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Abstract 
We describe a collaborative research effort between the fac- 
ulties of Computer Science and Architecture, investigating 
a special-purpose visual language to be used to generate 
architectural forms. This language forms part of a larger 
system intended to automate the process of generating 
architecturally designed houses. The rules which can be 
specified using the language described here are used to 
prune a set of floor plans according to specifications pro- 
vided by an architect. They are intended to replace rules 
written in Prolog, allowing the architect to directly specify 
and understand the rules. 

1.  Introduction 

To converse with an Architect is to participate in a dialog 
in which a sketch book is filled with both representational 
images of structures and thought diagrams that express 
both symbolic and functional relationships. Software engi- 
neers also draw to communicate, but their diagrams are 
often more structured - seeking to express simpler rela- 
tionships, but to have the expression more precise, com- 
plete and amenable to machine interpretation. This paper 
describes on-going work on a visual language intended CO 

facilitate communication between Architects and Software 
Engineers involved in the LaHave House Project, as well as 
between the S o h a r e  Engineers and their machines. 

The LaHave House Project [8]  is an ongoing research 
project of the Virtual House Lab of the Faculties of Archi- 
tecture and Computer Science at the Technical University 
of Nova Scotia, Canada. The goal of the project is to 
explore the potential for an industrial design approach to 
architectural design in which Architects design families of 
similarly structured objects, rather than individual objects, 
thereby amortizing design costs. Currently in North 
America architects are involved in the design of only about 
5% percent of the total new house market. Whereas cus- 
tom architectural design will always have a premier role to 
play, we believe that an industrial design approach to 
architecture can bring much of the design quality and vari- 
ety of custom design to the other 95% of the market, at an 
affordable price. 

At the heart of the project is the use of a design space 
description formalism [I], based on shape grammars, [6, 
9, lo], to specify and generate a design library (see Figure 
1) 

The role of the design engine in LaHave House Project is 
to generate a library of “base house designs” which are 
then used as a starting point for an end-user driven design 
development process. Given a shape grammar, this library 
is generated automatically, without human intervention. 
This differs from approaches such as co-operative CAD 
systems, such as that described in [3], which require 
human interaction throughout the design process. 

One can think of this generated design library as the digi- 
tal analog to the pattern books of the 19th century in that 
both contain house organizations, as much as they contain 
individual house designs. The generated design library 
contains houses that differ radically from each other in 
form, organization, size, amenity level, and “style”, but 
despite this diversity share an underlying deep structure. 

Each base house design or house schema consists of a com- 
plete description of the geometry of the house and the lay- 
out of each floor (see, for example, Figure 2). The design 
of individual spaces in the house, for example the layout of 
the kitchen or bathrooms, is not currently generated rather 

Shape 
rammar 

Figure 1 - The Design Engine 
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Figure 2 - One generated house from the design library, two views. 

pre-designed room arrangements, called tdes, are allocated 
from a tile library. Our current tile library consists of over 
800 room tiles and 450 wall tiles, while our generated 
design library contains approximately a 1,OOO,OOO differ- 
ent house designs. Ascertaining the exact size of the design 
library is somewhat difficult as some of designs are near 
duplicates arrived at by different paths, but we believe that 
overall the library strikes a reasonable balance between 
variety and needless variation. 

Currently, the “production version” of the Design Engine 
is written in Prolog and the shape grammars are specified 
as Prolog rules. In many ways Prolog has proved ideal for 
this application - its declarative nature and the ease with 
which generative processes can be expressed, given back- 
tracking and unification mechanisms, recommend it 
highly. But over the last two years, as we have gained 
more experience in writing, maintaining, and extending 
shape grammars, we have become less satisfied with Prolog 
as a language for expressing generative rules, for the fol- 
lowing reasons: 

1. The project Architects find it nearly impossible to 
work directly with the shape grammars as expressed in 
Prolog. This leads to a very indirect iterative three 
stage development cycle in which 
a) Architects and Software Engineers meet, talk, 

and draw pictures, then 
b) the Software Engineers go away and try to 

encode the ideas captured in their notes and pic- 
tures into Prolog rules. Try to debug the rules 
(which maybe conceptually ill-formed) without 
the help of the Architect and generate typically 
several hundred pages of sample output. 
The Architects and Software Engineers meet 
again, look at the output and try to identify the 

c) 

ways iin which the rules, as judged by the output, 
do and do not capture the ideas discussed in their 
last meeting. This leads them back to step a). 

Typically ai single cycle takes at least a week to go 
through and typically has to be iterated between five 
and ten times to get a smallish grammar right. The 
Architects find it frustrating not being able to act 
directly on the rules. All parties often feel that they 
are not progressing, that they somehow lack “trac- 
tion”. 
The same basic idea or constraints can be expressed in 
so many different ways in Prolog that it is often very 
difficult to tell if two rules are related to each other or 
are likely to interact. This greatly complicates the task 
of maintaining or extending grammars. 
It is difficult to find good Software Engineers who are 
highly proficient in Prolog and have the necessary 
communication skills to do this kind of interdiscipli- 
nary work. 

2. 

3.  

In finding a replacement for Prolog, we felt the need to 
design a special purpose language that, through its con- 
structs, captured what we had learned about expressing 
generative systems in our context. We briefly considered 
using a graphical rewrite language like those found in the 
classical Shape Grammar literature, [6, 9, IO], but quickly 
realized that our design language was much richer than the 
type of 2D language of points, lines and labels that the 
phrase ‘Shape Grammar’ originally denoted. 

(Our overriding need for a shared language allowing the 
(domain experts (Architects) and Software Engineers to 
(directly apply their specialized domain expertise has lead 
IUS to design our own single purpose visual programming 
language. In the remainder of this paper we will first 
describe our generative system, and then describe how we 
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represent the rules graphically, giving examples. We con- 
clude with a brief summary and pointers to future work. 

2. Generating House Designs 

Although we are interested in the general question of how 
arbitrary shape grammars might be visually expressed, we 
are at this stage using a large single shape grammar to drive 
our work. In this section we briefly describe the LaHave 
House Grammar and discuss some pragmatic issues relat- 
ing to the balance between generation and pruning strate- 
gies. 

2. I 

The LaHave House grammar is based on a systematic 
approach to house design developed by Brian MacKay- 
Lyons, an award-winning Canadian Architect, in over fif- 
teen years of custom architectural design practice. Reviews 
and discussion of his design work can be found in [2, 51. 
The forms generated by the grammar have been inspired 
by the vernacular architecture of the LaHave river valley of 
Nova Scotia, Canada. Using shape grammars to capture 
the design space of a living architect is in many ways dif- 
ferent to much of the existing shape grammar work [4, 31. 
The goal is not so much to create a grammar that gener- 
ates an existing corpus of design, but rather to work with 
the Architect to extract from their existing design corpus a 
robust set of generation principles. 

One feature of the grammar is its tendency to produce 
dense cores for services and sparse open spaces for living 
in. The grammar is constructed in terms of a set of five ele- 
mentary components: Rooms, Tartans, Machines, Bays, 
and Totems. The rooms are the principle places for human 
action, the tartans provide space for circulation, the 
machines (bathrooms, kitchens, laundry, entry etc.) are 
the dense service spaces, the Bays provide outlook space 
and secondary living space, and the totems (hearths, stair- 
cases, cabinetry etc.) provide focus for the rooms. 

The grammar makes extensive use of the idea of Served vs. 
Servant spaces advanced in [7]. This tends to be a three 
level hierarchy in which rooms are served by primary 
machines, which may in turn be served by secondary 
machines. For example, a dinning room may be served by 
a kitchen, which is in turn served by a pantry. Although 
we are interested in generating complete functional mod- 
ern houses, (i.e. we care where the bathrooms and closets 
go), the grammar is driven purely by issues of form. The 
function plan is derived only when the form has been 
completely generated. 

The grammar we are currently working with has a single 
longitudinal axis of growth, with a dense machine zone 
flanking a body zone, which is in turn surrounded by a bay 
zone (see Figure 3). The machine zone tends to be contig- 

The LaHave House Grammar 

Growth 

Figure 3 - Space Zoning 

uous and completely filled, particularly in smaller houses, 
while the bay zone tends to be more sparsely populated. 

2.2 A Hierarchy of Shape Grammars 

The LaHave House grammar is expressed as a hierarchical 
set of shape grammars (see Figure 4)  in which each level of 
design schema (example instances are shown on the right) 
are generated by combining lower level design schema. At 
the lowest level there are atomic elements representing 
machines, rooms, bays and end-bumps. The machines, 
bays and end-bumps come in a variety of sizes, some of 
which contain totems. The rooms also come in a variety of 
sizes (tartans beginning classified as narrow rooms) and 
may be either “open” (i.e. primarily room) or “dense” (i.e. 
mostly occupied by machine). These atomic elements are 
combined together by the Tray Generation grammar to 
form a set of Tray Schema. A tray is a slice from a floor 
plan, as shown in 4(a). The Plan Generation grammar 
then combines trays to form valid Plan Schema, such as 
4(b). Functional Zoning takes Plans and forms Zoned 
Plans in which the public end of the plan is identified, any 
double height space is labeled and the “great room” (i.e. 
large public open plan area) is identified 4(c). Section 
Schema are, like Plan Schema, built from atomic parts. 
They describe the primary section of a house (i.e. the 
number of floors, widths of each zone, and all of the roof 
shapes) 4(d). The Form Generation grammar takes com- 
patible plan and section schema and combines them to 
create complete 3D forms 4(e). Associated with this step is 
a lot of procedural house-keeping in which floor plans are 
created from the plan schema, these plans are dimen- 
sioned, creating walls to definelenclose the interior spaces, 
roofs are added and generally all of the 3D information 
required to define a complete form is computed. Finally, 
form schema are transformed into completed house 
designs (house schema) 4( f )  by a series of grammars that 
first assigns to each space unit within the form schema a 
function (i.e. kitchen, bedroom, entry, study etc.) and 
then assigns a room organizations from a library of room 
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Section 

I Function I Section A 

Schema ( e )  0 

Figure 4 - Phases of Generation 

level designs. Me call these pre-designed room organiza- 
tion tiles and the problem of assigning tiles to space units, 
in a formally pleasing and functional arrangement, the tile 
assignment problem. Note that by the time one reaches 
the house schema stage one has a rich representation of a 
house, complete with plan, section and 3D form informa- 
tion. 

2.3 Generation vs. Pruning Rules 

There are two obvious approaches to generating valid 
schema. The first is to generate all possible combinations 
of all input elements, and then prune away all those com- 
binations which prove invalid using a system of pruning 
rules. The second is to generate only valid schema. The 
basic advantage of this the first approach is simplicity. The 
generation rules are relatively simple and regular and each 
completed production can be validated by a equally simple 
and regular set of rules. But there are two primary disad- 
vantage to this approach. Firstly, it is unlikely that one has 
enough time or space to generate all possible configura- 
tions before testing for validity. Secondly, if a generated 
schema is invalid for more than one reason, (i.e. it has fea- 
tures A, B, and C which are each invalid by themselves) 
then it is possible (and as it turns out quite likely) that the 
combination of invalid features are jointly consistent 

enough to slip past the validation rules. 

'The second approach, that of generating only valid 
schema, relies an  one being able to write the generation 
rules so craftily that invalid schema are never generated. 
Unfortunately, this approach is impossible to realize for 
anything but very trivial classes of productions. There are 
just too many design issues to be considered at every 
choice point to make this approach workable. 

We have found that only by combining these two 
approaches can one derive correct, efficient and robust 
grammars. Each of the grammars is therefore expressed in 
two parts: A set of generation rules that aim to be simple, 
but try to exclude combinations that can be easily recog- 
nized as being invalid and a set of pruning rules that cap- 
ture more subtle invalidation criteria. 

3. A Newvisual Language 

In approaching the problem of designing visual methods 
far expressing the rules involved in the LaHave House 
I'roject shape grammars, we decided to initially focus on 
the bottom of the hierarchy - the shape grammars used 
fiDr Plan Schema, and Zoned Plan Schema. In the current 
system Plan Schema and Zoned Plan Schema are gener- 
ated and then pruned using rules written in Prolog. Figure 
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%prune any plan without a fat totem, and too few machine zones 
pruneqlan (Trays ) : ~ 

not(member(T,Trays),fetch(T,width,main),fetch(T,body-zone,dense)), 
flag(num-main-trays,NMT,NMT), 
flag(num-l2-mz,NMZ,NX), 
NMZ < NMT - 1. 

Figure 5 - Prolog Rule (Same as Figure 8c) 

5 shows and example of such a rule. We describe here a 
language which can be used to express rules for matching 
plans. Clearly these matching rules can be used in the def- 
inition of both generation rules and pruning rules. In the 
remainder we focus on pruning 

We first give definitions of plans and their parts, and then 
define the rules that can be described using the language 
and how they can be 'matched' with plans. We then give 
examples of the graphical representations of the rules. 

3. I Definitions 

Plan. A Plan is a sequence of trays. 

Tray. A Tray has a width, height (single or double), bool- 
eans for public end and great hall, and a Machine Zone, 
Room Zone, and Bay Zone. 

Machine Zone, Room Zone, and Bay Zone. Each of 
these has a depth and a fill specifier (OPEN, DENSE or 
EMPTY). 

Rule. A Rule can be an AND Rule, O R  Rule, NOT Rule, 
Symmetric OR Rule, Neighbour Rule, Quantity Rule, or 
Distance Rule. It contains a list of rule parts. A Plan is 
matched by a Rule if any contiguous subsequence of trays 
matches the Rule. 

Rule Part. A Rule, a Tray Specifier or an End Specifier. 

AND Rule. A list of Rule Parts, all of which must be 
matched in order for the rule to be matched. 

OR Rule. A list of Rule Parts, any one of which must be 
matched in order for the rule to be matched. 

NOT Rule. A Rule Part, which must not be matched in 
order for the rule to be matched. 

Symmetric OR Rule. A Neighbour Rule which behaves as 
a two-element O R  Rule. The first element is the Neigh- 
bour Rule specified, and the second element is the Neigh- 
bour Rule with its list of rule parts reversed. Note that this 
rule is not required (it can be expressed using an O R  
Rule), but it is a common enough occurrence that it is 
worth integrating into the language. 

Neighbour Rule. A list of Rule Parts, 

( p l ,  p z ,  . . ., p , )  , which is matched iff there is a con- 

tiguous sequence of trays, ( t l ,  t2, ..., t,) , and a 

monotonically increasing sequence of integers, 

ij; j = 1 ... 2, such that ( t l ,  ..., til) matches p 1  ; 

( t i , + P  - ' t iA+,  ) matches p i  for j = 1 ... I ,  and 

(ti,, . . . , t, ) matches p ,  . 

Quantity Rule. A single Rule Part, and a boolean expres- 

sion in one variable, E( x )  . Matched iff there are n trays 

which satisfy the Rule Part, and E( n )  is TRUE. 

Distance Rule. Three Rule Parts: Source; Separator; and 
Destination. The Source and Destination can be any Rule 
Part, but the Separator must be a Quantity Rule. This rule 
is matched iff, for every tray sequence satisfying the Sepa- 
rator Rule Part, and every tray sequence satisfying the Des- 
tination Rule part, the sequence of trays which separate 
them must satisfy the Separator Rule Part. Although it is 
possible to build such a rule up from AND, OR, N O T  
and Quantity Rules, it is exceedingly complicated, and 
rules of this form are common enough to warrant special 
inclusion. 

Tray Specifier. A tray width specifier (a valid tray width or 
the value ANY), a height specifier (SINGLE, DOUBLE or 

ANY), a public end specifier (PUBLIC, NOT PUBLIC or 
ANY), a great room specifier (GREAT ROOM, NOT 

GREAT ROOM, or ANY), a Machine Specifier, a Room 
Specifier, and a Bay Specifier. A Tray Specifier is matched 
by any tray which matches the width, public end, and 
great hall of the specifier (ANY matches with any value), 
and whose Machine, Room and Bay Zones satisfy the 
Machine Specifier, Room Specifier, and Bay Specifier 
respectively. 

Machine Specifier, Room Specifier, and Bay Specifier. A 
depth specifier (a valid part depth or the value ANY), and a 
fill specifier (OPEN, DENSE, EMPTY or ANY). A 
Machine, Room or Bay Zone matches a Machine Speci- 
fier, Room Specifier, or Bay Specifier (respectively) if their 
depths and fills match (again, ANY matches any value). 

End Specifier. The value BEGINNING or END. These can 
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$ Any length or width 

1 Fixed length or width 

Double height space X 
- Single height space 

0 Private end 

Not great hall Q 
Figure 6 - Graphical Vocabulary 

Any valid fill 

Dense machine zone 

Dense body zone 

Open body zone 

* _- 

Open bay zone 

Matches any tray at all. None of the 
widths are specified, all three zones 
are designated ‘any valid fill’, and 
there are no specifiers for height, 
public end, or great hall. 

c%-l Matches trays of any width with empty 
machine and bay zones, and an open, 
public end, double height, great hall, 
body zone of any depth. 

4 Matches any 12‘ wide tray, with a dense H 
Matches 4‘ wide trays, with dense 
machine zones and any body or bay 
zones. 

machine zone of any depth, a dense 
body zone of any depth, and a 3‘ deep 
open bay zone. 

Figure 7 - Example tray specifiers 
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only be used as part of a Neighbour Rule: BEGINNING 

can only be used as Rule Part p1 ; END can only be used 

as Rule Part p n  as defined above. If p1 is BEGINNING, 

then p 2  must match a sequence of trays which includes 

the first tray in the plan. If pn is END, then p n  - must 

match a sequence of trays which includes the last tray in 
the plan. 

3.2 Graphical Depictions 

We present here the graphical representations of the rules 
defined in the previous section. We start off with the basic 
graphical vocabulary, and then present examples of the 
rules. 

Figure 6 shows the symbols used to give tray specifications. 
There is no symbol for open machine zone, empty room 
zone, or dense bay zone, as these are illegal. Also, the ANY 
specifications for height, public end and great hall are 
given by the absence of a symbol. Using this basic vocabu- 
lary, we can build up tray specifiers such as those shown in 
Figure 7. 

Rules arc drawn inside boxes, with annotations indicating 
what type of rule it is. For AND rules, the rule parts are 
drawn horizontally, separated by a dashed line, as shown in 
Figure 8c). O R  Rules are done similarly, but vertically 
instead of horizontally, as shown in Figure 8d). The verti- 
cal organisation is meant to visually suggest a choice, and a 
horizontal row to indicate that all the parts are required. A 
NOT Rule is shown in Figure 8c). 

A Symmetric OR Rule, Figure 8b), looks like an OR Rule 

except it uses the symbol f;;Rt, and when creating or 
editing such a rule, only the top half can be modified, and 
the lower half is generated automatically. A Neighbour 
Rule is shown in Figure sa), with the symbol U. When a 
neighbour rule is used inside another rule, the box and 
symbol are omitted to simplify the diagrams. 

A Quantity Rule is shown on the right in Figure 8c). For 
these, the expression to be satisfied is indicated along the 
top of the box. Finally, a Distance Rule is show in Figure 
8d). The three parts are in separate sections, with the sym- 
bol above the Source part, and the expression for 
the Distance Rule above the Separator part. The arrows on 
the box sides are intended to indicate the Source/Destina- 
tion relationship. 

Rule Explanations 

Figure 8a). Neighbour Rule, which matches any plan 
which has two consecutive trays of width 4. 

m 

' 
M 

12 - 

- 
Figure 8 - Sample Rules 
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Figure 8b). This is a Symmetric O R  Rule, which matches 
any tray with a dense body at either the beginning or end 
of the plan. 

Figure 8c). An AND Rule with two parts, the first a N O T  
Rule, and the second a Quantity Rule. This matches any 
plan which has no 12’ wide trays with a dens body, and 
more than one 12’ wide tray with an empty machine zone. 

Figure 8d). A Distance Rule, where the Source matches 
any tray with a single height body, the Separator matches 
any 12’ tray with empty machine and an open body, and 
the Destination is an O R  rule which matches any tray 
with either a dense machine zone, or a dense body zone. 
Thus, this rule matches any tray with single height space 
that is two or more 12’ trays away from the nearest dense 
space. 

3.3 Applying Rules 

As mentioned earlier, the implementation for this project 
has been carried out primarily using Prolog, and rules such 
as the ones given in Figure 8 have been implemented for 
pruning zoned plan schema. In order to integrate this 
work with the current implementation, Prolog rules are 
generated from the visual descriptions explained here. The 
translation to Prolog is straightforward, but tedious, and 
we omit its description. 

4. Concluding Remarks 

We have described a visual language for expressing match- 
ing rules that can be used to both generate and prune plan 
schema. We are currently prototyping an environment 
which would allow Architects, either alone or in conjunc- 
tion with Software Engineers, to enter matching rules. 
This environment will provide powerful rule editing fea- 
tures, and allow for a much shorter and more direct devel- 
opment cycle for our shape grammars. It will export 
Prolog rules to be used in conjunction with the existing 
code. In the future we expect to extend this tool to allows 
to directly specify both pruning and generation rules, per- 
haps extending the language to be used for other gram- 
mars in the hierarchy. Having Architects use this system 
directly will provide us with valuable feedback about our 
visual representations, and allow us to improve them as 
required. 

The concepts embodied in our visual representations are 
those which Architects wish to deal with directly. They 
capture abstract notions such as those of functional zon- 
ing, scale, sparse vs. dense forms, etc. in way that simple 
graphical rewrite rules are unable to. We expect this lan- 
guage, and our continuing work in this area, to have a sig- 
nificant impact on the LaHave House Project as a whole. 
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