Scalable Algorithm Design Techniques for
Discrete Problems that Lack Obvious Structure

Andrew Rau-Chaplin *

Abstract

To be relevant in practice parallel algorithms must be developed for
realistic models of parallel computing, such as the BSP, LogP, and Coarse
Grained Multicomputer (CGM) models. This paper surveys three algo-
rithm design techniques - Spatial Partitioning, Sampling, and Data Struc-
ture Partitioning - that have led to efficient and practical algorithms for a
variety of problems on such realistic models. One particularly noteworthy
feature of these techniques is that they often led to algorithms involv-
ing only O(1) global communications steps, even for problems that may
appear highly unstructured.

1 Introduction

Parallel algorithms for problems involving discrete objects, such as those found
in geometric, graph and string problems have been studied extensively [1, 16].
These studies have been motivated by important application areas including
computational biology, computational geometry, geographic information sys-
tems, image processing, finite element mesh generation and AI/knowledge rep-
resentation. Until recently, these studies focused almost exclusively on parallel
algorithms for highly abstract PRAM and distributed memory models. Typi-
cally, a given problem of size n has been solved on a parallel computer with p
processors (e.g., a PRAM, mesh, or hypercube multiprocessor) in time Tp,qrqirer.

The goal has been to develop optimal solutions where Tparanrer = O(M),
Tsequential being the sequential time complexity of the problem, and the focus
has been on the case % = 0(1), also referred to as the fine grained case.
However, to be relevant in practice, parallel algorithms must be developed
for more realistic models that better reflect existing parallel machines, such as

the BSP, LogP, C?, and Coarse Grained Multicomputer (CGM) models and

*School of Computer Science, Technical University of Nova Scotia, P.O. Box 1000, Halifax,
Nova Scotia, Canada B3J 2X4. E-mail: arc@tuns.ca. Research partially supported by Natural
Sciences and Engineering Research Council of Canada.

these algorithms must be scalable, that is, they must be applicable and efficient
for a wide range of ratios % [12].

Recently there has been a growing interest in coarse grained computational
models [20, 4, 13] and the design of coarse gained geometric algorithms [7, 11,
6, 9]. The work on computational models has tended to be motivated by the
observation that “fast algorithms” for fine-grained models rarely translate to fast
code running on coarse grained machines. The BSP model, described by Valiant
[20], uses slackness in the number of processors and memory mapping via hash
functions to hide communication latency and provide for the efficient execution
of fine grained PRAM algorithms on coarse grained hardware. Culler et. al.
introduced the LogP model which, using Valiant’s BSP model as a starting
point, focuses on the technological trend from fine grained parallel machines
towards coarse grained systems and advocates portable parallel algorithm design
[4]. Other coarse grained models focus more on utilizing local computation and
minimizing global operations. These include the C® model [13], and the Coarse
Grained Multicomputer (CGM) model used in this paper [7]. All of these models
differ somewhat in their focus, operations and accounting models, but share as
a principle tenant that parallel algorithms must minimize the number of global
communication steps (H-relations, Supersteps) to obtain efficiency on “real”
machines.

The ultimate realization of the desire to minimize communications is the
development of deterministic algorithms which involve only O(1) global com-
munications steps. Perhaps surprisingly such algorithms can be developed, even
for problems that may appear highly unstructured. In this paper we survey three
algorithmic design techniques - Spatial Partitioning, Sampling, and Data Struc-
ture Partitioning - that have led to deterministic scalable algorithms involving
only O(1) global communications steps.

Throughout this paper we will use the coarse grained multicomputer model,
cGM(n,p), although any of the other realistic models mentioned above would
suffice. The advantage of this model for our purposes is its simplicity and natural
mapping onto existing parallel machines.

Most existing multicomputers (e.g. the Intel Paragon, Intel ipsc/860, and
Thinking Machines Corp. c¢M-5) consist of a set of p state-of-the-art processors
(e.g. SPARC proc.), each with considerable local memory, connected to some
interconnection network (e.g. mesh, hypercube, fat tree). These machines are
usually coarse grained, i.e. the size of each local memory is “considerably larger”
than O(1). The coarse grained multicomputer, caM(n, p), considered in this
paper is a set of p processors numbered from 1 to p with O(%) local memory
each, connected via some arbitrary interconnection network or a shared memory.
Commonly used interconnection networks for a caM include the 2D-mesh (e.g.
Intel Paragon), hypercube (e.g. Intel ipsc/860) and the fat tree (e.g. Thinking
Machines cM-5). Each processor may exchange messages of O(logn) bits with
any one of its immediate neighbors in constant time. For determining time
complexities both, local computation time and interprocessor communication

time are considered, in the standard way. The term “coarse grained” refers to
the fact that the size O(%) of each local memory is assumed to be “considerably
larger” than O(1). In reporting results in this model, we are interested in three
important resource measures:

1. The amount of local computation required;
2. The number and type of global communication phases required;

3. The scalability assumption of the algorithm, that is the minimum value
for the ratio % for which the algorithm is applicable.

Ideally, our coarse grained algorithms would be “completely scalable” i.e. have
scalability assumptions of % > 1, however in practice % > pf (e>0)or % >p
will suffice.

All of the CGM algorithms referred to in this paper consist of local computa-
tion plus calls to a small number of standard communication operations includ-
ing parallel prefix, segmented broadcast, multinode broadcast, total exchange,
circular rotation, and sorting. Since all of these communication operations can
be implemented in terms of sorting we will often summarize the complexity of
a constant number of them as O(Ts(n, p)), which represents the time to sort n
data on a p-processor CGM. For a more detailed description of the model and
its associated operations, see [7].

2 Technique 1: Spatial Partitioning

Spatial partitioning is perhaps the simplest technique for developing efficient
CGM algorithms. In a nutshell, the basic idea is as follows: Try to combine
optimal sequential algorithms for a given problem with an efficient global routing
and partitioning mechanism. Devise a constant number of partitioning schemes
of the global problem (on the entire data set of n data items) into p subproblems
of size O(%). Have each processor solve sequentially a constant number of
such O(%) size subproblems, and then use a constant number of global routing
operations to permute the subproblems between the processors. Eventually,
by combining the O(1) solutions of its O(%) size subproblems; each processor
determines its O(%) size portion of the global solution.

The above is necessarily an oversimplification. Most actual algorithms will
do more than just those permutations. The main challenge lies in devising the
above mentioned partitioning schemes. Note that, each processor will solve
only a constant number of O(%) size subproblems, but eventually will have to
determine its part of the entire O(n) size problem (without having seen all of
the n data items). The most complicated part of the algorithm is to ensure that

at most O(1) global communication rounds are required.

Not surprisingly this technique has been most effective in geometric problems
where the data items (typically, points, line or polygons) tend to interact more
with other spatially close data items than with distant ones.

As an example of the spatial partitioning technique, consider the following
algorithm from [7] for computing the lower envelope of non-intersecting line
segments in the plane. The problem is defined as follows: Given a set S of n
non-intersecting line segments in the plane, the lower envelope problem consists
of computing the set LE(S) of segment portions visible from the point (0, —o0).

Observation 1 The lower envelope of n non-intersecting line segments is x-
monotone and has size O(n).

Algorithm 1

Architecture: A p-processor coarse grained multicomputer, cGM(n
bitrary interconnection network and local memories of size O(%),
Input: Each processor p; stores a set S; of % line segments of 5.

with ar-

P),
> p.

s

n

Output: Fach processor stores O(;) segment portions of LE(S).

(1) Each processor p; computes sequentially LE(S;) for its subset .S; of line
segments (ignoring all other segments).[15]

(2) Globally sort the segments in | J'_; LE(S;) by the az-coordinate of their
right endpoints, which moves to each processor p; a new set V; of O(%)
segments. Note that, each processor p; also keeps the set LE(S;).

(3) Each processor p; determines the vertical line /; through the rightmost
vertex of a segment of V;. Perform a multinode broadcast where processor
p; sends [; to all other processors. Hence, each processor stores all p
vertical lines Iy, ..., 1.

(4) Perform a total exchange, with processor p; sending segment s € LE(S;)
to processor p; iff s intersects the vertical line ;. Let R; be the set of
segments received by processor p;.

(5) Each processor p; computes sequentially LE(V; U R;).
— End of Algorithm —

This algorithm works by first reducing the amount of data pertinent to
the global solution (Step 1) and then spatially partitioning the plane into p
vertical slabs (Step 2 and 3). Each slab consisting of % line segments is stored
on a single processor which needs only p pieces of “global information” (Step
4) to complete the computation of the lower envelope for its slab (Step 5).
The algorithm solves the lower envelope problem for a set of n non-intersecting
line segments in the plane on a p-processor coarse grained multicomputer with

arbitrary interconnection network and local memories of size O(%), % > p, in
time O(™282 4 T\ (n, p)).

Scalable CGM algorithms based on spatial partitioning have been developed
for the following problems:

1) All 2D-nearest neighbors in a point set,

2D-weighted dominance counting in point sets,

(D)

(2)

(3) 3D-maxima in point sets,

(4) Area/Intersection of the union of rectangles,
(5)

Lower envelope of non-intersecting line segments in the plane (and, with
slightly more memory, for possibly intersecting line segments),

(6) Lower envelope of fixed degree polynomial functions,

(7) Rectangle finding problems: all isonormal rectangles, all rectangles, all
isonormal squares, all squares

(8) Minimization of Hausdorff distances between point sets

(9) and a variety of dynamic computational geometry problems concerning
geometric properties of moving point-objects.

The algorithms for Problems 1-5 appeared in [7] and have a running time of
O(W—I—Ts (n,p)) on a p-processor coarse grained multicomputer, caM(n, p),
with arbitrary interconnection network and local memories of size O(%) where
% > p. Ts(n,p) refers to the time to sort globally n data items stored on a
cGM(n,p), % data items on each processor. Since Tequentiar = O(nlogn) for

Problems 1-5, the algorithms either run in optimal time @(%gﬂ) or in sort
time Ty(n, p) for the respective architecture.

The algorithms for Problems 6-9 are described in [3] and also require % > p.
Problem 6 is to find the lower envelope or minimum of S, an n element set of
polynomial functions of degree at most &, and is fundamental to the solution
of a variety of interesting problems. The lower envelope of S can be computed
on a CGM(p /\(/\(%,k),k), p) in Ts(p /\(/\(%,k),k), p) time, where A(n,s) is
the maximal length of a Davenport-Schinzel sequence [5] defined by parameters
(n,s) and is, at worst, slightly more than linear in n.

The Hausdorff distance [18] is a measure of how well two sets A and B re-
semble each other with respect to their positions; if A and B are finite sets
regarded as statistical populations, this measure is an alternative to more com-
mon statistical measures of population similarity. When A is subjected to a
translation 7" so that h = H(T(A), B) is minimized, A may be regarded as
a measure of how well an image A matches a template B. Problem 7 is the

following: compute a translation 7" of A that minimizes the Hausdorff distance
H(T(A), B), where AU B C R, |[A|] = m, |B|] = n. It can be solved using
spatial partitioning on a CGM(m 4+ n,p) in O(W + Ts(m+ n, p)) time.

Scalable CGM algorithms for a variety of problems concerned with geo-
metric properties of moving objects have also been developed based on spatial
partitioning. These problems all assume that & 1s a fixed positive integer, and
that S = {s0,81,...,80,-1} 18 a set of point-objects moving in the Euclidean
space R? so that for each s € S, the location of s at time ¢ is described by
a vector-valued function, each of whose Cartesian coordinates is a polynomial
function of ¢ of degree at most k. Scalable algorithms using spatial partitioning
are given in [3] to solve the following problems.

e What is the nearest s € S\ {sg} to sp?

e When is S contained in a given fixed rectilinear, iso-oriented hyperrectan-
gle?

e What is the edge-length of the smallest rectilinear, iso-oriented hypercube
that contains S at time ¢7

Assume d = 2. When is sq a vertex of the convex hull of S7

3 Technique 2: Sampling

Consider the problem of constructing the Convex Hull of a set .S of n points in
the plane. The obvious approach in the CGM setting is as follows: 1) Sort the
points in .S by x-coordinate and let .S; denote the set of % sorted points now
stored on processor i. 2) Independently and in parallel, have each processor i
compute the convex hull of the set S; and let X; denote the result on proces-
sor i. 3) Merge the p convex hulls, X;, into a convex hull using O(1) global
communication rounds.

Step 1 of the algorithm above can be completed by using a global sort op-
eration and Step 2 is a totally sequential step and can be completed in time
O(%gﬂ) using well known sequential methods [19]. The problem that now re-
mains is how to merge p convex hulls, stored one per processor on a p processor
CGM, into a single convex hull using a constant number of global communi-
cation rounds. We will focus on how to merge upper hulls, lower hulls and
therefore the complete hull, can be computed analogously. Sequentially, two
upper hulls of size O(n) can be merged by finding their upper common tangent
using a logn time binary search algorithm [19], but straight-forward applica-
tion of this algorithms in the CGM setting yields O(logp logn) communications
steps!

The first trick to performing this merge in fewer communication steps is not
to do pair-wise merging of upper hulls, but rather to find all p? upper tangent

lines between the upper hulls. Clearly this is more tangent lines than we strictly
need but not so many that we can’t store them and computing them this way
avoids the logp communications rounds that come from pairwise merging.

So how can we compute the upper common tangent between an upper hull X;
and an upper hull X; (to its right) in only a constant number of communications
rounds? The answer is to work with a semple of many points from X;, rather
than just the one point that is used in each step of the logn step sequential
binary search. The following simple algorithm assumes % > p?, but can be
extended to scale over a larger range of values of n and p, assuming only that
= 2> p° (€>0) (See [L]).

Algorithm 2

Architecture: A p-processor coarse grained multicomputer, cGM(n, p), with ar-
bitrary interconnection network and local memories of size O(2), % > p?.
Input: The set of p upper hulls X; consisting of a total of at most n points from
S, where X is stored on processor ¢;, 1 < i< p.

QOutput: A distributed representation of the upper hull of 5.

(1) Each processor ¢; sequentially identifies a sample set G; composed of every
p'" point from X;. Note |G4| = s

(2) Perform an all-to-all broadcast of (¢; and associate with each point a € G;
its two neighbours in X;. Each processor ¢; receives O(%) points and can
compute for each received point a if the upper tangent line between X;
and X is rooted in X; before, at or after a in O(%log %) [17]. Perform
an all-to-all broadcast to return these results.

(3) Each processor ¢; can now identify with respect to each X; a region R; ;
of p points from X; which is guaranteed to contain the point that roots
the upper tangent line between X; and X;.

(4) Repeats Steps 2 and 3 using a personalized all-to-all broadcast with the
point sets R; ; being sent to ¢;, rather than G;. Note that every processor
receives p® points and therefore % > p? must hold.

(5) Each processor has now identified the upper common tangent between the
upper hull X; and all upper hulls X;, j > ¢, and can perform an all-to-all
broadcast to distribute this information globally. Using this infomation
the the part of the upper hull of S that resides on earch processor can be
locally computed.

— End of Algorithm —

The algorithm given above is based on ideas developed in [17] and appeared
in [11]. Tt requires time O(%gﬂ + Ts(n,p)) on a p-processor coarse grained

multicomputer, cGM(n,p), with arbitrary interconnection network and local
memories of size O(%) where % > p?. Since computing 2d Convex Hull re-
quires time Tyequentiar = O(nlogn) this algorithm either run in optimal time,
@(%gﬂ), or in sort time, T;(n, p), for the interconnection network in question.

These results become optimal when Lecquential qominates Ts(n,p) or for inter-

connection networks like the mesh for Wﬁich optimal sorting algorithms exist.
Furthermore, this convex hull algorithm can be extended to scale over a larger
range of values of n and p, assuming only that 2 > p° (e > 0) (See [11]). The
same technique can also be used to compute the triangulation of n points in the
plane for the same model and with the same space and time complexities [11].
The sampling technique demonstrated in the CGM convex hull algorithm
appears to be a powerful technique for designing scalable algorithms requiring
only O(1) communication rounds. Attempting to applying it to other problems
involving discrete data sets is an interesting avenue for further research.

4 Technique 3: Data Structure Partitioning

The idea behind data structure partitioning is the following: If you can’t find
a way to spatially partition or sample your data, find a data structure that
represents the data and partition it instead. Often data structures have a higher
degree of regularity than the data they represent.

Consider for example, the problem of determining for a given set S of r
pairwise digjoint m-vertex polygons of simple polygons all directions d such
that S is separable by a sequence of r translations in direction d (one for each
polygon). This is called the uni-directional translation ordering problem.

Most sets .S of simple polygons defy useful spatial partitioning. Any straight-
forward spatial partition of S into p rectangularly bounded regions leaves the
m polygons cut into basically unrelated fragments. However, there is a data
structure, the segment tree, which can ably represents the problem and can
be partitioned and searched efficiently (i.e. in O(1) communication phases) on
a CGM using a distribute data structuring technique called Multisearch. The
Multisearch paradigm was first described in [8] for hypercubes and has since
been extended in other parallel models [2, 7]. To illustrate this approach we
will describe a simple version of CGM multisearch for balanced k-ary trees,
that first appreared in [7].

Let T'= (V, E) be a balanced k-ary tree of size n and height h = O(log,, n),
where k is a fixed constant. The definition of the multisearch problem for 7" and
aset Q={q1,...,¢m} of m = O(n) search queries on T is as follows:

Fach query ¢ € @ has a search path, path(q) = (v1(q),...,vn(q)), of h ver-
tices of T' (from the root to a leaf of T') which is a sequence defined by a successor
function f : (VUstart) x @ — V with the following properties: f(start,q) = v,
f(vs, q) = viy1 where (v;,vi41) € F and f(v;,q) can be computed by a single

processor in time O(1). We say that query ¢ wvisits node v;(q) at time ¢t. The
multisearch problem for @ on T consists of executing (in parallel) all m search
processes induced by the m search queries. It is important to note that the m
search processes may overlap arbitrarily. That is, at any time ¢, any node of
T may be visited by an arbitrary number of queries. See [2] and [8] for more
details.

Define as T the subtree of T induced by the root and all nodes of T" which
have a distance from the root of at most log, p. Subtree Ty has p’ < p leaves.
To simplify exposition, assume w.l.o.g. that p’ = p. Let T; be the subtree of T
rooted at the i-th leaf of Ty, 1 <7 < p.

Algorithm 3

Architecture: A p-processor coarse grained multicomputer, cGM(n, p), with ar-
bitrary interconnection network and local memories of size O(%), % > p.
Input: Each processor stores % nodes of 7" and % = O(%) queries ¢ € .
Result: Each ¢ € @ visits its entire search path path(q).

(1) Using a total exchange operation, create p copies of Ty and distribute them
such that each processor has one copy of Tp.

(2) Using its copy of Ty, each processor performs the first log, p multisearch
steps for its O(%) search queries.

(3) For each tree T; compute ¢(7;) = P{qEQ:vlogﬁp((])eT’}w, 1<i<p.

P

(4) Create ¢(T;) copies of each subtree T; and and distribute them such that
each processor stores at most two subtrees.

(5) Redistribute @ such that every query ¢ € @ is stored at a processor that
also stores a copy of the subtree 7} (1 < i < p) containing viog, »(¢)-

(6) Each processor performs the remaining k — log;, p multisearch steps for its

O(%) search queries.

— End of Algorithm —

Using the algorithm given above, the multisearch problem for a balanced
search tree of size O(n) and fixed degree k, and a set of m = O(n) search
queries, can be solved on a p-processor coarse grained multicomputer with arbi-
trary interconnection network and local memories of size O(%), % > p, in time
(™51 1 7, (n, p)) [7).

Extensions to this basic technique allow queries to move both up and down
the data structure and to both read and write values to the nodes. To use this
technique one needs only to describe how to construct in parallel the tree T to

be used in a particular application, and give the application specific function f :
(VUstart) x Q — V with the appropriate properties, before calling Multisearch
to advance all of the queries down their search paths. Scalable algorithms have
been developed, based on this CGM Multisearch algorithm, for the following
problems:

1) Uni-directional separability problem for simple polygons
2
3

Multi-directional separability problem for simple polygons

Trapezoidal decomposition of a set of line segments

5

Bichromatic Segment Intersection reporting problem

)
)
4) One-Dimensional Range Search Query Reporting
)
) d-Dimensional Range Search Query Problems

Let S be a set of r» pairwise disjoint m-vertex polygons. The uni-directional
separability problem consists of determining all directions d such that S is sepa-
rable by a sequence of r translations in direction d (one for each polygon). The
multi-directional separability problem asks if S is separable by a sequence of r
translations in different directions. These problems (Problems 1-2) were solved
in [7] on a p-processor coarse grained multicomputer with arbitrary intercon-
nection network and local memories of size O(2), n = O(r? + rm) and % > p,

n
P
in time O(W + T (r%, p)).
Problems 3-5 were solved in [9] using data structure partitioning via an

extended version of Multisearch. Let k denote the size of the output. Prob-
lems 3 was solved on a CGM (nlogp, p) with local memories of size O(%‘ﬁ),

% > p, in time O(M%Ogﬁ + Ts(nlogp,p)). Problems 4 was solved on a

CGM (max(n, k), p) with local memories of size O(wxpm), % > p, In time

O(%‘gﬂ + f—) + Ts(n,p)). Problems 5 was solved on a CGM (max(k,nlogp),p)
with local memories of size O(wk’pmﬂl), % > p, in time O(&g%mﬁ —+ f—, —+
Ts(nlogp, p)).

Problem 6 is a basic geometric and database problem. Consider a collection
L of n records, where each record [has a value key(!) and is identified by an
ordered d-tuple (z1({), ..., 24(1)) € E?, the d-dimensional Cartesian space. In the
range search problem, the query specifies a domain ¢ in £¢, and the outcome
of the search, depending on the application, may be either the subset L, of the
points of L contained in ¢, or the number of such points, or more generally a
function ®leLq F(l), where f(l) is an element of a commutative semigroup with
operation ®. Problems 6 can be solved using data structure partitioning [10]
for a range tree T of size s = O(n logd=! n) on a CGM (max(k, s), p) with local
memories of size O(%), 18_7 > p, in time O(;—) + Ts(s,p) + f—)), where k is the size
of the output.

10

5 Summary and Conclusions

In this paper we have surveyed three algorithmic design techniques - Spatial Par-
titioning, Sampling, and Data Structure Partitioning - that have led to scalable
CGM algorithms involving only O(1) global communications steps for problems
that appeared to be highly unstructured. Implementations of algorithms using
these techniques [7, 11] have indeed verified that they do result in fast practical
codes on real parallel machines. For the most part, we have described geometric
applications, but many interesting open discrete problems remain in this set-
ting. In particular those problems dealing with graphs seem important and very
challenging.

References

(1]

[2]

S.G. Akl and K.A. Lyons, Parallel Computational Geometry, Prentice-
Hall, New York, 1993.

M.J. Atallah, F. Dehne, R. Miller, A. Rau-Chaplin, and J.-J. Tsay
Multisearch techniques for implementing data structures on a mesh-
connected computer. Proc. ACM Symposium on Parallel Algorithms
and Architectures, pp. 204-214, 1991.

L. Boxer, R. Miller and A. Rau-Chaplin, Some Scalable Parallel Geo-
metric Algorithms, In Preparation.

D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. San-
tos R. Subramonian, and T. von Eicken, LogP: Towards a Realistic
Model of Parallel Computation. Proc. jth ACM SIGPLAN Sym. on
Principles of Parallel Programmang, 1993.

H. Davenport and A. Schinzel, A combinatorial problem connected

with differential equations. Amer. J. Math. 87 (1965), 684-694.

F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. Khokhar, A random-
ized parallel 3D convex hull algorithm for coarse grained multicom-
puters, Proc. 7th IEEE Symp. on Parallel and Distributed Processing,
1995.

F. Dehne, A. Fabri, and A. Rau-Chaplin, Scalable parallel geometric
algorithms for multicomputers, Proc. 7th ACM Symp. on Computa-
tional Geometry, 1993.

F. Dehne and A. Rau-Chaplin. Implementing data structures on a
hypercube multiprocessor and applications in parallel computational
geometry. Journal of Parallel and Distributed Computing, Vol. 8, No.
4, pp. 367-375, 1990.

11

[9]

[15]

[16]

[17]

[18]

[19]

[20]

A. Fabri, and O. Devillers, Scalable Algorithms for Bichromatic Line
Segment Intersection Problems on Coarse Grained Multicomputers,
Proc. 3rd Workshop on Algorithms and Data Structures, 1993.

A. Ferreira, C. Kenyon, A. Rau-Chaplin, and S. Ubeda, Scalable Al-
gorithms for the d-Dimensional Range Search on Coarse Grained Mul-
ticomputers,In Preparation.

A. Ferreira, A. Rau-Chaplin, and S. Ubeda, Scalable 2d convex hull
and triangulation algorithms for coarse grained multicomputers, Proc.
7th IEEE Symp. on Parallel and Distributed Processing, 1995.

Grand Challenges: High Performance Computing and Communica-
tions. The FY 1992 U.S. Research and Development Program. A
Report by the Committee on Physical, Mathematical, and Engineer-
ing Sciences. Federal Council for Science, Engineering, and Technology.
To Supplement the U.S. President’s Fiscal Year 1992 Budget.

S. Hambrusch, and A. Khokhar, C3: An Architecture-Independent
Model For Coarse-Grained Parallel Machines, Purdue University Com-
puter Sciences Technical Report CSD-TR-93-080 (1993).

S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences
and of generalized path compression schemes, Combinatorica 6 (1986),

151-177.

J. Hershberger. Finding the upper envelope of n line segments in
O(nlogn) time. Information Processing Letters 33, pp. 169-174, 1989.

F.T. Leighton. Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers;, San Mateo,

CA, 1992.

R. Miller and Q. Stout. Efficient Convex Hull Algorithms IEEFE Trans.
on Computers, 37, pp. 1605-1618, 1988.

S.B. Nadler, Jr., Hyperspaces of Sets, Marcel Dekker, Inc., New York,
1978.

F.P. Preparata and M.I. Shamos. Computational Geometry: an Intro-
duction. Springer-Verlag, New York, NY, 1985.

L.G. Valiant, A Bridging Model for Parallel Computation, Communi-
cations of the ACM 33 (1990), 103-111.

12

