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1 Introduction

In this paper we describe recent advances in the design of parallel Artificial Intelligence
(AI) algorithms for fine-grained hypercube multiprocessors like the Connection Machine.
These studies are part of a joint project of the Center for Parallel and Distributed Computing
(PARADISE) at Carleton University and the Northeast Parallel Architecture Center in
Syracuse, NY (which granted us access to their CM1 and CM2 type Connection
Machines).

A hypercube multiprocessor is a set Py, ..., Pp.; of p processors connected in a
hypercube topology; i.e., P; and P; are connected by a communication link if and only if
the binary representations of i and j differ in exactly one bit. In a hypercube, there is no
shared memory. The entire storage capability consists of local memories, one attached to
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each processor. A hypercube multiprocessor is called fine-grained if all local memories
have a very small size permitting each processor to store only a constant number of data
items. In such a system, the number, p, of processors has to be of the same order of
magnitude as the number of data items to be stored and manipulated. Hypercubes with a
small number (less than 1,000) of more powerful processors are called coarse-grained
hypercubes. The Connection Machine is a famous example of a fine-grained system with a
large number (64K) of relatively small processors. The Intel iPSC/2 is a well known
example of a coarse-grained hypercube.

Although parallel solutions for AI problems have been extensively studied for coarse-
grained parallel systems, fine-grained systems have only been studied to a very limited
extent. The main advantage of coarse-grained systems is that they allow a relatively easy
splitting of problems into subtasks, each of which is then executed fairly independently on
a powerful processor which resembles a standard sequential machine. On fine-grained
systems, these strategies can not be applied due to the limited amount of memory and
processing power at each processor. Instead, it is necessary to share tasks in a truly
cooperative way among a large number of small processors.

While the Connection Machine has been primarily designed for Al applications, it is
surprising that for numerous Al problems there exist no parallel solutions for fine-grained
hypercubes. In this paper, we describe fine-grained parallel solutions to two such problems
that are of central importance in Al: (1) Parallel branch and bound [DFR1], and (2) the
design of a parallel frame based knowledge representation system [DFR3].

Branch-and-bound (B&B) search methods such as A* search, Alpha-Beta search,
depth-first and best-first search are used in areas such as VLSI design, theorem proving,
linear programming, chess playing, and many other Artificial Intelligence and Operations
Research applications ({Win], [Nil]). Since most of the addressed problems are NP-hard,
and therefore the size of the search space grows exponentially, many researchers have
studied the parallelization of B&B methods (e.g. [HD], [New], [MC], [UYI]). So far,
studies have been aimed at using coarse-grained multiprocessors, in particular coarse-
grained hypercubes (e.g. [LW], [Qui], [AC], [AM], [Fel], [MTM], [PW], [SGB])) for
parallel B&B implementations. These methods aim at splitting the tree searched by the
B&B method into subtrees, and having subtrees searched in parallel by different
processors. The essential differences among the proposed coarse-grained algorithms are
how they deal with the two major problems arising in such an approach: how to balance the
sizes of the subtasks assigned to individual processors (load balancing), and how to
distribute (with minimal computational overhead) global information to be shared by all
processors. Since all these methods require each processor to store (at least) the back-up
path of the node in the tree currently being examined, they can not be applied to a fine-
grained hypercube. Furthermore, these solutions often make global knowledge available




only to a limited extent or with some delay, which results in some unnecessary search steps
(compared to the equivalent sequential method). This is reasonable for the relatively small
number of parallel search processes in a coarse-grained system, but becomes intolerable for
fine-grained hypercubes.

In Section 2 of this paper we describe an efficient B&B algorithm for fine-grained
hypercube multiprocessors that solves both of the above problems.

Section 3 is concerned with the design and implementation of a parallel frame based
knowledge representation system [BW, BS, FK, Int, Min]. Knowledge representation is
an essential part of AI [New, Woo], and several researchers have studied parallel
architectures for implementing knowledge bases [Bic, DM, EH, FHS, HGC, IH, MT, Ric,
Sap, Uhr, WL]. The parallel knowledge representation systems presented in the literature
have, however, either been based on special purpose parallel architectures or support only
the parallelization of one query at a time. The latter implies the (economically infeasible)
dedication of a massively parallel computer to one single user (e.g. [EV, IH]).

We consider a single inheritance frame based knowledge representation system which
answers elementary queries such as top-down and bottom-up inference and assert/retract
queries [EH]. The problem of implementing such a system on a fine-grained hypercube
reduces to multiple parallel traversals of the knowledge base, and we study the problem of
efficiently implementing such traversals on a hypercube. In particular, the problem of
traversing in parallel multiple randomly chosen subtrees of an inheritance hierarchy is
studied. In addition to theoretical time complexity bounds, experimental results obtained
from extensive testing (200,000 randomly generated inheritance hierarchies of 16,000
nodes and with up to 16,000 queries, each) of a prototype implementation are presented.
They show that a nearly optimal, 98%, processor utilization is obtained for a 70% load
factor (number of processors divided by number of queries). In our experiments, the
utilization never dropped below 75%, regardless of the load factor and other parameters.
Our system adapts flexibly and automatically to varying work loads in a close to optimal
way, providing a nearly constant product of response time and number of queries.

2 Parallel Branch and Bound on a Fine-Grained Hypercube

A branch and bound algorithm searches within the space of all the feasible solutions for
a given combinatorial search problem. These feasible solutions are usually seen as a search
tree S over the solution space. In parallel B&B algorithms, the search in S for an optimal or
satisfactory solution is performed concurrently at several nodes of S. These nodes are
referred to as active nodes. The subtree T of S defined by the union of the back-up paths of
all active nodes is defined as the current back-up tree as (see Figure 1). Note that, we allow
any node of the current back-up tree to be an active node, which allows e. g. the




implementation of best-first search. For the remainder, m will refer to the size of the current
back-up tree.

Figure 1. A Current Back-Up Tree (Bold Nodes).

In this section, we will describe a parallei B&B algorithm for fine-grained hypercube
multiprocessors. Our method stores the current back-up tree such that each processor needs
to store only a constant amount of information. At each iteration of the algorithm, all active
nodes of the current back-up tree decide whether they need to create new children, be
pruned, or remain unchanged. Based on these decisions, the algorithm described below
updates the current back-up tree and distributes glebal information in O(log m) steps. This
method also includes a dynamic allocation of search processes to processors, such that the
work load balancing problem is solved optimally.

Consider a B&B algorithm (e.g., A*, Alpha-Beta, Hill-Climbing and Best-First)
defined by five rules (see [AC]):

Cost Rule: Given a leaf node in the search tree and it parent's cost, this rule
defines the cost up to and including the leaf.

Bounding Rule: Given a node in the search tree, this rule returns 1 if the node is
no longer feasible (i.e., should be deleted) else returns a 0.

Selection Rule: Given a node in the search tree, this rule returns an integer
specifying the number of children this node should create in this iteration.
Expansion Rule: Given a node, an integer specifying the number of children to be
created, and a pointer to where they should be created, this rule creates the new
children.

Termination Rule: Given a set of global information, this rule returns true if a
satisfactory solution has been found or all possibilities have been explored.

We assume that every processor PE(i) has a constant size register n(i) to store one node
of the current back-up tree T. The current back-up tree T is stored on the hypercube as

follows:




Consider the level ordering of the nodes of T as shown in Figure 2. Each node v
of T is stored in register n(i) of processor PE(i), where i is the index of v with
respect to the level ordering of T.

Figure 2. Level Ordering of the Current Back-Up Tree

The B&B algorithm consists of one main loop which iterates until the termination rule
returns true. The back-up tree T starts as a single root node stored in register n(0) of
processor PE(0). In each iteration of the main loop, the algorithm updates the tree by
adding new nodes according to the selection and expansion rules, while at the same time
pruning the tree using the cost and bound rules. A single pass through the main loop
consists of five steps.

First, the evaluation rule is used to calculate the cost function for all the nodes that were
created in the last iteration. The evaluation rule may also maintain global knowledge
concerning the progress of the search. The maintenance of such global knowledge does not
increase the fundamental time complexity of the algorithm, assuming that such global
knowledge can be calculated by a global minimization and broadcast.

The second step of the main loop uses the bound rule to identify nodes to be deleted in
this iteration. Any particular implementation of the bound rule must never delete a parent
node without also deleting its children. The parallel bounding of a large number of nodes is
a particularly effective aspect of our fine-grained B&B algorithm, since with very low
overhead a large number of nodes in the back-up tree may be deleted and the data structure
compacted.

In the third step, the selection rule is used to assign to each node n(i) an integer that
indicates the number of children the node needs to create during this iteration. The selection
rule may also use global information to instruct each node exactly which of its possible
children should be created.

Note that, except for the maintenance of global knowledge, the above three steps
involve only O(1) local operations at each processor of the hypercube.

Step 4, referred to as procedure UpdateTree, represents the main part of our algorithm.
In Steps 1 through 3 all the information needed to extend the back-up tree to its next state
has been collected. Now, the back-up tree must be transformed by deleting the bounded




nodes and creating space for the new additional nodes. Below, we will discuss procedure
UpdateTree in more detail.

Finally, in Step 5, the data for the new leaf nodes are created using the expansion rule.
At this point each node has information about how many new children should be created,
and about the address of the free processors allocated for them by Procedure UpdateTree.
Therefore, Step 5 can be implemented with an O(log m) time complexity by using a
distribute operation of [NS] to copy the data of each node creating new children into the
processors storing these children, and then creating for each child in parallel its actual data
set locally at the respective processor.

As indicated above, the core of our parallel B&B algorithm is Procedure UpdateTree
which updates the back-up tree after infeasible nodes have been deleted and new nodes
have been added in the previous step. The main problem here is that for the new back-up
tree, the nodes must again be stored by level number (to allow maximum storage space
utilization and performance). This makes it necessary to compute for each node of the new
back-up tree its new address and relocate the nodes to obtain the correct storage scheme.
This relocation of tree nodes also provides an optimal task allocation mechanism for
solving the load balancing problem.

Procedure UpdateTree calculates for each node where its children, if any, should be
located on the hypercube after the update is completed. Consider the node p in Figure 3.
The address (processor number) of the first child of p, after the update is completed, is the
sum of two numbers x and y, defined as follows: x is the number of nodes in the updated
tree up to (and including) p's level, while y is the number of children of nodes to the left of
p in p's level. The sum of these two numbers indicates the position of p's first child in the
new back-up tree. Each parent then broadcasts this information to all of its children. Since
all nodes may move, all parent nodes must also broadcast their own new address to their
children so that the children can update their parent pointers. When these steps have been
completed, all non-deleted nodes are routed to their new locations. This route operation will
leave the necessary spaces for the new children that are to be created by the expansion rule
called in the main procedure.

Procedure UpdateTree is composed of 6 steps. In Step 1, the number of children at each
node is recalculated to account for the nodes that have been marked for deletion and the
new nodes that are to be added. This operation is performed by first performing a partial
sum over the number of alive nodes within each block of nodes that share the same parent.
The result of the partial sum is then sent to each parent by its last child. Step 1 is completed
by setting register n.children(i) of each node to the sum of its non deleted children and its
new children to be created. In Step 2, the x value for each node is computed. The x value
for any node at level k is one plus the sum of the number of children of all nodes up to (and
including) the last node in level & -1. The x value for all nodes can therefore be calculated
as follows. First, a partial sum on the number of children, n.children(i), of every node is




computed and stored in register x({); x'({) is then incremented by one to account for the
root node. Then, the last node in each block of nodes sharing the same parent sends its x’
value to its parent node. In Step 3, the value of y for each node is calculated. This is
performed by computing a partial sum on register n.children(i) for all nodes in the same
level. In order not to count the children of a node in its own y(i) count, n.children(i) must
then be subtracted from the value provided by the partial sum operation. In Step 4, the new
address of the first child of each node is computed and stored in register newFirstChild(i),
using the x(i) and y(i) values previously calculated. This value is then broadcast to all the
children of each node; since the back-up tree is stored on the hypercube in level order, all
‘children of a node can calculate their new addresses by adding to the new address of their
first sibling the number of other siblings that are before them. Now, every node has its new
address. In Step 5, all nodes with children broadcast their new address to their children, so
that the children can update their parent pointers. Step 6 completes the UpdateTree
procedure by moving every node to its new address.

It is easy to see that all of the above operations reduce to data movements described in
[NS] Hence, our algorithm can update the current backup tree in time O(log m), using O(1)
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Figure 3. Ilustration of the Address Calculation for the New Back-Up Tree.

3 Frame Based Knowledge Representation And Inference

3.1 Problem Definition

Semantic nets alternatively known as frame-based systems have been widely studied
[Bic, BW, BS, DM, EH, FK, Int, Min, Sap, SBMC Tou], and severalknowledge
representation tools have been designed based on them [BW, BS, EH, FK, Int, SBMC].
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Figure 4. An Example of a Single Inheritance Hierarchy.

A frame language provides the designer of knowledge based systems with an easy way
to describe the domain objects to be modeled and their relationships. In a single inheritance
frame based system, frames are used to describe individual objects or a classes of objects,
and these frames are organized in a tree like hierarchy. For exampls in Figure 4, the class
Ocean-Liner is used as a prototype to describe all of the properties that are common to all
ocean liners, such as the fact that they carry paying passengers. The instance QE2, on the
other hand, is a frame that represents an individual instance of the class ocean-liner. It
specifies knowledge about a particular ocean liner, the QFE2, such knowledge might include
the number of passengers that the liner caries, or the QE2’s transatlantic crossing time.
Both classes and instances are represented by frames. Each frame consists of a series of
slots each of them being used to represent a single fact about a particular class or instance.
An important property of single inheritance frame based systems is that not all slot values
of all frames are stored explicitly. A value assigned to a slot of a frames x is inherited by all
frames in the subtree rooted at x, unless for those frames in the subtree which explicitly
store for themselves (and all frames in their subtrees) another value for the same slot. Slot
values obtained from this inheritance mechanism will be referred to as implicit slot values.

A bottom-up inference query, q(X), is of the form “Does frame X meet conditions a
through z”. Queries like “What are the values of slots a through z of frame X?7”, “Is the
Exxon-Valdez a vehicle with color black and current-location Alaska?”’, or “What is the
weight the QE27” are examples of bottom-up inference queries based on Figure 2. Bottom-
up queries are always about a particular instance or class frame but, since we are using an
implicit representation, may require the examination of all superclasses of that frame.

A top-down inference query, q(X), is of the general form “Identify all frames in the
subtree (of the inheritance hierarchy) rooted at X such that conditions a through z are true”.
For example, “Identify all instances of Sea-Vehicles with weight > 1000 tons and paying
passengers = 07, or “Identify all classes who are subclasses of Vehicle and have less-than
10 paying passengers” are top-down inference queries based on the hierarchy in Figure 2.




Assert queries are queries that add knowledge to our representation. There are three
basic types of assertions: assertion of a new slot value, assertion of a new slot (with initial
value), or lastly, assertion of a new class or instance frame (complete with slots and
values). Retract queries fall into three analogous types: retraction of a slot value, retraction
of a slot, and retraction of a class or instance frame.

3.2 Multi-Way Search on a Tree

We introduce some notations and previous results on hypercube algorithms which will
be used in the remainder.

Let T = (V, E) be a tree of size k, height A, and out-degree O(1), and let U be a universe
of possible search queries on T. A search path for a query ge U is a sequence path(q)=(v1,
..., vp) of h vertices of T defined by a successor function f: (V U {start}) x U = V (ie., a
function with the property that f(start,q)e L.and for every vertex ve V, (vf(v.q))e E). A
search process for a query q with search path (vy, ..., v) is a process divided into A time
steps 11<f<...<ty such that at time #;, 1<j<h, query g is matched with node v;. A match of
a query ¢ and a node v; at time ¢; is defined as a situation where there exists a processor
which contains a description of both, the query ¢ and the node v;. Note, however, that we
do not assume that the search path is given in advance; we assume that it is constructed
during the search by successive applications of the functions f. Given a set
0={q1,...qm}cU of m queries, m=0(k), then the multi-way search problem consists of
executing (in parallel) all m search processes induced by the m queries. In [DFR2, DR] it
was shown that the multi-way search problem can be solved on a hypercube multiprocessor
of size max{k,m} in time O(log k loglog2k + h log k). It follows from [CP, DFR2, DR]
that for trees with unbounded out-degree, as well as arbitrary graphs, the time complexity
increases to O(h log k loglog2k).

3.3 Parallel Inference/Assertion/Retraction on Fine-Grained Hypercubes

An inference hierarchy with n frames is stored on a hypercube with n processors and a
set of n inference/assert/retract queries is given which are to be executed in parallel by the
hypercube. Consider the level numbering of the frames of an inheritance hierarchy (see
Figure 2). For the remainder we will assume that each frame with level number i, together
with its links and explicit slot values, is stored at processor P;. We will now present,
separately, algorithms for answering the different types of queries. Note, however, that
these processes are to be executed concurrently. Bottom-up and assert/retract queries are
fairly easy to process; the main problem is to efficiently process top-down inference
queries.

Consider a set of m<n bottom-up inference queries where each query is stored at one
arbitrary processor. For the remainder, frames(i) and query(i) refer to the query and frame




(currently) stored at processor PE(i). Such queries can be answered in parallel as follows:
Each query is matched with the respective frame it refers to (see Section 3.2). Then, using
the multi-way search method of Section 3.2, all queries are routed upwards through the
inheritance hierarchy until they reach the root. During this routing phase, for each query, all
the requested explicit slot values are collected. We obtain that all m<n bottom-up inference
queries can be answered, in parallel, in time O(log n loglog?n + h logn) [or O(h logn
loglog2n) if frames can have an unbounded number of children], where % is the height of
the inheritance hierarchy.

For assert/retract queries, these need to be matched with their respective frames. If only
slot values of these frames need to be changed, this is straight forward. If new frames have
to be added, or existing frames have to be deleted, this can be accomplished in essentially
the same was as in Procedure UpdateTree outlined in Section 2. We obtain that all
assert/retract queries can be answered in time O(log n loglog?n).

Figure 5. Multiple Subtrees To Be Searched For Multiple Top-Down Inference Queries.

What remains to be solved is to process the top-down inference queries. Consider a set
of m<n top-down inference queries where each query is initially stored at one arbitrary
processor. First we need to answer, for each query g(X) referring to a frame X, the
respective bottom-up inference query. That is, each query ¢(X) has now for all the slots
which are specified in it explicitly stored the implicit values at frame X. In the following we
study the remaining steps necessary to answer top-down queries, i.e. to search, for every
q(X), the subtree rooted at X. Note that, the subtrees are arbitrarily distributed over the
inheritance hierarchy (as e.g. trees A through H depicted in Figure 5) and that several
queries may search the same subtree. Our algorithm for solving this problem is shown in
Figure 6.

1)  Match each query g(X) with the node (frame) X it refers to.

2)  Split each query g(X) into two tokens, a search token search-token and a control
token control-token. Each token contains a copy of the original query. Each search
token at node X is responsible for searching the subtree rooted at the first child of X;
each control token at node X is responsible for searching (or having searched) the
subtrees rooted at the other children of X.

3)  Aslong as there is still a processor PE(i) storing an unanswered query ¢(X), repeat
the following:
3a) Count the number F of free processors. A free processor is a processor that is

currently not supporting any search token.




3b) Each token ¢ calculates the number a(¢) of assistants it could currently use. A
Search token can always use as many assistants as there are unsearched
subtrees at the node (frame) it is current currently visiting. F new search tokens
(assistants) are created and matched with the existing (search and control)
tokens in order of the level numbering of their current nodes (frames), each
receiving a(¢) assistants until all new tokens are distributed.

3c) For each token that has been allocated assistants in Step 3b, assigns a child
whose subtree has not been searched yet to each assistant, match the assistants
with those children, create for each a corresponding control token, and have
them search the respective subtrees.

3d) Each search token examines its current node.

3e) Use multi-way search to advance all search tokens by one step in their preorder
traversal.

Figure 6. Hypercube Algorithm for Multiple Tree Traversal.

After each query has been matched with the respective node (Step 1), a search token and
control token are created for every query (Sgep 2). Each search token, for a query ¢(X),
traverses (independently and in parallel) in preorder the subtree rooted at node (frame) X
and determines the answers to be reported. Each control tokens remains at the root of the
respective subtree to be traversed, indicates to the respective search token the end of its
traversal, and creates new assistant processes in the same way as search tokens do. (Note
that, the number of control tokens never exceeds the number of search tokens.) The main
idea leading to a near optimal speedup (as will be shown below) is to re-use processors
released by queries which need to traverse smaller subtrees to improve the performance of
the search processes for the larger subtrees. This rescheduling mechanism is outlined in
Steps 3a-3c. After each "round", i.e. parallel advancement of all search tokens by one edge
in the preorder of their subtrees, processors from finished traversal processes are given to
unfinished traversal processes. Every token determines, from the outdegree of the node
(frame) it is currently visiting, how many "assistants" it could currently utilize, i.e. ask
them to search those subtrees independently and in parallel. For the distribution of available
processors, the following heuristic is used: higher priority is given to those search tokens
with smaller level number, i.e. tokens that have (in the expected case) the largest subtrees
still to be searched.

For observing the correctness of the algorithm note that, for every query ¢(X) the entire
subtree rooted at node (frame) X is searched, and that at every time a node (frame) is
examined, all inherited values are present.

In the case of bottom-up inference and assertion/retraction it was possible to get a worst
case bound on the algorithm's time complexity. Due to the rescheduling procedure, the
performance analysis for the top-down inference algorithm is more complicated. Advancing
all tokens one step along their path can be executed on a hypercube multiprocessor of size n
in time O(log n) (if the number of children of each node (frame) is bounded by a small
constant) or in time O(log n loglog?n) (for unbounded number of children) [CP, DFR2,
DR]. The problem lies in determining the number of such parallel steps required by our




algorithm, since at the heart of the method is a heuristic rescheduling scheme that
reallocates processors to queries. The challenge is to quantify how effective this
reallocation technique is.

In order to test our mechanism, we have implemented a prototype system and have
performed extensive tests using randomly generated hierarchies and sets of top-down
inference queries. We considered the following input parameters:

n = number of nodes (frames) = number of processors,

m = number of queries,

k = max. number of children of a node (frame).

Figure 7 shows the result of our experiments for n=16,000. The graph on the left depicts
results for hierarchies with unbounded &, while the graph on the right shows results for
hierarchies with a small value of k£ (k=8). The x-axis in each diagram represents m, the
number of queries, ranging from 1 to 16,000 in 1% increments. For each value of m, 1000
experiments where performed, each with a new randomly generated hierarchy and set of
queries. The two curves show the average number of parallel steps as well as the average
speed up. The speed up was measured by comparing the number of parallel steps with the
total number of steps necessary for sequentially processing the same query set on the same
hierarchy. It measures the utilization of the massive parallel architecture and, as our results
show, a nearly optimal utilization is obtained for a 75% load factor (number of processors,
n, divided by number of queries, m). The utilization never dropped below 75%, regardless
of the load factor and other parameters.

The shape of the curves in Figure 7 can be explained by two opposing effects. If there
are only a few queries to be processed (small load factor), these can not immediately
request enough assistants (due to the constraints of the hierarchy) to utilize all processors.
On the other hand, it is important for large subtrees to receive assistants early in the
traversal process. Hence, if the number of queries is close to the number of processors,
there are no (or only very few) assistants available until the smaller trees have been
traversed. Therefore, it becomes likely for the larger trees, that late arriving assistants can
not be efficiently applied to the traversal.
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