). For
these, the expression to be satisfied is indicated along the
top of the box. Finally, a Distance Rule is show in Figure
8d). The three parts are in separate sections, with the sym-
bol above the Source part, and the expression for
the Distance Rule above the Separator part. The arrows on
the box sides are intended to indicate the Source/Destina-
tion relationship.

Rule Explanations

Figure 8a). Neighbour Rule, which matches any plan
which has two consecutive trays of width 4.

m

'
M

12 -

-
Figure 8 - Sample Rules

266

Figure 8b). This is a Symmetric O R Rule, which matches
any tray with a dense body at either the beginning or end
of the plan.

Figure 8c). An AND Rule with two parts, the first a N O T
Rule, and the second a Quantity Rule. This matches any
plan which has no 12’ wide trays with a dens body, and
more than one 12’ wide tray with an empty machine zone.

Figure 8d). A Distance Rule, where the Source matches
any tray with a single height body, the Separator matches
any 12’ tray with empty machine and an open body, and
the Destination is an O R rule which matches any tray
with either a dense machine zone, or a dense body zone.
Thus, this rule matches any tray with single height space
that is two or more 12’ trays away from the nearest dense
space.

3.3 Applying Rules

As mentioned earlier, the implementation for this project
has been carried out primarily using Prolog, and rules such
as the ones given in Figure 8 have been implemented for
pruning zoned plan schema. In order to integrate this
work with the current implementation, Prolog rules are
generated from the visual descriptions explained here. The
translation to Prolog is straightforward, but tedious, and
we omit its description.

4. Concluding Remarks

We have described a visual language for expressing match-
ing rules that can be used to both generate and prune plan
schema. We are currently prototyping an environment
which would allow Architects, either alone or in conjunc-
tion with Software Engineers, to enter matching rules.
This environment will provide powerful rule editing fea-
tures, and allow for a much shorter and more direct devel-
opment cycle for our shape grammars. It will export
Prolog rules to be used in conjunction with the existing
code. In the future we expect to extend this tool to allows
to directly specify both pruning and generation rules, per-
haps extending the language to be used for other gram-
mars in the hierarchy. Having Architects use this system
directly will provide us with valuable feedback about our
visual representations, and allow us to improve them as
required.

The concepts embodied in our visual representations are
those which Architects wish to deal with directly. They
capture abstract notions such as those of functional zon-
ing, scale, sparse vs. dense forms, etc. in way that simple
graphical rewrite rules are unable to. We expect this lan-
guage, and our continuing work in this area, to have a sig-
nificant impact on the LaHave House Project as a whole.

5. Acknowledgments

We would like to thank the TUNS Faculty ofkchitecture
and School of Computer Science for their support and
acknowledge the key role I? Spierenburg has played in the
creating of the Prolog design engine. The work of [he fol-
lowing other individuals is also acknowledged:

Architects: B. MacKay-Lyons, I. Smirnis, D. Wigle, E.
Jannasech, N. Savagen, I? McClelland

Computer Scientists: H. Ning, T. Doucette, X. Hu, G. Li,
D. Gemmell, A. Gajewski, D. Curry, D. Peters, G. Burrell,
H. Lui, S. Gauvin, W. Wu

References
C. Carson. “Shape Grammars in Design: Discussion.
Design Space Description Formalisms”, Formal
Methods for CAD, 1994, Editors J.S. Gero and E.

T. Fisher, “Folk Tech”, Progressive Architecture,

M. Friedell and S. Kochhar, “Design and Modeling
with Schema Grammars”, Journal of Visual
Languages and Computing, 1991, Vol. 2, pp. 247-
273.

H Koning and J Eizenberg, “The Language of the
Prairie: Frank Lloyd Wright’s Prairie Houses”,
Environment and Planning B: Planning and Design

B. MacKay-Lyons, “The Village Architect”. Design
Quarterly 165, MIT Press, Editor R. Jensen,
Summer 1996.

W. Mitchell, “The Logic of Architecture”. MIT
Press, 1990.

C. Moore, G. Allen and D. Lyndon, “The Place of
Houses”, Holt, Reinhart and Winston publishers,
1974.

A. Rau-Chaplin, B. MacKay-Lyons, l? Spierenburg,
“The LaHave House Project: Towards an Automated
Architectural Design Service”, in PTQC. of the
International Conference on Computer-Aided Design
(G4DEX96), IEEE Computer Society Press, Sept.
1996, pp. 25-31.
G. Stiny and W. Mitchell, “The Palladian
Grammar”, Environment and Planning B: Planning
and Design 5, 1978, pp. 5-18.

Tpgu., pp. 121-130.

August 1995, pp. 63-72.

8, 1981, pp. 295-323.

[IO] G. Stiny, “Introduction to Shape Grammars”,
Environment and Planning B: Planning and Design
7, 1980, pp. 343-351.

267

